

Luminance, Radiance, and Photorealistic Rendering in TracePro

Lambda Research Corporation Webinar July 1, 2020

Presenter

• Presenter

Dave Jacobsen Sr. Application Engineer Lambda Research Corporation

Format

- A 30-40 minute presentation followed by a question and answer session
- Please submit your questions anytime using Question box in the GoToWebinar control panel

Additional Resources

- Webinars and Tutorial Videos
 - https://www.lambdares.com/su/tracepro-videos/
 - <u>https://www.lambdares.com/su/oslo-videos/</u>
- Tutorials
 - <u>https://www.lambdares.com/su/tracepro-tutorials/</u>
 - https://www.lambdares.com/su/oslo-tutorials/
- Information on upcoming training classes
 - https://www.lambdares.com/training/

Introduction

Topics

- Introduction and review of radiometry and photometry
- The need for luminance, radiance, and photorealistic rendering
- Setting up luminance and radiance raytraces in TracePro
- Setting up photorealistic rendering in TracePro
- Luminance, radiance, and photorealistic rendering options
- Examples
- Live Demo
- Question and Answer session

Radiometry and Photometry

Radiometry

- Radiometry is the measurement of electromagnetic radiation
- In the most general sense this includes everything from x-rays to microwaves and radio waves. Wavelengths range from less than a billionth of a meter for x-rays to greater than a meter for radio waves.
- For optical systems we could limit this to light from Ultraviolet to Infrared with wavelengths from 0.1um for Ultraviolet to greater than 10um for Infrared.
- Silicon detectors such as CCD's and photodiodes are sensitive to light in the 0.2-1.1um range.
- Standard unit of radiometric, or radiant, flux is the watt (W).

TracePr

Photometry

- Photometry is the measurement of light as it is perceived by the human eye
- The human eye is sensitive to light from about 0.4 0.75um, 400-750nm. This is known as visible light.
- The human eye is not equally sensitive to all wavelengths in this range
- Peak sensitivity for a light adapted eye is at ≈ 0.555um
- Standard unit of visible, or luminous, flux is the lumen (Im)

Visible Light Spectrum

Photopic Curve – Human Eye Response

Photopic vs Scotopic Curve

3 Common Types of Radiometric/Photometric Measurements

- Radiant/Luminous Intensity flux per solid angle
- Irradiance/Illuminance flux per unit area

• Radiance/Luminance – flux per solid angle per unit projected area

3 Common Types of Radiometric/Photometric Measurements

Radiance and Luminance

- Flux per solid angle per projected unit area in either radiometric or photometric units
- Measure of the light from an area that falls in a given solid angle
- Units for Radiance are typically watts per square meter per steradian (W·m⁻²·sr⁻¹)
- Units for Luminance are typically candela per square meter (cd·m⁻²), also called nits, or foot-lamberts
- Radiance and Luminance are distance invariant as long as the solid angle remains smaller than the source
- Photorealistic Rendering is a lit appearance display of an object as it would appear to a viewer

Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. It is not necessarily proportional to luminance. This is a subjective attribute/property of an object being observed and one of the color appearance parameters of color appearance models.

"Brightness" was formerly used as a synonym for the photometric term *luminance* and (incorrectly) for the radiometric term *radiance*. As defined by the US *Federal Glossary of Telecommunication Terms* (FS-1037C), "brightness" should now be used only for non-quantitative references to physiological sensations and perceptions of light.

Source: Wikipedia

What about Brightness?

Luminance, Radiance, and Photorealistic Rendering

100 lumen sources – Photorealistic Rendering

/lodel:[Large and Small Sources.OML] / Large Source / Small Source					
		Y			
		×	z		
	Y				
del Source Radiance	Z				

100mm² vs. 1mm² sources, both with 100 lumens

100 lumen sources – Luminance

es.OML]]		
			nit 1.012e+10		
	y		3.7431e+08		
			5.1207e+05		
	×_	z	18940		
_			700.52		
			25.91		
Z			0.95834		
				Y y y z z y y z z y y z y y z y y z z y z z z z z z z z z z z z z	y 1.012c+10 3.7431e+08 1.3845e+07 5.1207e+05 1.8940 700.52 2.531 y 2.531 0.35824 0.35824

100mm² vs. 1mm² sources, both with 100 lumens

Luminance example – cd/m2(nits)

Luminance example – footlamberts

Radiance example – W/m2-sr

• Candela Plot looks good

icePro2020 Expert Edit View Define Raytrace Optimize Analysis Reports Tools Macros Window Help 도 그 유민 아이슈 아이슈 아이슈 바이슈 아이슈 바이슈 아이슈 아이슈 아이슈 아이슈 아이슈 아이슈 아이슈 아이슈 아이슈 아	* A B K K / N	- 0
·메일월지에에 성영에 드러가 가지 않는다. 이익이익 사실 사실 가지는 다리가 다리가 다가 있었다. Kodel[Straigh Light Guideom]		
/ LED Body / LED Body < Target	nit 22337e+05 23345 2439.9 255.01 26.652 2.7856 0.29113 0.030428 0.0301801	

Pro 2020 Expert dit View Define Raytrace Optimize Analysis	eports Tools Macros Window Help	- 0
ਖ਼ਖ਼ਸ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ ਖ਼ੑਖ਼ੑਖ਼ੑਖ਼ੑਲ਼ਸ਼ਖ਼ਖ਼ਖ਼ਸ਼ਖ਼ਸ਼ਖ਼	◆ > / # # # # # # # # # # # # # # # # # #	
del (Stadyk Light Guide.com) LED Body LED Sorface Source Target		
نينية (Landard Contention)		

Add a texture to the output surface of the light guide – much better results

Add a texture to the output surface of the light guide – much better results

Setting up luminance, radiance, and photorealistic rendering in TracePro

Luminance and photorealistic rendering methods

- There are 2 ways to run luminance and photorealistic rendering raytraces in TracePro
 - 1. View->Photorealistic Rendering
 - 2. Define->Luminance/Radiance
- Radiance raytraces can be run using Define->Luminance/Radiance

View->Photorealistic Rendering

- Orient the model to have the view that you want to use use small window size initially
- Go to View->Photorealistic Rendering->Setup to set the parameters for the rendering
- Go to View->Photorealistic Rendering->Render to run the rendering

View->Photorealistic Rendering->Options

- Sets the options for the rendering
- Can also be accessed by right clicking in the display window and selecting Photorealistic Rendering Options
- Allows the switch to luminance values

Photorealistic Rendering Options X	
Map type: Truecolor ▼ Log scale Color scheme: Color (Rainbow) ▼ ✓ Show Legend Set Max: 0 Set Min: 0 ● Brightness: 0.710000 ▲ ○ Normalize Contrast: 0.5 ▲ ○ Saturated color: Gamma: 1 ▲ Value mode: Raw value Apply ● ● ●	17733e-05 1749.8 17.265 0.77075 0.77075 0.77075 0.676-97 1.6156-09 1.5935e-11

- Go to Define->Luminance/Radiance to set the parameters for the raytrace
- These settings will determine the eye and target positions and the target size for the raytrace
- The Analysis Units setting will determine of it is luminance or radiance

🗅 😂 🖬 🎒 🗶 🐂 🔳	Auto Importance Sampling	ļ			Π	X	0
<u>2 Q Q Q </u>	Apply Properties Edit Property Data > Generate Property Data > Source Editor Grid Source Surface Source File Source Ray File Wavelength Editor Bitmap Source		ξ č _x	ŧ,	٤v	ų	¥
	Luminance/Radiance	1					

Luminance/Radiance		5 <u>—</u> 6		×
Name:				
Width: 20	Height:	20		
Width pixels: 10	Height pixels:	10		
Pixel width: 2		Model	View	
Quality				
Low	Rays/pixel: 100			
Auto importance sampling	toward sources	Color:		
Eye position Targ	et position	Up vector -		
X: 0 X:	0	X: 0		
Y: 0 Y:	0	Y: 1		
Z: 100 Z:	0	Z: 0		
Insert	Modify	Display ma	p	

- Raytrace->Luminance/Radiance
- Analysis->Luminance/Radiance Map to see the results after the raytrace

Multiple luminance and radiance targets can be defined and then • raytraced sequentially

• Multiple luminance and radiance targets can be defined and then raytraced sequentially

Analysis->Luminance/Radiance Map Options

- Sets the options for the Luminance/Radiance Map
- Can also be accessed by right clicking in the display window and selecting Luminance Map Options or Radiance Map Options

Name:	Luminance 1	•	
Color scheme:	False color (rainbow)	•	
Units:	cd/m2(nit)	•	

Examples

Light Guide with bulk scatter property

Speedometer example

Light Guide with and without bulk scatter property

No bulk scatter property

With bulk scatter property

Light Guide with and without bulk scatter property

No bulk scatter property

With bulk scatter property

Laser etched paint example

Laser etched paint example

Laser etched paint example

Backlight example

Backlight example

Luminance – linear scale

Luminance – log scale

Live Demo

Summary and Questions

Precautions

- Don't leave a Perfect Absorber between the eye position and the target!
- Start with a small window size or large pixels and a low number of rays/photons to make sure all settings are correct
- Once the initial results look good, increase the window size and number of rays and decrease the pixel size for better resolution
- Watch out for luminance/radiance values that may exceed the dynamic range of the Luminance/Radiance Map
- Turn off Windows Update if you are running a really long rendering, luminance, or radiance
- Don't leave a Perfect Absorber between the eye position and the target!

Summary and Questions

- Luminance, radiance, and photorealistic rendering simulations are an important part of many types of designs including light guides, backlights, and displays
- TracePro has several tools for luminance, radiance, and photorealistic rendering raytracing
- ✓ These tools are easy to set-up and use

For more information or for a free 14-day trial for qualified users, please contact us at:

www.lambdares.com

Phone: +1 978-486-0766 E-mail: <u>sales@lambdares.com</u>

Thank You!

