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LICENSE AGREEMENT 

 

The purchaser of OSLO is granted a license to use this product subject to the 
following restrictions and limitations. 

 
1. The license is to the original purchaser only, and is not transferable without 

written permission of Lambda Research Corporation. 
 

2. With a single-user license, only one copy of the software may be used on a 
single computer at a time. The software may be transferred for use on 
another computer, but the software may not be used simultaneously on more 
than one computer unless additional licenses are purchased for each 
multiple simultaneous use. 

 
3. A network license may be used by one or more users, up to the number 

purchased for the network license, on any computer connected to the license 
server via the network. The license may be transferred to a different server 
computer by moving the license key and installing the license server software 
on the new server computer. 

 
4. The original purchaser may make backup copies of the original software for 

his own use only, subject to the use limitations of this license agreement. 
 

5. The original purchaser may not engage in, or permit third parties to engage 
in, any of the following: 
a. Providing the use of the software in a computer service business, 

network, or time-sharing use to users who are not individually licensed 
by Lambda Research Corporation. 

b. Making alterations or copies of any kind in the software except as 
specifically permitted above. 

c. Attempting to disassemble, decompile, or reverse engineer the software 
in any way. 

d. Attempting to defeat the license protection or license manager software. 
 

6. You may not use or otherwise export or re-export the licensed product except 
as authorized by United States law and the laws of the jurisdiction in which 
the licensed product was obtained. In particular, but without limitation, the 
licensed product may not be exported or re-exported (a) into any U.S. 
embargoed countries or (b) to anyone on the U.S. Treasury Department's list 
of Specially Designated Nationals or the U.S. Department of Commerce 
Denied Person’s List or Entity List. By using the licensed product, you 
represent and warrant that you are not located in any such country or on any 
such list. You also agree that you will not use these products for any 
purposes prohibited by United States law, including, without limitation, the 
development, design, manufacture or production of missiles, or of nuclear, 
chemical, or biological weapons. 

 
 

WARRANTY 

 

Although Lambda Research Corporation has made every effort to ensure that the 
software is technically accurate, Lambda Research makes no representations or 
warranties of any kind whatsoever, directly or indirectly, with respect to the 
contents hereof or the software described herein. Lambda Research shall not be 



  

liable for errors contained herein or with the software described herein for any 
incidental or consequential damages caused by, or in connection with, the 
furnishing, performance, use of, or any inability to use this product. 

With respect to the physical CD-ROM, USB license, and documentation enclosed 
herein, Lambda Research warrants the same to be free of defects in materials 
and workmanship for a period of thirty days from the date of purchase. Lambda 
Research will replace the defective CD-ROM, USB license, or documentation 
within this warranty period upon receipt of the defective product. Lambda 
Research reserves the right to make changes to the software or documentation 
without obligation to notify any person of such revision or change. 
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Chapter 1 Quick Start 
OSLO provides a computing environment for optical design. In addition to the usual functions that 
provide optimization and evaluation of optical systems, OSLO features a special windows 
interface that allows you to work interactively to probe the details of your optical system during 
the design process. OSLO accepts symbolic or numerical input using menus, toolbars, or 
commands; slider-wheel functions for real-time analysis; and automatic generation of dialog boxes 
and menus for custom program enhancements. 

OSLO works similarly to other windows programs. If you are familiar with other windows 
software, you will be able to use OSLO without difficulty. However, the OSLO user interface 
does contain several unique features that make it an efficient and easy-to-use optical design 
program, and you can enhance your productivity by reading through this chapter. 

The screen shot below shows a typical configuration of OSLO. Generally, you enter data either in 
a spreadsheet or in the command line. You can enter commands either directly in the command 
line or by clicking a menu or toolbar button. Commands and menus are completely integrated; 
there are no separate command and graphical input modes. Output from OSLO typically appears 
in a text or graphics window, according to the type of output to be displayed.  

A unique feature of OSLO is its slider-wheel window, holding up to 32 graphical sliders, 
providing callbacks to default or user-supplied routines that perform evaluation or even full 
optimization iterations when a slider is moved. 

Other special windows are provided for database functions, file handling, and text editing. A 
substantial portion of OSLO is written in CCL, a modern byte-code language similar to Java. 
Incremental compilers and a linker are seamlessly integrated with the program to provide byte-
code efficiency with the ease of use of an interactive language. 

 

 

Main WindowCommand Line

Spreadsheet

Graphics Windows

Status Bar 
Text Window

Slider-wheel Window 
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Main window 
The main window is the central control point for most OSLO tasks. It contains the title bar, menu 
bar, tool bar, and a large work area that contains other OSLO windows. Usually, the main window 
should be maximized to make use of the full display area, allowing as much room for the other 
OSLO windows as possible. 

Title bar 
The title bar includes the Windows system button (displaying the OSLO icon), the ID of the 
current lens, the name of the current lens file (in brackets), and the name of the edition of OSLO 
that is running. At the right end of the main window title bar are minimize, maximize, and close 
buttons, which perform their usual functions for the main window. 

 

Menu bar 
The menu bar displays a list of top-level items for the OSLO menu system. Each item contains a 
pull-down menu with several options. Some options contain pull-right menus with additional 
choices. The OSLO menu works like other Windows menus, but it can easily be enhanced or 
modified to include user-supplied commands. The menu that is displayed when OSLO is run is 
determined by the contents of a user-modifiable file called a_menu.ccl. The standard menu file 
provides the following options: 

 File  Commands that open and save lens files, access lens and other databases, manage 
printing and plotting, and set program preferences. The last option on the File menu is 
Exit, which stops the program. 

 Lens  Commands that enter or display lens and system data. These include access to 
OSLO spreadsheets, data output routines, and lens drawings. 

 Evaluate  Commands that analyze or compute the performance of the system, such as 
aberration analysis, ray tracing, and image analysis. 

 Optimize  Commands that set up and carry out optimization tasks. 

 Tolerance  Commands that set up and carry out tolerancing tasks. 

 Source  Commands that define or analyze the current system using special sources, 
such as extended or Gaussian beam sources. 

 Tools  CCL compiler and special or demo commands supplied with the program. 

 Window  Options to open, close, and update windows. Window also includes 
commands to copy text and graphical output to a file or the Windows clipboard. 

 Help  Provides the main entry into the OSLO help system. You can also obtain 
context-sensitive help by clicking on the help button in a spreadsheet or dialog box. 
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Main tool bar 
Although OSLO has only one menu bar, it has several tool bars. The Standard tools in the main 
tool bar include buttons that invoke basic file and data handling commands. Supplemental tools 
are grouped according to application area (optimization, tolerancing, sources, etc.). Like the main 
menu, the tools in the main toolbar are determined by the contents of a user-modifiable file 
a_toolbar.h, which is included in the a_menu.ccl file. 

 
The main toolbar begins with the Window Setup button. This 
button is found in all OSLO toolbars, and is divided in two 
parts. The top part shows window setup commands, while 
the bottom part shows various toolbars appropriate for the 
window. The Tile windows item, common to all Window 
setup buttons, is a user-modifiable command that attempts to 
lay out the various spreadsheet, graphics, and text windows 
in a convenient pattern. New graphics window and Switch 
text windows create graphics and text windows. The SS right-
click actions item pops up a menu of editing commands that 
pertain to the selected rows in the current spreadsheet (if 
any). The SS right-click actions menu also appears when you 
right-click in a spreadsheet. Finally, the Set Toolbars/Row 
item allows you to choose how many toolbars will be 
concatenated before starting a new row.  

 

 The lens spreadsheet button opens the main surface data spreadsheet, which in turn contains 
several buttons that open subsidiary spreadsheets for special and supplemental data. 

 

   These tools are used to create a new lens, open an existing lens, or save the current 
lens. 

 

  The editor may be either the built-in OSLO editor, or an external editor such as 
Notepad++ (shown). 

 

 This button opens the current CDB database spreadsheet, which contains its own menu 
button and buttons for various column editing functions, as well as user-defined buttons for 
database callbacks. 

 

 
This button opens a spreadsheet used to set up a slider-wheel window. This window allows 
you to vary lens parameters during design or evaluation by dragging graphic sliders or 
rotating the mouse wheel. 
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Graphics windows 
OSLO's graphics windows help you see how your lens design performs. To avoid clutter, OSLO 
does not create a new window for each graphics plot. Instead, a new plot replaces the one in the 
current graphics window (marked with an asterisk). You make a window current by clicking in it. 
The Tile Windows command optimizes the layout of your windows by creating different tiling 
patterns, depending on which windows are active (minimized windows are ignored). 

One graphics window is opened automatically when OSLO is started. To open or close additional 
graphics windows, click the Create Graphics Window item on the Setup Window menu (first 
toolbar button) or use the Open and Close options on the Window menu. Graphics windows are 
continuously resizable and zoomable, with content that resizes automatically. There are two types: 
tow (to window) windows have variable aspect ratio, and are used for most plots, while iso 
(isomorphic) windows are used for lens drawings, spot diagrams, etc. You can resize windows 
manually by dragging the window frame, or you can set window sizes and positions using CCL 
commands. 

In addition to 32 standard graphics windows, OSLO has two special windows. The Autodraw 
window shows a plan view of the current lens, highlighting the surface currently selected in the 
lens spreadsheet. The Slider-wheel window holds up to 32 graphic sliders that allow you to change 
lens parameters interactively, while watching the effects (usually shown in graphics windows) in 
real time. 
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OSLO graphics windows are either static or updateable, indicated by GW or UW in the title bar. 
Updateable windows are very useful in developing a lens design. For example, you can put a plot 
in a graphics window using a standard tool bar icon. If you change the lens data, the plot will not 
change by itself. However, since the window is updateable, you can right-click in the window and 
select the "Update window using current data" item (or double-click in the window) to update the 
window. Also, you can re-plot a window using the same analysis but with different graphic scales  
by right-clicking and choosing the "Recalculate using new parameters" option. If you have several 
updateable graphics windows on the screen, you can update them all simultaneously using the 
Windows >> Graphics >> Update All command in the main menu. 

 

The current window can be copied to the 
clipboard by right clicking in the window and 
selecting the Copy to Clipboard item. Graphics 
output is placed in the clipboard in standard 
Windows metafile (vector) format. 

You can save graphics windows to a file using 
the Save As command, which also pops up on 
the right-click menu. You can choose to save 
the window as a Windows metafile, bitmap, or 
hpgl file. Although metafile format is generally 
preferred for most line graphics output, some 
complex plots (notably spot diagrams) consume 
excessive file space and are better saved as 
bitmaps. In addition, shaded graphics plots 
must be saved as bitmap files. 

 

There are several ways to zoom an OSLO graphics window. Zooming is limited to 16x total 
magnification, but when combined with the maximize button, the total range is greater than this. 

 You can zoom by holding down the left mouse button and dragging a marquee box around 
the desired zoom region.  

 You can right click in the window and select a zoom option from the menu that pops up. 
You can then drag a scroll bar to pan.  

 You can put your mouse cursor in the window and rotate the mouse wheel to zoom. If you 
place the mouse cursor over one of the scroll bars, the window will pan as you rotate the 
wheel.  

 You can use CTRL+ARROW keys to zoom in or out, or SHIFT+ARROW keys to pan. 
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Graphics window tool bar 
The Standard Tools for graphic windows are intended to provide general report-graphics plots. 
More detailed analyses can be produced using subsidiary toolbars selected from the Window 
Setup menu (1st toolbar button). The report graphics plots are made using CCL routines, so they 
can be modified to meet special requirements. 

 

 

The Window Setup button in graphics windows contains 
commands for creating and managing additional graphics 
windows, as well as choosing toolbars. Only one toolbar is 
allowed in each graphics window; if you want several 
different toolbars simultaneously, you must create several 
windows to hold them. The Set window title item allows you 
to put an identifying phrase in the title bar of a graphics 
window. Invert background allows you to choose between 
black or white background colors, and Right-click actions 
produces the same menu as does right-clicking in the 
window.  

The Standard Tools for graphics windows include basic lens 
drawing and optical evaluation features. The other items on 
the toolbar list provide expanded capabilities in particular 
areas. 

 

 The plan-view drawing button draws a 2D view of the current lens, with ray trajectories 
shown for the default rays according to the Lens drawing operating conditions. This drawing 
is made by neglecting any 3D information; it is not a section of a 3D drawing. 

 

 The shaded view drawing button draws a 3D view of the current lens, again using the Lens 
drawing operating conditions (Lens >> Lens Drawing Conditions). This drawing uses 
OpenGL graphics, instead of the normal OSLO vector graphics routines. To obtain hard 
copy, it is necessary to use a bitmap format (*.bmp, *.rle). 

 

 This button creates a Ray Analysis report graphic window, which is a single plot that 
contains several ray-based evaluations: Ray-intercept curves, Coddington astigmatism field 
curves, Longitudinal spherical aberration, chromatic focal shift, distortion, and lateral color. 
A plan view lens drawing is also shown in the lower right corner. 

 

 This button produces a wavefront report graphic, which shows false-color interferograms 
and sliced-contour representations of the image-space wavefront for each field point. 

 

 This button shows through-focus spot diagrams for each field point. Although this is a vector 
plot, it is preferable to produce hard copy in the form of a bitmap to save file space. 

 

 This report graphic shows (diffraction) point spread functions from the defined field points, 
together with x and y scans and encircled (and ensquared) energy distribution curves. 

 

  These buttons produce MTF vs frequency and MTF vs focus plots, respectively. 

 
The Standard Tools for graphic windows are intended to provide general report-graphics plots. 
More detailed analyses can be produced using subsidiary toolbars selected from the Window 
Setup menu (1st toolbar button). The report graphics plots are made using CCL routines, so they 
can be modified to meet special requirements. 
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Text windows 
Although much optical design is done using graphics plots, some aspects require (numerical) text 
output. OSLO text windows have a unique feature for these aspects: the Spreadsheet buffer. The 
Spreadsheet buffer is an array in memory that mirrors text output sent to the display. Each element 
in the Spreadsheet buffer can be accessed by clicking on the text window with the mouse, by 
typing its row-column designation in the command line, or by using a CCL function that retrieves 
its value for additional processing. Only real numbers are saved in the Spreadsheet buffer, but 
these numbers are saved with double precision. 

  

One text window is opened when the program starts. It serves as a serial record of a design 
session, allowing you to scroll backwards through up to 1999 lines of text output (this is also the 
size of the spreadsheet buffer). You can open a second text window using the Switch text window 
item from the Setup Window menu, or the Window >> Text >> Open menu item. Text output 
from the program will be directed to the window that has an asterisk on the title bar. Each text 
window has its own spreadsheet buffer. 

Two preferences have an important effect on the behavior of the text window: page mode and 
output text. If page mode is turned on, the first line of output from each command will appear at 
the top of the text window. If it is off, the last line of output from each command will appear at the 
bottom of the window.  

If output text is on, output appears normally in the text window, but if it is off, output only goes to 
the spreadsheet buffer, and does not appear in the window. This feature is used frequently in 
OSLO to pass arrays to CCL routines. The settings of both page mode and output text appear in 
the OSLO status bar. If text windows do not operate as expected, it is a good idea to check the 
settings of these preferences. 

You cannot type into an OSLO text window, but you can select a range of lines by holding down 
the left button and dragging the mouse. You can also select using the keyboard by holding down 
the SHIFT key and pressing the DOWN ARROW or UP ARROW. When you select from the 
keyboard, the first selected line will be the first visible line in the window; it may be necessary to 
scroll the window up or down to get the proper starting line. After you have selected a range of 
lines, several options for copying, cutting, or printing the selected text can be obtained by right-
clicking in the window, as shown below. A special feature of OSLO text windows is that you can 
copy lines with either displayed or full precision (from the Spreadsheet buffer). 
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Text Window tool bar 

 

 

The Text Window toolbar begins with the Window Setup 
button. This button is found in all OSLO toolbars, and 
displays a context-sensitive menu of standard tools that 
affect spreadsheet, text, and graphics windows, as well as 
subsidiary tools that can be concatenated to (or replace) 
the standard tools. The Tile windows item, common to all 
Window setup buttons, is a user-modifiable command that 
attempts to lay out the various spreadsheet, graphics, and 
text windows in a convenient pattern. The layout of tools 
in the main toolbar is controlled by the Set Toolbars/Row 
command. The SS right-click actions item pops up a menu 
showing editing commands that pertain to the selected 
rows in the current spreadsheet (if any). The SS right-click 
actions menu also appears when you right-click in a 
spreadsheet. 

 

 Standard surface data  User-specified single ray trace 

 Special surface data  Current reference ray data 

 Refractive indices  Trace a ray fan 

 Aperture data  Trace a spot diagram 

 Wavelengths  Auto-focus for minimum spot size 

 Paraxial constants (efl, fnb, ne, etc.)  Show current variables 

 Aberration sums (through 5th order)  Show operands and error function 

 Marginal (axial) ray trace  Carry out a design iteration 

 Chief (principal) ray trace   
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Spreadsheet windows 
OSLO uses spreadsheets for data entry. Like other spreadsheets, they contain rows and columns of 
cells. You can move between cells with the mouse or arrow keys, and you enter data into the cells. 
There are several dozen spreadsheets, but they all work similarly, so only the principal ones are 
described in detail here. 

Spreadsheets in OSLO are organized as a stack. There can only be one spreadsheet open at a time. 
If you open another spreadsheet while one is still open, the first one will be pushed down in the 
stack and will re-appear when the second is closed. The spreadsheet window title bar shows the 
names of all the spreadsheets currently in the stack.  

The OSLO spreadsheet window consists of two parts. The top part is called the command area and 
consists of a prompt line, command line, and message area, plus buttons at both ends. The bottom 
area is the actual spreadsheet, which itself may be divided by a double line into a fixed area at the 
top, and a scrollable area with a variable number of rows at the bottom. Most spreadsheets consist 
of a number of buttons that open other spreadsheets or pop-up menus. 

 

Spreadsheet command area 

 

Green check button  causes OSLO to accept and terminate the current data entry. It is 
equivalent to an OK button. If there is no current data entry, the green check button causes OSLO 
to accept changes and close the spreadsheet. From the keyboard, ENTER accepts the current data 
entry, but you must press SHIFT+ENTER to close a spreadsheet. 

Red X button  equivalent to a Cancel button. The red X is equivalent to pressing ESCAPE, 
except that when a spreadsheet is open, you must press SHIFT+ESCAPE to close it. The red X 
button causes OSLO to reject and terminate the current data entry. OSLO has a Revert_enable 
preference that allows you to cancel changes made to a lens in a spreadsheet. If this preference is 
set, whenever you exit a spreadsheet by clicking the red X button, a confirmation box will appear 
asking you to confirm that you want to revert to the data that existed when you entered the 
spreadsheet. Note that the normal response to this query is yes, otherwise you would have clicked 
the green check button. 

History buffer

Command line Message area 

OK
Cancel

Help

Edit buttonsPrompt line 
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Help button  opens the OSLO Help system. It opens different pages, depending on the state of 
the command line and spreadsheet. 

 If the command line is empty and no spreadsheet is open, the Help button goes to the 
main page of the help system. 

 If the command line contains the name of a command, the help button opens the 
command definition. 

 If a spreadsheet is open, the help button navigates to the page of the help system that 
provides primary help for that spreadsheet. 

 
History button  As mentioned before, it is possible to run OSLO using either menus or 
commands. The names and definitions of OSLO commands are given in the on-line help system. 
A convenient way to learn commands is to use the History buffer in conjunction with the menu 
system. You can execute a desired command using the menu system, then recall it from the 
History buffer to see the actual command, which can be entered from the command line. Many 
commands have two forms that are equivalent. The short form is easier to type; the long form is 
easier to comprehend. If the Command_history_aliases preference is on, the short form of 
commands is shown; otherwise the long form is shown. 

The command area itself consists of three sub-areas for text: 

 Prompt line  The prompt line contains a prompt that either states the current status of 
the program or requests specific keyboard input. OSLO contains a special feature that 
generates prompts for all required input data. 

 Command line  This is where keyboard input to OSLO occurs. When a spreadsheet is 
active, keystrokes entered into the program are echoed in both the spreadsheet and on the 
command line. When the command line expects an argument that is an item from a list of 
allowed values, a pop-up options list appears containing all the allowed values. 

 Message area  The message area contains informative messages of 1 or 2 lines from 
the program. Error messages appear in a separate alert box. The message area is also used 
for program output, such as calculator results or file actions. 

 
Commands in OSLO are self-prompting. To make it easy to use commands, OSLO uses default 
values for command arguments (also called parameters) where possible. Any remaining arguments 
are prompted for. In addition, OSLO has a special question-mark parameter. If you want to be 
prompted for all arguments, enter a command followed by a space and question mark. 

Commands can include symbolic input. All lens data can be referenced by name (e.g. CV[2], 
TH[i], RN[1][1], IMS, AST etc.). In addition OSLO has named storage registers (A-Z, the 
Spreadsheet buffer, several pre-defined arrays, standard math functions, and various other named 
global variables). When you enter a numeric expression in the command line, OSLO substitutes 
the value of the symbols, evaluates the expression, and enters the result. Several commands can be 
given on a single line, separated by semicolons. Each line can be up to 512 characters, and loops 
and other control structures allowed in C can be used.  

Commands can also be entered while a spreadsheet cell is highlighted. In OSLO, each cell for 
numeric data is called a SmartCell™. SmartCells automatically detect and execute commands 
entered in spreadsheet cells. In certain cases, commands may not be legal entries to cells (e.g. you 
can't enter the command cv 2 .001 in the cell for row 3) and are disabled. In addition, where a cell 
expects a string entry, it may be necessary to enclose it in quotes to prevent it from being 
interpreted as a command. For example, if you want to use the string “Paraxial_constants” as a 
lens id, you must enter it in quotes to prevent Paraxial_constants from being interpreted as a 
command.  
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Surface data 
The Surface Data Spreadsheet (shown at the beginning of this section) is where data that specifies 
lens surfaces is entered and updated. The spreadsheet is opened from the Update menu, by 
clicking on the lens tool on the main tool bar, or by entering the command lse.  

To follow the discussion here, you may wish to run OSLO and open the surface data spreadsheet 
with the same lens used for the example. To do this, run OSLO, click on File >> Open, and select 
“Landscape 1.len”from your private/len directory (either by double-clicking on it or by selecting 
it and clicking Ok), OSLO will load the demonstration lens file used here. 

 

Fixed area 

As indicated on the figure, the spreadsheet consists of two areas, a fixed area containing a row of 
buttons and some data entry fields, and a scrolled area (below the double line) that contains 
several rows to enter data describing the surfaces of the optical system. The buttons in the fixed 
area open additional spreadsheets for data input, or provide control options, as follows: 

Gen Opens the general operating conditions spreadsheet. General operating conditions include 
data that specifies either lens properties or the environment in which the lens is evaluated. Most of 
these conditions can be used without change for ordinary design work. 

 

Setup Opens the paraxial setup spreadsheet. Each column of this spreadsheet specifies one 
paraxial property for the lens. These properties are Aperture, Field, and Conjugates. Each of these 
properties can be specified in more than one way. You must enter one value in each column (or 
accept the default) for a complete set of properties. The controlling specification of the aperture or 
field is shown by an asterisk. Note that the first two specifications (above the line) are object space 
specifications, while those below the line are image space specifications. In OSLO, if a paraxial 
property is specified in object space, then image space data will be varied while the object 
specification is held constant. If the paraxial property is specified in image space, then the object 
space data will be varied in order to hold the image-space specification. For example, if the 
entrance beam radius is specified, the f-number of the lens will vary according to the focal length. 
On the other hand, if the f-number is specified, the entrance beam radius will vary according to the 
focal length. 

Fixed area

Scrolled area
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The Paraxial Properties Spreadsheet functions like other spreadsheets in that an entry in one cell 
can affect values in many other cells. For example, if you change the image distance, then the 
object distance, magnification and working f-number all change accordingly. This means you can 
enter these properties using the parameters that are most natural for your problem and OSLO will 
calculate the other ones. Parameters not allowed in the current context are dimmed. Before 
clicking OK, be sure all values are as you entered them. 

It is important to understand that this spreadsheet only sets the initial values of the parameters. It 
does not place any constraints on the lens to maintain these values. For example, if the focal length 
of the lens changes during a design, this may change the conjugates and aperture parameters. Note 
that the basic paraxial operating conditions that specify aperture and field are also shown on the 
second row of the surface data spreadsheet.  

 

 

 

The center portion of the paraxial setup spreadsheet contains data entry fields for specifying the 
sampling size and apodization of ray grids used to make spot diagrams (which are in turn the basis 
for several other image evaluation calculations). The "Aperture divisions across pupil" item sets 
the grid size, normalized to the entrance beam radius. In order to have proper sampling, the 
entrance beam must fill the aperture of the system, and the grid size must be fine enough (i.e. the 
aperture divisions large enough) to adequately characterize the wavefront transmitted through the 
system. The worse the performance of the system, the finer the grid size that must be used to 
evaluate it. Generally speaking, the sampling should be fine enough that there are several grid 
points per wavelength of optical path difference in the pupil. A rule of thumb for setting the 
aperture division is to evaluate the system using what you believe to be a proper sampling, then 
repeat the analysis with half the grid size and ensure that the result does not change. 

The other data entry field in the setup spreadsheet allows you specify a Gaussian apodization for 
systems used to transmit laser beams. This applies a Gaussian weighting to rays that are traced to 
compute the geometrical wavefront used to calculate far-field diffraction patterns. The spot sizes 
can be specified independently in the x and y directions, and are expressed either in world units on 
surface 1, or as object-space numerical apertures for finite conjugate systems. For example, if the 
entrance beam radius is 2mm, then a spot size of 2 describes a Gaussian beam whose intensity 
falls to 1/e2 of its axial value at a distance 2mm from the axis on surface 1. 

Wavelength Opens the wavelengths spreadsheet, which allows you to specify which 
wavelengths OSLO will use for analysis. For a monochromatic application, e.g. a laser, a single 
wavelength is appropriate. For a polychromatic application, OSLO by default defines three 
wavelengths for its analysis. You can add more, up to a limit specified by the preference 
max_wavelengths (default = 25). The primary wavelength used for analyzing the current lens is 
shown at the end of the second row of the surface data spreadsheet. 

Wavelengths should be spaced across the wavelength range of interest. They should be entered 
such that the central wavelength is #1. The remaining wavelengths are given in short-long pairs. 
For example, in the visible spectrum, the order should be green-blue-red. This will make the 
chromatic aberrations meaningful. Wavelengths in OSLO are always given in micrometers. 
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The evaluation routines in OSLO are based on the current wavelength, normally set to #1. If the 
current wavelength is set to some other value, aberrations and (single wavelength) ray-trace 
analyses will be carried out in that wavelength. If the wavelength used for such an analysis is not 
wavelength 1, the text output indicates which wavelength was used. 

Each wavelength can be assigned a weight, which is used in optimization and in spot diagram 
analysis routines (rms spot size, MTF, PSF, etc.) 

Editing the Wavelengths Spreadsheet is like editing the Surface Data Spreadsheet. Rows or groups 
of rows are selected, cut, copied, pasted, and inserted in the same way. For example, to reduce the 
number of wavelengths from 3 to 1, click on row button 2, then shift-drag to row button 3. Rows 2 
and 3 are now selected. Click the scissors tool on the tool bar or press Delete. Only row 1 remains. 
To insert additional wavelengths, select a row button, then click on the Insert After toolbar icon, or 
press SHIFT+SPACE to create an additional line, then fill in the required data. 

 

 

To change wavelengths, click in the wavelength SmartCell. When this cell is selected, you may 
enter the new wavelength manually, or click on the cell again to display the wavelength menu. 
This menu includes standard wavelengths throughout the range most often used by OSLO. 

The Wavelengths spreadsheet in OSLO Premium contains a button that can be used to generate 
wavelengths and wavelength weights automatically. The data are generated according to a 
Gaussian quadrature scheme that provides uniform spectral weight across a user-specified spectral 
band. OSLO Premium also has an optimization operating condition that allows user-defined 
weighting.  

Field Points Opens the field points spreadsheet (not available in OSLO EDU), which defines 
points on the object surface to be used for evaluation. Field points are an essential part of OSLO, 
so in OSLO EDU they are predefined to be at fractional coordinates (relative to the object height) 
of 0.0, 0.7, and 1.0. In OSLO Premium you can edit the field point data or add additional field 
points using the field points spreadsheet. In addition to the basic field point data that specifies the 
location of the field points, you can specify advanced data describing the vignetting of the system 
allowed during optimization, and other field-dependent properties. 

 

 

Variables Opens the variables spreadsheet, which is used to provide a complete specification 
of optimization variables, including boundary conditions, derivative increments, etc. Basic surface 
data (radii, thicknesses) can be specified to be variable in the normal surface data spreadsheet, but 
special data (tilts, decenters, aspheric coefficients, etc.) must be specified using the variables 
spreadsheet. In addition to providing detailed specification of variables, the spreadsheet contains 
buttons for convenient input of multiple variables (all curvatures, etc.) 
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Draw On/Off Turns the Autodraw window on/off, as described above. When Draw is turned 
on, OSLO opens a window with a plan view of the lens. This view includes the rays selected by 
the current operating conditions. The surface or surfaces currently selected on the Surface Data 
Spreadsheet are shown in a different color. This view is updated whenever the lens data is changed 
or whenever the highlight is moved to a new surface in the spreadsheet. If Draw is turned off, the 
Autodraw window is automatically closed. 

Group/Surfs Switches between surface and group views of the data. In Surfs mode, each 
surface is listed individually with values for all parameters, including the radius of curvature. In 
Group mode, grouped surfaces are shown as a single entity that takes two lines in the spreadsheet. 
For example, with a catalog lens, the radius column of the spreadsheet displays the part number of 
the element. The element can then be treated as a whole, so all its surfaces can be edited (cut, 
copy, paste, etc.) at the same time. If there are no groups in a system, this setting has no effect. 
Non-sequential groups display only the entrance and exit port surfaces in group mode. User-
defined groups similarly show the entrance and exit surfaces. 

Notes Opens the system notes spreadsheet. This spreadsheet allows you to attach up to 5 80-
character notes to a lens. In addition to descriptions, notes are sometimes used to hold special data, 
or even short scp programs that are specific to a particular lens. 

 

 

 

The line below the buttons in the fixed area portion of the lens spreadsheet contains three fields. 
The first is a 32-character field that holds the title (also called the Lens ID) of the lens. This text is 
used in several graphic plots. The second field is the zoom field, described below. The rightmost 
field is not a data entry field, but is a display field that shows the current focal length of the lens. 
In addition to providing information about the lens properties, this field is often used as a check 
field to ensure correct data entry. 

Zoom The zoom field changes to a button when there is zoom data in the system (OSLO 
Premium only). To activate the zoom button, enter a number greater than 1 in one of the numeric 
fields: 

 

 

 

Once the button appears, you can use it to open the zoom data spreadsheet. In addition to 
thicknesses, most other system and surface data can be zoomed. When non-thickness data is 
zoomed, the system is often called a multiconfiguration system. Zoomed systems are ones that are 
optimized simultaneously in different configurations, so that the performance is not optimum in 
any particular configuration, but is rather optimized for the ensemble of all configurations. It is 
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commonly thought that it is necessary to have zoom optimization to design a zoom lens, but this is 
not generally true. In any case, once zoom data are entered for a system, the arrow buttons next to 
the zoom button permit you to quickly change from one configuration to another. 

 

 

Scrolled area 

Below the fixed area of several spreadsheets is a scrolled area that contains a variable number of 
rows, each having a button at the left-hand end (whether or not the area needs to be scrolled 
depends on how many rows are defined, relative to the vertical extent of the spreadsheet window). 
Although the surface data spreadsheet is the most conspicuous example of a spreadsheet with a 
scrolled area, there are many others (wavelengths, field points, variables, etc.) and they all work 
similarly. Each is a form of object editor, where the objects are the entities described by the data in 
the rows. For example, in the surface data spreadsheet, the objects are lens surfaces. The 
spreadsheet allows you to manipulate the objects by selecting the rows of interest and then 
performing the desired action. 

Row buttons  At the left end of a row is a row button. To select a row, click on the row button. 
If there is no row button, you can't select the row; this is the case when a row is part of a range, or 
when row selection is disallowed for some reason (e.g. the system is in an alternate zoom 
configuration). To select a range of rows, first click on the row button at either the beginning or 
ending of the desired range and then drag the mouse down or up. Alternately, you can select using 
the keyboard by holding down the shift key while using the arrow keys. 
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Once a row or range is selected, you can use the edit menu by right-clicking in the spreadsheet. 
Alternately you can use the tools at the right-hand end of the command line, which will become 
active when a row is selected in the spreadsheet. The edit menu contains the usual cut, copy, and 
paste tools, but it is important to realize that these tools work on the objects represented by rows, 
not text. For example, to duplicate a lens element in an optical system, you select the range of 
surfaces it encompasses, copy the range to the clipboard, and then paste it in wherever you want. 
The surface numbering of other surfaces is automatically adjusted. 

In addition to the standard clipboard management tools, the OSLO edit menu contains items for 
inserting and deleting rows, as well as a special tool used for reversing ranges of rows, which is 
particularly useful for manipulating lens elements. Note that although spreadsheet row editing is 
illustrated here with reference to lens surfaces, the method is applicable to coating layers, 
wavelengths, variables, operands or other data that are organized by rows. 

In addition to the reverse tool mentioned above, there is an invert tool. The invert tool is used to 
change the signs of thicknesses of elements that follow a mirror, a feature that is useful when 
working with retro-reflecting (double-pass) systems. Other items in the edit menu allow you to 
group and ungroup ranges of surfaces as elements, or change a range of surfaces to or from a non-
sequential group. Finally, you can use the selection mechanism to indicate a point in a lens to 
insert data from a lens file or the catalog lens database. 

Options buttons  Row buttons enable selection to manipulate entire rows. Spreadsheets also 
contain options buttons, which permit alternate choices for specifying data. To the right of each 
spreadsheet cell is a button used to select various options to specify data in the adjoining cell, for 
example, applying a solve or pickup constraint. Click on the button with the mouse, or select the 
button with the arrow keys and press the space bar. A pop-up menu is displayed to show the 
possible choices. Selecting an item will often pop up a dialog box to enter data, as shown below. 
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The options buttons in the Special column are more complex than the others, because they provide 
access to special data that is not always present in a lens. For example, the aspheric surface 
options are shown below. In order to accommodate a wide variety of options while maintaining 
efficient utilization of computer resources, OSLO only allocates memory for most types of special 
data when it is actually used. In the present case, you can specify the order of the polynomial in 
the spreadsheet that pops up when the Symmetric General Asphere surface type is activated, and 
the required data entry cells are created. If you later change the order, cells are created or 
destroyed (while maintaining previous data entries) according to your request. If you want to 
remove the Symmetric General Asphere property from the surface altogether, you click the button 
at the bottom of the spreadsheet as shown. 

 

 

 

There are many additional spreadsheets that are used to enter data into OSLO. All of them work 
according to the principles described for the surface data, paraxial properties, and wavelengths 
spreadsheets described above. Most are provided for entering operating conditions, special surface 
data, or optimization data. A few, such as the Gaussian beam spreadsheet and the slider-wheel 
spreadsheet, are used to set up special analyses and are described in various examples. One 
spreadsheet that has a broader applicability is the database spreadsheet described below. 
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CCL database spreadsheet 
The CCL database spreadsheet provides the capability for you to add your own spreadsheets to 
OSLO. The spreadsheet works similarly to the built-in spreadsheets (row selection, cut-copy-
paste, etc) and works with files written in *.cdb format, which is similar to standard delimited-data 
formats (comma or tab-separated) supported by general-use spreadsheet software. The CCL 
database spreadsheet provides two menus that allow convenient editing of *.cdb files. The first is 
an overall control menu, which provides overall control of the spreadsheet and links it to CCL 
callback routines, which provide the processing functions that handle cdb data. The second menu 
pops up when you click on a column button, and allows you to insert, move and manipulate data 
on a column basis. 

 

 

 

The CCL database spreadsheet works in conjunction with the CCL database library, which 
provides functions for putting and getting data from the database, as well as sorting and other 
editing functions. The CCL database supports the same data types as CCL (real, integer, character, 
and string).  
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Catalog lens database 
OSLO includes a pictorial database facility that allows you to search stock lens databases 
efficiently. You can sort by focal length, diameter, and part number. You can limit the search 
range by focal length and lens diameter. Once you select an element, OSLO enters it into Surface 
Data Spreadsheet ready for use. 

 

 

The Catalog Lens Database facility can be accessed using the File >> New command and selecting 
the Catalog Lens option, or from the Edit menu using the Insert Catalog Lens option. In the first 
case, OSLO opens a new lens file for the element selected from the database. In the second case, 
OSLO merges a catalog element into the current Surface Data Spreadsheet, in front of the selected 
row. 

Sort controls  These allow you to sort the database in several different ways. The three Lens 
Types option buttons determine what type of lens to include in the list. The three Sort By option 
buttons determine which lens parameter to use as an index. The elements are sorted and displayed 
in a list according to this parameter. 

Range controls  These allow you to restrict the range of the elements that appear on the list. 
For example, if you set the central effective focal length (Efl) parameter to 50 mm, and the +/- 
Range parameter to 10 mm, then only lenses with Efls between 40 mm and 60 mm appear on the 
list. The central diameter (Central Dia.) can further restrict the list. 

List  Once you have established a restricted list, you can scroll through it using the scroll bar or 
arrow keys. Each element includes a drawing, so you can see its form. The message area provides 
additional information about the element. 

Selecting a part  To choose an element, double-click on its parameter in the list, or select it and 
click OK. If you know the part number of the element you need, you can also enter it manually in 
the Part Name cell. The element is then called to the list, regardless of the sort and range criteria. 

When an element from the database is entered on the Surface data spreadsheet, its surfaces are set 
up as a type called “group.” All its radii, thicknesses, and glasses are marked “fixed” so they 
cannot be inadvertently changed. If you want to remove this constraint, you can “ungroup” the 
element using the radius button next to the part number in the surface data spreadsheet. 

Changing catalog databases  OSLO contains several separate lens databases covering a wide 
range of components from various suppliers. The name of the current database is displayed in the 
Catalog Lens Database window title bar. Select the Catalog cell to call up an options list of the 
available catalog databases. 
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Pop-up windows 
Options lists  Many OSLO commands and buttons require a choice from a list of several 
arguments. OSLO provides this list of arguments either in a pop-up menu or options list. Pop-up 
menus work similarly to other menus. You can then select an element from an options list by 
clicking on it or by selecting it with the arrow keys and pressing ENTER. You can also enter the 
desired value on the command line. If you decide not to perform the command, click the red X (or 
press ESCAPE). You must complete the command or cancel it before OSLO will perform other 
operations. 

 

 

Dialog boxes 
OSLO contains many dialog boxes, used to enter arguments for commands. Although a few of the 
dialog boxes are similar to standard Windows controls (e.g. the File dialog box), most OSLO 
dialog boxes are built by OSLO. There are two types. Dialog boxes that support internal OSLO 
commands are pre-compiled and have a fixed format. CCL dialog boxes are built as needed when 
the program is run, and have a variable format that depends on the display used to run the 
program. Internal dialog boxes have SmartCells and accept symbolic input and expressions. CCL 
dialog boxes, however, are limited to typed input of literal values. The following is a typical CCL 
dialog box. 
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Text editor 
OSLO can use either an external editor or its own internal editor. The OSLO text editor is a small 
memory-based editor suitable for a variety of small jobs, such as writing short SCP or CCL 
programs, or directly modifying lens files. For more substantial editing tasks, such as CCL 
development involving multiple files, an external editor is recommended. If an external editor has 
been installed, it is still possible to invoke the OSLO editor using the Window >> Editor >> Open 
command. 

The OSLO text editor is linked to the CCL compiler in OSLO, so that when you save a CCL file 
in the private CCL directory, it is automatically compiled. If you use an external editor, you must 
re-compile your private CCL after saving or modifying a file in the CCL directory. A button is 
provided on the main toolbar for this purpose. 

Note that if a lens file is opened using the File menu in the editor, it will be brought into the editor 
as a text file, while if it is opened from the File menu in the main window, it will be opened as 
binary data in memory to be used by the program. 

A unique feature of the OSLO text editor is its ability to execute selected text as a series of 
commands. In the above window, four commands have been entered and selected in the edit 
window. By pressing CTRL+E, you can execute these commands. Note that the last command has 
been entered with a question mark, which means that you will be prompted for its arguments. 

 

 

Help window 
OSLO has an extensive help system based on HTML help. Most information on how to use the 
program, including command descriptions and definitions, how to accomplish various tasks, and 
the meaning of various data items, are contained in the help system. The overall OSLO help 
system contains more than 2000 topic files and 8000 links, and is the primary source of 
information on using the program. OSLO help is supplied in the form of a *.chm file (compiled 
html), a Microsoft proprietary format. To access the file, the essential components of Microsoft 
Internet Explorer must be installed on your computer (you do not need to use Internet Explorer as 
your web browser). During OSLO installation, the setup program checks for these components 
and offers to update your system if they are not present. 

OSLO help is divided into two general parts. The first part consists of a few hundred topic files 
written manually, which describe how to use the program. The second part consists of a file 
prepared automatically during compilation that lists the definition of each command contained in 
OSLO. Because these files are prepared directly from the program source code, they are always up 
to date and automatically give a correct description of how the commands work. 

You can access the help system directly, using the Help button on the main menu. In addition, you 
can obtain context-sensitive help through buttons in spreadsheets and dialog boxes. Finally, there 
is a help button directly to the left of the command line. If you click this button when there is a 
spreadsheet open, it will take you to the part of the help system that describes that spreadsheet. In 
addition, if you enter the name of a command in the command line and click the help button, it 
will take you to the command definition. Finally, if you click the button when the command line is 
empty and there is no spreadsheet open, it will take you to the top level of the help system, and 
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you can navigate to the information you seek, using hypertext links. The search button in the help 
system provides a useful tool for finding general information. 

 

 

File system 
OSLO deals with several different types of files. The types of files used by the program include 
lens files, program source files (SCP and CCL), glass catalogs, database files, help files, help 
graphics files, test glass lists, CCL executable files, and configuration files. OSLO files are 
organized as shown in the diagram below, which shows the installation directory with three 
degrees of expansion. 

At the top level, the installation directory is divided into four subdirectories: bin, help, public, and 
private. The bin directory contains OSLO byte-code executable code, plus glass catalog data, dll's, 
bitmaps, and other support files. The help directory contains the main OSLO help file 
_oslohelp.chm, plus other help-related files. The two main user directories are called public and 
private. The public directory contains data supplied with OSLO, while the private directory is 
intended to hold user-generated files. The second and third columns in the diagram show 
expansions of these directories, which may be helpful in locating files. The lens files used in this 
document are located in the appropriate subdirectory of the public/len/demo directory (mostly in 
the Lt directory). 
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The commands File >> Open and File >> Save As bring up a Windows dialog box. The dialog 
box contains, in addition to the standard controls, two buttons that switch to the OSLO private 
directory or the public directory. Files shipped with the program are contained in the public 
directory, while files that you develop should generally be placed in the private directory. 

 

 

Lens files are normally opened using the File menu in the main window, while CCL source files 
are normally opened using the File menu in the text editor window (or an external editor). Note 
that OSLO lens files are ordinary text files that contain sequences of commands needed to enter 
data for a lens. 
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Data concepts 
 

To use OSLO effectively, you should understand the basic concepts of how it handles data. There 
are three general groupings of data in OSLO: surface properties, operating conditions, and 
preferences. You will find the program easy to use if you note this, and try to think in terms of the 
type of data you are manipulating. 

Surface properties  The primary objects that OSLO deals with are surfaces. This places it in 
contrast with programs (such as TracePro) that deal with solids. Surfaces are described by some 
sort of equation F(x,y,z) = 0, and in optical design we are concerned with what happens to rays, 
wavefronts, or beams when they pass through surfaces. In addition to a defining equation, surfaces 
have a region of interest, which is called the surface aperture. In general, solids are accommodated 
by defining the surfaces that surround them, together with an aperture definition that limits the 
region to the portion of the surface that physically exists. A few surfaces, such as quadratic solids 
(spheres, ellipsoids) can be defined as either open or closed. More complicated geometries require 
the specification of several surfaces per solid object. 

The advantage of OSLO's surface-based data structure is that surfaces that are not optically 
significant need not be defined. For example, in routine optical design, the edge of a lens is not 
significant. By leaving it out of the data definition, we can simplify the optical specification of the 
system. Moreover, in most instances, we can state the order in which surfaces are crossed by rays. 
This leads to what are called sequential systems, which are most efficiently traced. More 
generally, we have non-sequential systems, in which the ray trace algorithm must not only find the 
intersection of a ray with a surface, but also find which of the possible surfaces is the one actually 
struck. Non-sequential ray tracing is only possible in OSLO Premium. 

Operating conditions  In addition to the data needed to specify the shape and aperture of 
surfaces that make up an optical system, there are several data items that need to be specified, but 
which don't relate to any particular surface. These are called operating conditions, or simply 
conditions. Some relate to the conditions of use of the optical system, such as the size of the object 
or image, the aperture of the illuminating beam, or the temperature. Others relate to the conditions 
of evaluation, such as the sampling grid size for spot diagrams or the ray trajectories to show on 
lens drawings. Other data of this general class are the sets of data that define the optimization error 
function: the field point set, the ray set, and the operands. Finally are the variables and the 
configuration (zoom) data, which are maintained separately from the surface properties. All of the 
operating conditions are scoped to the lens (i.e. they are generally different for different lenses) 
and are saved in lens files. 

Preferences  Preferences are data items that relate to the overall OSLO program, not to a 
particular lens. Simple examples of preferences are the output_text and page_mode items 
discussed previously, but there are dozens of preferences of different types in OSLO that can be 
checked and in most cases reset using the File >> Preferences command. Preferences are stored in 
the oslo.ini file in the private/bin directory. 
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Surface data conventions 
Surface numbering  
A sequential optical system is specified in OSLO as a series of surfaces that a ray intersects 
consecutively in passing through the system. Light enters the system traveling from left to right. 
The object surface is given the number 0. In a sequential system, surfaces are numbered in the 
order in which a ray or its extension (in the case of a virtual surface) would intercept them. The 
highest numbered surface is called the image surface, whether or not there is an image formed on 
it. The correct ordering of the surfaces is essential for sequential ray tracing in OSLO. 

Quantities that pertain to a surface, such as curvatures, aspheric coefficients, etc., carry the number 
of the surface. Quantities such as refractive indices, thicknesses, etc., that pertain to the space 
between two surfaces, are assigned to the lower-numbered surface. 

Nominally refracting surfaces having no refractive index change have no effect on ray trajectories, 
and are called dummy surfaces. A dummy surface is often used to keep track of ray data, or to 
establish a base coordinate system for other surfaces. 

Surface 0

Surface 1 Surface 2

Surface 3

Object Image

TH[0] TH[2]

TH[1]

RD[1] RD[2]

 
 

Sign conventions  
The proper signs for curvatures, thicknesses and indices are determined easily for systems that do 
not contain tilted surfaces. Then the following rules apply: 

Sign conventions for centered systems 

RADIUS OF 
CURVATURE 

The radius of curvature, or curvature of a 
surface is positive if the center of curvature 
lies to the right of the surface. 

THICKNESS The thickness separating two surfaces is 
positive if the next surface lies to the right of 
the current surface; otherwise it is negative. 

REFRACTIVE 
INDEX 

OSLO expects all refractive indices to be 
provided with positive signs. Reflecting 
surfaces are specified explicitly by the 
designation, rfl. 
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2

3

1

 
A simple example illustrates the sign conventions used for setting up optical systems. Consider a 
glass bead in which light enters from the left (1), reflects from the back edge (2), and then emerges 
from the same surface that it entered (3), as shown in the figure to the left. The correct surface data 
for this system is shown below: 

*LENS DATA 
Glass bead 
 SRF  RADIUS    THICKNESS   APERTURE RADIUS    GLASS 
  0    --      1.0000e+20    1.0000e+14          AIR 
 
  1  5.000000   10.000000      4.999999 A        BK7 
  2 -5.000000  -10.000000      4.999999      REFLECT 
  3  5.000000      --          4.999999          AIR 
 
  4     --         --          4.999999 S 
 

Surface types 
OSLO provides many ways of identifying surfaces beyond direct specification. These methods fall 
into three groups: pickups, solves, and variables.  

Pickups pick up parameters from another surface and apply them to the current surface. This is 
useful, for example, in designing a system with a mirror that reflects the light back through some 
part of the system. The surfaces in the path back from the mirror are the same physical surfaces as 
in the path toward the mirror. By specifying the radii of the surfaces in the path back as pickups 
from those in the forward path, you guarantee they will always be identical. 

Solves tell the program to calculate the value of a parameter that satisfies a given condition. For 
example, specifying the thickness of the next-to-last surface of a lens by an axial ray height solve 
with height zero tells the program to calculate the thickness of this surface so that the axial ray will 
pass through the vertex of the image surface. This is the same as saying the image surface remains 
at the paraxial focus. As other surfaces change, OSLO changes the thickness of the next-to-last 
surface to satisfy the condition. 

The Variable specification (which is only applicable for directly specified items) tells OSLO it 
may vary the item during optimization. In addition to allowing the free variation of surface data 
during optimization, variables can be constrained to targeted values using Lagrange multipliers. 
This allows you to construct elaborate constraints that go beyond the solves and pickups enabled 
as basic data specifications. 

The various ways to specify lens data rely on the fact that whenever lens data is changed, OSLO 
retraces the axial and chief ray through the system, resolving all pickup and solve requests. The 
routine that does this is called lens setup. It is an essential part of an interactive program. 
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Introductory Exercise - Landscape Lens 
This section shows how to enter lens data in OSLO from first principles. The overall goal is not 
only to learn the mechanics of entering data, but also to learn how to apply some of the standard 
tools in OSLO to gain an understanding of the optical performance of a simple landscape lens 
similar to that used on low-cost cameras. You should follow the steps exactly as shown here. 
When you have successfully completed the formal steps, you can return to the beginning and 
repeat this exercise with some side trips to satisfy your curiosity. 

In a cookbook example of this type, it is important that you start with the same configuration as 
the machine used to make the example. If you have changed many preferences before starting this 
exercise, you can restore your preferences to factory-default condition by deleting the file oslo.ini 
in your private/bin directory. Normally this will not be required. 

The steps in the exercise are as follows: 

 Lens entry - Enter a convex-plano lens with a displaced aperture stop behind the lens. 

 Lens Drawing - Set up the lens drawing conditions to show desired ray trajectories. 

 Optimization - Optimize the lens so it has no coma, a focal length of 100, and covers a 
field of ±20 degrees at an aperture of f/10. 

 Slider-wheel design - Attach sliders to parameters so you can analyze trade-offs. 

You will see during the exercise that design with OSLO is quite different from most software. You 
don't set up the system and then press an Auto key that lets the computer optimize it for you. 
Instead, you work in a highly interactive mode, taking small steps so you can understand what is 
happening as you progress towards a solution. 

Lens entry 
Click the New Lens tool in the main toolbar to open the following dialog box.  

 

 

 

Enter the file name "Landscape1", select Custom lens and enter 3 surfaces, then click OK. A new 
spreadsheet will appear. Fill out the spreadsheet with the following data.  

In the fixed area of the spreadsheet, set the Lens: cell to "Landscape Lens Exercise", the entrance 
beam radius to 5, and the field angle to 20. Leave the other cells with their default values. 

In the scrolled area of the spreadsheet, enter "BK7" for the glass on surface 1. 
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In row 3, click the button in the Aperture Radius cell, then click Aperture Stop from the list that 
pops-up. Note that the row button for row 3 will now say AST, and A will be added to the button 
in the Aperture Radius column. 

Now click in the Radius cell of row 1, enter 50 for the radius of curvature, then click on the 
thickness cell and enter 4 for the thickness. Click on the thickness cell for row 2 and enter 10. 

In row 3, instead of entering a thickness directly, click on the button in the thickness cell, and 
select Axial ray height solve from the pop-up menu. This will cause a data-entry box to pop-up 
prompting for the value of the solve. Accept the default value (0) by clicking OK. 

 

Click the button in the Special cell for row 3. From the list that pops up, select Surface control, 
and from the flyout menu, select General. This will cause a whole new spreadsheet to cover up the 
current spreadsheet. Click the button that says Automatic in the 5th row, and from the list that pops 
up, select Drawn. Then click the Green checkmark to close the spreadsheet and return to the 
surface data spreadsheet. You will see an F on the special button for row 3. 

Repeat the above sequence for the special button in row 4. 

 

 

This completes the basic data entry for your lens. At this point, your spreadsheet should look like 
the following. 

 

Check to make sure you have the same Efl (focal length), and that the buttons have the same 
labels. The S on the thickness button means that the value was determined by a solve (the axial ray 
height solve). The S on the aperture buttons also means that the apertures were determined by 
solves; this is the default action for apertures and is based on the entrance beam radius and the 
field angle.  

Click the Green check to close the spreadsheet and save the lens by clicking the Save lens toolbar 
button. You have already indicated the file name on the opening dialog box. The lens will be 
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saved in the current lens directory, which is normally your private directory. If you want to 
confirm where the lens is saved, you can enter the command shp lfil (show_preference lensfile) in 
the command line. The file name will appear in the message area. 

 

 

Lens Drawing 
Click the DRAW OFF button in the fixed area of the lens spreadsheet. A window labeled 
Autodraw will appear showing the lens that you have entered. If you click on a cell in the 
spreadsheet, you will see that the surface corresponding to the cell becomes dotted. If you were to 
change any data for the lens, the picture would be updated automatically. 

 

 

The Autodraw window is a special window that does not have the full functionality of a regular 
graphics window, but is updated automatically, which is not the case for ordinary graphics 
windows. The lens picture that is show is drawn according to the standard lens conditions used for 
all lens drawings. In order to illustrate this exercise better, we are going to change one of the 
operating conditions so that the ray trajectories are drawn all the way to the image surface. 

From the Lens menu on the main tool bar, select the bottom item, Lens Drawing Conditions. This 
will cause the following spreadsheet to cover the lens spreadsheet: 
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The item to change on this spreadsheet is called Image space rays: You should change it from 
Final dist to Draw to image surface. 

 

After making the modification, click the Green check to close the spreadsheet. The lens 
spreadsheet will reappear, and the Autodraw window will be updated as follows. 

 

 

 

Now you can see the details of image formation by the lens. Obviously the off-axis image is not so 
good. The main aberration that you see is field curvature; the off-axis image is not formed on a 
plane surface perpendicular to the axis, but rather on a curved surface. Unfortunately, there is not 
too much that can be done about this. 

Optimization 
In order to study the imaging of this lens in more detail, we will set up a small optimization task. 
We will define an error function that makes the focal length exactly 100mm, and also eliminates 
the Seidel coma from the image. To do this, click the optimize button on the main menu, then 
navigate to the generate error function >> Aberration Operands item. This will pop up the 
spreadsheet shown on the following page. 
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At his point, we need to decide which of the terms will be used for the error function. The initial 
spreadsheet lists all of the possibilities, and you must delete the ones you don't want. In this case, 
the operands to keep are PU and CMA3. All the other should be deleted. To do this, click and drag 
from row buttons 11-21, then press the delete key. Next click and drag from row buttons 3-9, then 
press the delete key. Finally, click row button 1 and press the delete key. The spreadsheet should 
now appear as follows. 

 

Next, we need to modify the definition of the first operand, PU. In OSLO, all operands are 
targeted to zero. That is, the optimization algorithm will minimize all of its individual terms. The 
PU operand is the axial ray slope leaving the lens. We don't want this to be zero, but rather the 
value that will make the lens have an f-number of 10, which was prescribed in the initial data. 
Since the f-number is -1/2*PU (when the object is at infinity) the desired value for PU is -.05. We 
accommodate this by modifying the definition of the first operand to be OCM2+0.05, and we will 
also change the name to PU_ERR. Click on the NAME and DEFINITION cells and enter the new 
data. 

 

Now click the Green check to close the spreadsheet, and click the Ope button in the text window. 
The current operand values, together with the current value of the error function, will be shown. 
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Now the operands and the error functions are defined. If the error function is minimized to zero, 
we will have a f/10 lens with a focal length of 100, since the focal length is -PU*EBR (EBR is the 
entrace beam radius), and the coma will be zero. We need to specify the variables that are to be 
used to achieve this. The ones that we will use are the curvature of the first surface (CV 1), and the 
distance between the lens and the aperture stop (TH 2). In the lens spreadsheet, click on the button 
in the Radius of Curvature cell for row 1, and select Variable from the options list. 

 

Repeat the same procedure for using the button in the Thickness cell for row 2. The buttons should 
now have V (variable) on them. 

Assuming that they do, you should now be ready to optimize the lens. Before doing this, close the 
lens spreadsheet (Green check) and immediately re-open it. The reason for doing this is that OSLO 
gives you the capability, by canceling (red X) from a spreadsheet, to revert to the system that 
existed when the spreadsheet was opened. By closing and opening the spreadsheet in this way, you 
establish a base system to revert to. 

To optimize, click the Ite button in the text window (you may have noticed that this button was 
disabled until you entered both operands and variables). The text window should show the 
following output. You see that the error function has been reduced to essentially zero, indicating 
that the variables were appropriate for solving the problem. The lens spreadsheet shows their 
current values. 
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You can see in the lens spreadsheet that the Efl is exactly 100, as it must be in order to correct the 
operands. Click the Abr button in the text window, and you see all the aberration data for the lens, 
showing that PU = -0.05, and that the Seidel coma CMA3 is zero, as requested. 

 

At this point, the initial task has been completed. Close the spreadsheet (Green check) and save the 
lens. This will become the base system for the next phase of the exercise, which shows how to use 
OSLO's slider window to study the effects of changing other lens parameters. You might want to 
save another copy of this system under a different file name (e.g. landscape_bkp.len) so you can 
always return to a defined starting point, even if the current lens data is somehow corrupted. 

Slider-wheel design 
A singlet such as the landscape lens doesn't have very many degrees of freedom, but in this 
exercise, we have constrained the back surface of the lens to be plane. Actually, this should not be 
called a landscape lens; so far all we have done is to find the position of the aperture stop that 
removes the coma for a convex-plano lens. A landscape lens is normally a meniscus form. Next 
we show how to use OSLO's slider-wheel window to find the optimum form. We also show the 
effects of using a curved image surface. 

First, we set up a basic slider-wheel window, attaching the curvatures of surfaces 2 and 4 to 
sliders. Later, we show how to use the full power of OSLO's optimization callback to continuously 
optimize the system while dragging a slider or rotating the mouse wheel. 

 
With the landscape lens as set up in the preceding portion of this exercise, click the slider-
wheel tool in the main tool bar to open the slider-wheel spreadsheet. This spreadsheet is 
used to set up slider-wheel windows. 

Initially, set the options shown in the figure below. That is, click Spot diagram, set the Graphics 
scale to 1.0, and select All points. Leave the number of sliders at the default (2), enter 2 and 4 in 
the Surfs column, and set the parameters to CV for both sliders. 
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After you have entered the data in the slider-wheel spreadsheet, close the spreadsheet. You should 
see a slider-wheel window and two additional graphics windows (31 & 32) on your screen. If 
these windows have toolbars, remove them by left-clicking to select a window, then right-clicking 
in the window and choosing the Remove Toolbar item. Since the slider-wheel maintains its own 
graphics windows, you should minimize the normal graphics output window (GW1). Next, use the 
Tile windows command on the main window toolbar to tile the windows. Your overall screen 
should look similar to the one below. 

 

 

The slider-wheel window appears below the spreadsheet, with the two sliders that we set up. You 
can manipulate sliders by dragging or clicking as you would with a normal scroll bar (the sliders 
are in fact scroll bars), or by using the mouse wheel. The mouse wheel is usually preferred (if it is 
installed and properly supported on your computer) but you may need to change its settings.To use 
the mouse wheel with a slider, place the pointer anywhere in a slider and rotate the wheel.  
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To change the settings of your mouse wheel, you need to first find out what they are at present. To 
do this, double click on the status bar in the main OSLO window. This will pop up a dialog box as 
shown below. Navigate to the first empty field, click on the combo box, and select Mouse wheel 
speed, as shown. 

 

 

 

 

Click OK to dismiss the box. You should see an additional field in the status bar, as shown. OSLO 
supports two mouse-wheel speeds: fast and slow. Slow means one event per wheel notch; fast 
means several events per wheel notch (however many you set up in the mouse dialog in your 
computer's control panel). You change between fast and slow by clicking the mouse button itself. 
Generally in OSLO, you will prefer Slow. 

If you experiment, you will see that the slider-wheel window can be dragged anywhere on the 
display, even outside the OSLO window. Also, you will see that you can drag the window width 
down to the point where the slider itself completely disappears. If you use the mouse wheel, this 
setting may be preferable because it minimizes the use of screen space while still providing full 
functionality. You will see that the step size in the parameter taken per click can be adjusted using 
the Step control at the right-hand end of the window. 

For now, it is best to leave the slider window where the Tile windows command puts it, with its 
default settings. To reset these, enter the original values (0) of CV[2] and CV[4] in the lens 
spreadsheet, then click the slider-window tool in the main toolbar and close the slider-wheel setup 
spreadsheet immediately to update the slider-wheel window (note that the settings for the analysis 
options are not changed). 

Returning to optics, you see that the spot diagrams show what the image looks like at the center, 
zone, and edge of the field. The elliptical shape is characteristic of a system with astigmatism, but 
no coma. Now you can drag the sliders or rotate your mouse wheel to see what happens. Actually, 
if you do not use the mouse wheel, you would be better advised to click on a button at the end of a 
slider rather than drag, so you can move in small enough steps. 

What you see is pretty much what you would expect. If you make CV[2] negative, the lens 
becomes positive and the focal length gets smaller. The image quality changes, since the system is 
no longer free of coma. If you change the curvature too much (< -0.033) the ray trace will fail. If 
this happens, click OK to dismiss the error box, then move the slider back towards the center. If 
you make CV[2] positive, the lens becomes first a meniscus with a long focal length, but 
eventually the lens becomes negative; the beam diverges and the display blows up. After you have 
experimented with CV[2], set it back to zero. 
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When you change CV[4] (the curvature of the image surface) you see that by making it negative, 
you can improve the size of the image off-axis, and in fact you can find a position where there is a 
line focus in the horizontal direction (tangential focus), or the vertical direction (sagittal focus). 
This is indicative of a system with no coma. If you set CV[2] to a value where the system has 
substantial coma (try -.020) you will not be able to achieve this. This shows what designers mean 
when they say that you can't focus out coma. 

The slider-wheel analysis you have observed so far is perhaps interesting, but the real power of 
sliders in OSLO comes when you allow the program to re-optimize the system as you drag a 
slider. To do this, reset the curvatures to zero, then re-open the slider spreadsheet, set Enable 
sw_callback CCL function to On, and set the level to 2. 

 

A callback function is a command that gets executed whenever some event happens in the 
program. Callback functions are the essence of a windows program, and OSLO has several of 
them, many written in CCL (such as sw_callback). Generally, these are not complicated routines 
written by computer programmers, but simple actions set up by users. The default sw_callback 
routine is as follows. 

Cmd Sw_callback(int cblevel, int item, int srf) 
{ 
 if (cblevel) 
  ite cblevel; 
} 
 

When Enable sw_callback CCL function is turned on, this routine is executed every time a graphic 
slider is moved, or the mouse-wheel is rotated when the pointer is in the slider-wheel window. The 
arguments of this function are cblevel, the value entered in the Level field in the slider-wheel 
spreadsheet; item, the type of variable (CV = 1, TH = 3, etc.) that was changed, and srf, the 
number of the surface associated with that variable. These arguments can be used to produce 
whatever action you want. In the present case, the function only looks to see if cblevel is non-zero, 
and if it is, the function carries out that many design iterations. 

To see what this does, close the slider window. You should not see any change in the system, 
because it was already optimized, but you will see text out similar to the following. As you move a 
slider, you will see the numbers flash in the text output window as the system is re-optimized. 
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In the graphics windows, you will see a quite different scenario from before. To begin, drag the 
CV[2] slider to make it more positive. This makes the lens into a meniscus, but now the focal 
length is held constant by virtue of the first curvature's being continually re-optimized. Moreover, 
the aperture stop surface moves as the coma is continually re-optimized to zero. The image surface 
is held in the paraxial image plane by the height solve on surface 3, and the diameter of the lens is 
adjusted by the aperture solves so that the beam from the edge of the field of view can pass 
through the system. The effect of all of this is that the stop initially moves away from the lens as it 
becomes a meniscus, but as the bending becomes larger, the stop shift reverses and the aperture 
stop moves back towards the lens. The following shows what you should observe when the 
surface 2 curvature has values 0.01, and 0.04 (n.b. the images pertain to center-to-edge, not to 
bottom-to-top; the bottom spot is the on-axis image). 

 

 

Of course, the spherical aberration of the system is not constant, and the improvement in image 
quality at the edge of the field comes at the expense of a poorer on-axis image. This leads to a 
consideration of what might be accomplished by using an aspheric lens, but that is beyond the 
scope of this introductory exercise, whose purpose is to introduce OSLO data entry and the 
general steps for using the slider-wheel window.
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Chapter 2 Fundamentals 
 

In this chapter we consider some fundamental properties of light and optical materials. The reason 
for doing so is not to teach the subject, but to review some general physics that is relevant to 
optical design. Optical design has been taught in many ways, ranging from simple numerical 
computation to complex geometrical analysis. The approach used here is based on classical 
electromagnetic theory, and emphasizes understanding of both the physics and the methods used 
for solving practical problems. 

Waves, Rays, and Beams 
Usually, the analysis of optical systems assumes that light propagation can be described using 
wavefronts, or rays, which are defined to be vectors perpendicular to wavefronts. Except in focal 
regions and near aperture boundaries, most optical imaging problems can be solved using a simple 
geometrical wavefront or ray model. To investigate the details of an image, Fourier analysis of 
wavefronts is used to account for diffraction effects. 

Rays and wavefronts have shortcomings, however. A ray is a line, and a wavefront is a surface. 
Neither has a finite width or thickness, and the intuitive notion that rays or waves carry energy is 
problematical. For a normal (incoherent) source, it is necessary to use a stochastic approach to 
describe energy propagation, summing the contributions of several rays or wavefronts. On the 
other hand, laser (coherent) light generally appears as a beam. A single-mode laser beam can 
propagate energy, and the diameter and divergence of the beam can be computed using diffraction 
theory. Beams provide a smooth transition between geometrical and physical optics, and we 
consider them as fundamental entities like rays and wavefronts. 

Maxwell’s equations 
We begin with Maxwell's equations. Maxwell’s equations for electromagnetic fields describe the 
relationships between the basic fields (the electric field E and the magnetic induction B) and the 
derived fields (the electric displacement D and the magnetic field H), taking into account the 
charge distribution  and electric current density J. The derived fields are a result of the 
interaction of the basic field with matter. Using the symbol t for time, Maxwell’s equations in mks 
units are 
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The interactions of the field with matter are described by material equations. Fortunately, for most 
situations of interest in optical design, the material equations are linear (i.e., the conditions are 
static and isotropic). In this case, the material equations are just constant relations, involving the 
dielectric constant (permittivity) , the permeability , and the conductivity . These three 
quantities are constant at a given point in space, but are functions of frequency (wavelength). For 
isotropic materials, the permittivity is a scalar quantity (although a function of wavelength). By 
contrast, the permittivity of an anisotropic medium such as a crystal must be described by a tensor. 
In other words,  is a 3 x 3 matrix that relates the components of E to the components of D. In the 
present discussion, we will consider only the case where the permittivity is a scalar quantity. 
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 D E   (2.5)   

 B H  (2.6)   

 J E   (2.7)   

These material equations can be combined with Maxwell’s equations to derive a wave equation for 
the electric field:. 

2
2

2 tt

 
   


E E

E  
(2.8)   

An analogous equation can be derived for the magnetic field. For the dielectric materials used in 
optical systems, the conductivity  is zero, so Eq. (2.8) simplifies to 

2
2

2t


  


E

E  
(2.9)   

Equation (2.9) is in the standard form for a wave propagating with a velocity v, where 

1
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(2.10)   

For a monochromatic wave of frequency  (and angular frequency  = 2), the electric field has 
the form 

 , ( ) exp( )rt i t  E r E r  (2.11)   

where r is the vector distance from some origin to the observation point. A monochromatic wave 
has the shortcoming that it carries no power, so for thermal sources one must consider a finite 
frequency band. Again, the laser differs from thermal sources because stimulated emission adds 
power to the mode that stimulated it, causing the beam to have temporal coherence. Of course, a 
strictly monochromatic beam would need to have an infinite duration, so even laser beams have 
some finite bandwidth. We usually consider the temporal properties of light to be described by the 
product of two terms: a rapidly varying term like the exponential in Eq. (2.11) , and a slowly 
varying term incorporated in Er. In practice, for imaging systems, the time-varying terms are 
neglected, and the wave equation takes the form of the Helmholtz equation 

2 2 0k  E E  (2.12)   

where 2k      . For many optical systems, the propagation space is isotropic, so it 

suffices to consider only one (scalar) component of the electric field, often called the optical 
disturbance, written as u(x, y, z). All scalar wave phenomena require finding solutions u(x, y, z) to 
the scalar wave equation: 

   2 2, , , , 0u x y z k u x y z    (2.13)   

Well-known solutions to Eq. (2.13) include the spherical wave 
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(2.14)   

and the plane wave (taken here to be traveling along the z-axis) 

   , , expplane pu x y z A ikz   (2.15)   

(In Eqs. (2.14) and (2.15), As and Ap are constants.) 

Laser beams have a well-defined propagation direction. Thus, assuming that the beam is traveling 
in the z direction and motivated by the plane wave solution to the wave equation, we look for a 
solution of the form 
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     , , , , expu x y z x y z ikz    (2.16)   

where (x, y, z) is a function that describes the amplitude and phase differences between the beam 
solution and a plane wave. That is, we assume that the basic oscillatory behavior of the beam is 
given by the exponential term, with (x, y, z) being a relatively slowly varying amplitude. If we 
substitute Eq. (2.16) into Eq. (2.13), we find that (x, y, z) must satisfy 
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 (2.17) 

We now assume that the beam is well confined to a region near the z-axis. Then, since (x, y, z) 
varies slowly with respect to z, we can ignore the second derivative of with respect to z in Eq. 
(2.17). So, we find that (x, y, z) must satisfy the so-called paraxial (or parabolic) wave equation: 
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(2.18)   

There are many solutions to Eq. (2.18). Depending on the geometry considered, one can find 
solutions (called modes) in terms of products of orthogonal polynomials and Gaussian functions.  
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where 
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The functions Hm and Hn are Hermite polynomials, given by 
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(2.21)   

The lowest-order (TEM00) mode is a simple Gaussian function. In Eq. (2.19), w and R are 
functions of z and w0 is a constant. We can see from Eq. (2.19) that w describes the radial 
amplitude distribution in the beam and R is the radius of curvature of the wavefront. At a distance 
from the axis of r = w, the amplitude of the beam is equal to 1/e of its on-axis value. Since the 
irradiance is equal to the squared modulus of the field, the irradiance at r = w is equal to 1/e2 of its 
axial value, as illustrated in the figure below. It is customary to call w the spot size of the Gaussian 
beam. Note that the spot size is a measure of the radius of the beam, not its diameter. 
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Gaussian beam propagation 
The Gaussian beam described by Eq. (2.19) has a minimum spot size at the same axial location at 
which the wavefront is planar. The formulae for w(z) and R(z) take on simple forms if we let z = 0 
correspond to this point of minimum spot size. Then, the explicit forms of the variation of the spot 
size w and wavefront radius of curvature R with z are 
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(2.22)   

and 
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(2.23)   

Examination of Eq. (2.22) confirms that the spot size takes on its minimum value at z = 0 and this 
minimum value is equal to the constant w0, which is called the beam waist. Also, we find from Eq. 
(2.23) that the wavefront radius of curvature becomes infinite at the beam waist, i.e., the wavefront 
is planar. Note that the convention of measuring z from the waist to the observation point implies 
that z and R(z) have the same sign, as can be seen from Eq. (2.23). In the figure below, both z and 
R are positive as shown. This sign convention for radius of curvature is fairly standard in the 
Gaussian beam and laser literature, but is opposite the convention used by OSLO for the sign of 
radius of curvature. OSLO uses the above equations when computing the propagation of a 
Gaussian beam, but, for consistency, reports the wavefront radius of curvature using the OSLO 
sign convention. Thus, you should interpret waist distances (z) reported by OSLO as being 
measured from the observation point to the waist. For example, in reporting the beam parameters 
for the beam in the figure, OSLO would display both z and R as negative.  
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A Gaussian beam is completely specified by any two of the four parameters w, w0, z, and R (in 
addition to the wavelength ). Given any two of the parameters, the other two can be computed 
using Eqs. (2.22) and (2.23), or obvious rearrangements of these equations. There are several other 
parameters of the beam that are often useful in analysis. The 1/e2 irradiance far-field divergence 
angle , measured from the z-axis, is given by 
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(2.24)   

The distance from the waist to the axial point of minimum wavefront radius of curvature is called 
the Rayleigh range zR 
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(2.25)   

The spot size at the Rayleigh range point is equal to 02w . The Rayleigh range can be used to 

define the length of the focal region, or collimation length, of a Gaussian beam. The value of the 
minimum wavefront radius of curvature is the confocal radius b0: 
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(2.26)   

The solutions of Eqs. (2.22) and (2.23) provide a great deal of insight into the process of focusing 
a light beam. Imagine a convergent beam propagating from left to right. Well before it reaches the 
focus point, the radius of curvature of the wavefront is centered on a well-defined point at the 
expected focus (z = 0). As the wavefront approaches the focal region, the focus point appears to 
recede. When the wavefront is one Rayleigh range in front of the original focus, the apparent focus 
is one Rayleigh range behind it. Inside this point, the apparent focus recedes rapidly, reaching 
infinity at z = 0. The wavefront then becomes divergent with a radius of curvature symmetrical in 
magnitude to a corresponding point on the other side of the original focus point. 

Regardless of the position along the z-axis, the beam always has a Gaussian intensity profile. The 
profile is not at all like the beam from a uniform “top-hat” beam, whose intensity profile changes 
as it passes through focus. Nevertheless, the salient aspects of Gaussian beam focusing are not 
different from any other beam, including a shift of focus towards the lens. Prior to the invention of 
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the laser, these effects were not commonly understood, because they are only easy to see in 
weakly focused beams. 

Propagation Circles 
Using the Rayleigh range as the parameter characterizing a Gaussian beam, it is possible to 
determine the spot size and radius of curvature at any point using a geometrical construction called 
the propagation-circle method. The quantities determined in the propagation-circle method are the 
radius of curvature of the wavefront and a beam parameter b, related to the spot size by 
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(2.27)  

Using this in Eq. (2.22) and Eq. (2.25), we find an equation for the beam parameter: 
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(2.28)   

We may rewrite Eq. (2.23) as 
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(2.29)   

 

These last two equations form the basis for the propagation-circle method. Consider a Gaussian 
beam with a Rayleigh range zR, as shown above. First construct a circle 0 centered on the point 
z = 0, with a radius equal to the Rayleigh range. 

Construct a vertical line through the point z = 0, and denote the intersection of the line with the 
circle 0 by F. This point is called the complex focal point of the beam. By construction, the 
distance from the beam axis to F is equal to the Rayleigh range. 
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Now construct a circle  centered on the axis and passing through the complex focal point F. The 
radius of curvature of a Gaussian beam wavefront at both points where the circle  intersects the 
axis is equal to the diameter of the circle . To see this, note that 

22 2
Rq z z   (2.30)   

 and 
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(2.31)   

Therefore, 
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(2.32)   

which is simply Eq. (2.29)  again. It thus follows that at any point z on the axis of a Gaussian 
beam one can construct a circle, which we shall call a  circle, whose diameter is equal to the 
radius of curvature of the wavefront of the TEM00 mode at the point z. The  circle is defined by 
the requirement that it pass through the point z and the complex focal point F. The figure below 
shows a graphical determination of the wavefronts of a beam passing through a focal region using 
 circles. Note that the wavefront radius is equal to the diameter of the circles. 

F
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A different geometrical construction is used to find the beam parameter as a function of distance 
along the axis from the beam waist. Construct two circles 0 and  as before, and determine the 
complex focal point, as shown above. Now construct a circle  that passes through the complex 
focal point F and is tangent to the optical axis at the point z. The diameter of this circle is equal to 
the beam parameter b. To see this, note that 
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 Thus 
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(2.35)   

which is simply a restatement of Eq. (2.28). It follows that at any point z on the axis of a Gaussian 
beam one can construct a circle called a  circle, whose diameter is equal to the beam parameter b 
at the point z. The  circle is defined by the requirements that it pass through the complex focal 
point F and that it be tangent to the optical axis at the point z. The spot size w of the transverse 
mode at the distance z is determined from the beam parameter b by the relation 
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(2.36)   

The above constructions form the basis for the propagation-circle method. If we know the beam 
parameter and radius of curvature at one point, we can find the beam parameter and radius of 
curvature at any other point by constructing suitable  and  circles as follows.  

Suppose the beam parameter and radius of curvature have values b and R, at some point z. We 
associate with the beam parameter a circle , tangent to the beam axis, whose diameter is equal to 
b, and we associate with the radius of curvature a circle  whose diameter is equal to R, as shown 
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below. According to the propagation-circle method, the circle  and the circle  define the 
complex focal point F. Since the propagation of a Gaussian beam is completely determined by the 
location of its complex focal point, we can find the beam parameter and radius of curvature at any 
other point by constructing new  and  circles that pass through F and the new point. That’s all 
there is to it! Of course, underlying the propagation-circle method is the assumption that the beam 
is not truncated by an aperture, and that it propagates according to the paraxial wave equation. 
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Assuming that we can neglect aberrations, it is easy to extend the concept of propagation circles to 
describe the propagation of a Gaussian beam through an optical system. We may begin by 
considering propagation through a thin lens. A beam of radius of curvature R1 entering a thin lens 
of focal length f is transformed into a beam of radius of curvature R2 leaving the thin lens, where 
R1 and R2 are related by the thin-lens equation, 

2 1

1 1 1

R R f
   

(2.37)   

If the lens is thin, the diameter of the beam is not changed in passing through it. Consider a 
Gaussian beam incident on a thin lens L. Let the incident beam be characterized by the complex 
focal point F as shown. The beam parameter and radius of curvature of the beam incident on the 
lens can then be characterized by the propagation circles  and  as shown in the figure on the 
next page.  

Since the lens will alter the radius of curvature of the beam according to Eq. (2.37), the beam 
emerging from the lens will be characterized by a new a circle, '. The circle ' is defined by the 
requirement that it intersect the axis at the vertex of the lens and at the point A' shown below. The 
point A' is the geometrical image of the point A. Since a thin lens does not alter the beam 
parameter, the emergent beam will be characterized by the same  circle as the incident beam. The 
beam emerging from the thin lens L is thus characterized by the propagation circles ' and . The 
point where these circles intersect determines the complex focal point F' of the emergent beam. 
Once the new complex focal point is found, the propagation of the beam after it passes through the 
lens is completely determined. 
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We see from the figure that the minimum spot size of the emergent beam, or the "beam waist," is 
always closer to the lens than the geometrical focus. That is, the minimum spot size occurs at the 
point B', where the perpendicular from F1 intersects the optical axis; whereas the geometrical 
focus is at the point A'. The minimum spot size of the emergent beam is 
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(2.38)   

 where zR is the length of the line B'F' (that is, zR is the new Rayleigh range of the beam). 

The propagation circle method shows when the geometrical-optics approximation provides a valid 
picture of image formation: the geometrical-optics approximation is valid when the complex focal 
point F' coincides with the geometrical focus at point A'. This will occur when the propagation 
circle  is large: that is, when the spot size of the beam on the lens is large, or when the 
wavelength is small compared to the beam diameter.  

The propagation-circle method described above can also be used to determine the propagation of 
Gaussian beams through an interface between two materials having different refractive indices. In 
order to determine the propagation circle , we must generalize the discussion given for the case 
of a thin lens. In particular, we have in general that the optical length of the beam parameter 
remains constant as the beam traverses the interface between two refracting media. It follows that 
the beam parameter b2 at the interface is related to the beam parameter b1 at the interface as 
follows: 

2 2 1 1n b n b  (2.39)   

The propagation circle 2 thus has a diameter that is n1/n2 times the diameter of. The complex 
focal point F2 is determined by the intersection of the propagation circles 2 and 2; once F2 is 
found, the propagation of the beam in medium 2 is completely determined.  
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Algebraic Methods 
Although the propagation-circle method described in the preceding section is useful for visualizing 
the propagation of Gaussian beams through optical systems, for calculations it is desirable to work 
directly with the algebraic expressions for the beam properties. In particular, it is convenient to 
redefine the quantity q introduced before as a complex beam parameter: 
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(2.40)   

Defining the q parameter in this way has several important uses. First, the radial portion of the 
Gaussian beam can be written in the simple form of exp(ikr2/2q), which is the form of a spherical 
wave in the paraxial approximation. The difference here is that now q, which corresponds to the 
radius of curvature of the spherical wave, is complex. Second, the propagation laws for the 
Gaussian beam parameters [Eqs. (2.22) and (2.23)] can be combined into the single equation 
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(2.41)   

Third, if we assume that the beam is smaller than any apertures in the optical system, we can 
neglect the effects of diffraction by finite apertures as the beam propagates along the axis of an 
orthogonal optical system. (Orthogonal means the propagation can be considered independently 
for the x and y coordinates.) A Gaussian beam remains Gaussian as it propagates through such a 
system and the output q parameter (q, in a medium of refractive index n) is related to the input q 
parameter (q, in a medium of refractive index n) by 
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(2.42)   

where A, B, C, and D are the elements of the 2  2 paraxial matrices. Equation (2.42) is often 
referred to as the ABCD law. At this level of analysis, the only difference in propagating a 
Gaussian, rather than point source, beam through a system is the use of the complex parameter q 
rather than the purely real radius of curvature R. We don’t need any additional information other 
than that which is necessary to compute the four Gaussian constants for the desired system or 
subsystem. For a Gaussian beam, the q parameter plays the same role in the ABCD law as the 
wavefront radius of curvature does for point sources. For this reason, q is sometimes referred to as 
the complex radius of curvature. 

Note that the q parameter as defined in Eq. (2.40) uses the wavelength  in the medium in which 
the beam is propagating. For some calculations, it is useful to introduce a reduced q parameter, q̂ , 

that is defined in terms of the standard wavelength 0 = n: 

0
2

1
ˆ

n n
i

q q R w


  


 

(2.43)   

Then, the ABCD law takes on the somewhat simpler form 
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(2.44)   

The Gaussian beam solution to the paraxial wave equation can be generalized to the case of an 
astigmatic beam with different spot sizes and wavefront radii of curvature in x and y. If we denote 
the complex beam parameters in the xz and yz planes by qx and qy, respectively, we can write a 
solution to Eq. (2.18) as 

   
2 21

2, , exp
2x y

x y

k x y
x y z q q i

q q

   
         

 
(2.45)   
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A beam of this form can be propagated through an orthogonal system by computing the Gaussian 
constants in the xz and yz planes and applying the ABCD law separately in each azimuth. It can 
further be shown that we can rotate the astigmatic beam of Eq. (2.45) by an angle  around the z 
axis and the resulting expression is still a solution of Eq. (2.18): 
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(2.46)   

The beam described by Eq. (2.46) has what is termed simple astigmatism. The loci of constant 
intensity and constant phase have a fixed orientation (at angle ) as the beam propagates. It can be 
demonstrated, however, that Eq. (2.46) remains a solution of the paraxial wave equation even if  
is complex. In this case, the beam has general astigmatism. In general, for a beam with general 
astigmatism, the loci of constant intensity and constant phase are never aligned and change their 
orientation as the beam propagates. General astigmatism results when a beam is passed through a 
nonorthogonal optical system, e.g., cylindrical lenses oriented at an angle other than 90 degrees. 
For a complete discussion of generally astigmatic beams, see Arnaud and Kogelnik (1).  

If we assume that diffraction from apertures can be ignored, the most general Gaussian beam [Eq. 
(2.46)] also propagates as a Gaussian; the optical system transforms qx, qy, and  (all are complex) 
in a manner analogous to the ABCD law [Eq. (2.42)]. The transformation relations are, of course, 
much more complex since one cannot make the assumptions of rotational symmetry or 
orthogonality for the optical system.  

OSLO contains two different methods of Gaussian beam propagation analysis. For the common 
case of a beam propagating along the axis of a centered system, there is an interactive analysis 
spreadsheet, based on the ABCD law. This analysis is valid for centered, orthogonal systems 
consisting of refracting or reflecting surfaces. For a more general system, the astigmatic beam 
trace can be used to propagate a Gaussian beam along the current reference ray. This analysis 
should be used if the optical system contains any special data, is nonorthogonal, or the beam does 
not propagate along the optical axis of an orthogonal system. 

The Gaussian beams discussed so far can be considered as the output of ideal laser resonators. In 
reality, of course, real resonators have hard-edged apertures, misaligned mirrors, etc., so the output 
beam will not, in general, be the ideal Gaussian described by Eq. (2.19). One method of 
quantifying how much a real beam departs from a Gaussian is the so-called M 2 factor, introduced 
by Siegman(2). M 2 is related to the second moments of the irradiance distribution of the beam in 
the near and far fields. For an ideal Gaussian beam, the product of the beam waist and far-field 
divergence angle [Eq. (2.24)] is given by 
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(2.47)   

which is only a function of the wavelength . Denoting the beam waist radius for a real beam by 
W0, and the far-field divergence angle of the beam by , the corresponding product for the real 
beam can be written as 
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(2.48)   

Thus, M 2 is the amount by which the beam waist-far-field product exceeds the diffraction limit of 
an ideal Gaussian beam of the same wavelength. It can be shown that the propagation of the spot 

 
1. J. A. Arnaud and H. Kogelnik, “Gaussian light beams with general astigmatism,” Appl. Opt. 8, 
1687-1693 (1969). 
2. A. E. Siegman, Proc. SPIE 1224, 2, 1990. 
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size of real beams described by an M 2 factor is described by the same equation as for an ideal 
Gaussian [Eq. (2.22)] but with  replaced by M 2.  

Polarization analysis 
For most of the problems the optical designer is called upon to solve, it is unnecessary to take into 
account that the optical system is actually transforming the properties of an electromagnetic field. 
Usually, the description of light as a ray phenomenon (i.e., geometrical optics) or as a scalar wave 
phenomenon provides sufficient accuracy to predict the performance of a lens. There are 
conditions, however, under which it is necessary to treat the optical field using its true vector 
nature; consider, for example, the calculation of the amount of light reflected from an air-glass 
interface. In this section, we will review some basic electromagnetism and see how to couple this 
information with ray tracing to provide a way to analyze the polarization-dependent properties of 
optical systems.  

For the discussion of polarization effects, we will use plane wave solutions to Eq. (2.12): 

   , , expplane pu x y z A ikz   (2.49)   

where, if s is a unit vector in the direction of propagation of the plane wave, k = ks and  is a 
constant phase offset. (The actual electric field, a real, physical quantity, is given by the real part 
of Eq. (2.49).) The solutions given by Eq. (2.49) are called plane waves since, at a fixed time t, the 
electric field is constant over the planes defined by s  r = constant. Using Eq. (2.49) in Maxwell’s 
equations, it can be shown that 
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(2.51)   

Taking the dot product of Eqs. (2.50) and (2.51) with s gives 

0   E s H s  (2.52)   

Equation (2.52) reveals that the field is transverse, i.e., the electric and magnetic vectors lie in a 
plane perpendicular to the direction of propagation. Also, we see that E, H, and s form a right-
handed orthogonal set of vectors.  

The instantaneous Poynting vector S, defined by S = E  H, represents the amount and direction 
of energy flow, and is seen to be in the direction of s, i.e., the direction of propagation of the plane 
wave. In geometrical optics, rays represent the flow of energy. These facts provide a mechanism 
for us to combine the results of ray tracing with electromagnetic analysis. For each ray that is 
traced, there is an associated electromagnetic field that is locally planar in a small region around 
the ray and has its electric and magnetic vectors in a plane that is orthogonal to the ray. The 
process of polarization ray tracing involves finding the transformation of these locally planar 
electromagnetic fields, in addition to the normal refraction/reflection of the geometric ray.  

Obviously, if we know any two of the three vectors of interest (s, E, and H), we can find the third 
by the use of the above equations. We will want to use s, since it corresponds to the geometrical 
ray. It is logical to use the electric vector E as the light vector. Wiener’s experiment on standing 
light waves (1890) demonstrated that the photochemical process (i.e., the exposure of a 
photographic emulsion) is directly related to the electric vector and not to the magnetic vector. 
Also, the Lorentz equation for the force exerted on a charged particle shows that the electric field 
acts upon the particle even if the particle is at rest. The magnetic field, on the other hand, results in 
a force upon the particle that is proportional to the ratio of the particle’s velocity to the speed of 
light. Since this ratio is usually very small, the effect of the magnetic field can usually be ignored. 



62 Polarization analysis 

 

Thus, we will concern ourselves only with the electric field when considering the interaction of the 
vector nature of the light field with optical systems.  

Polarization ellipse 
We have seen that it is necessary to characterize the electric field. The description of the electric 
field vector defines its polarization properties. We have already noted one fundamental property, 
namely that the field is transverse to the direction of propagation of the wave. To describe this 
transverse field, we will choose a coordinate system that has its z-axis along the direction of 
propagation. Because the field is transverse, the electric field vector then lies in the xy plane. We 
want to study the orientation of this vector in the xy plane as a function of time.  

From the general form of the plane wave solution [Eq. (2.49)], we see that each Cartesian 
component of the electric field is of the form 

    cos i ta t ae           k rk r  (2.53)   

Thus, the x, y, and z components of the electric field are given by 

 cosx x xE a t     k r  (2.54)   

 cosy y yE a t     k r  (2.55)   

0zE   (2.56)   

We are interested in the curve that the end point of E sweeps out in the xy plane as a function of 
time at a fixed point in space; this is the locus of points (Ex, Ey), where Ex and Ey are given by Eqs. 
(2.54) and (2.55). Since this curve is not a function of position or time, we can eliminate t  kr 
from Eqs. (2.54) and (2.55) to yield 
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where  = y  x. This is the equation of an ellipse making an angle  with the (Ex, Ey) coordinate 
system such that 
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(2.58)   

This ellipse is called the polarization ellipse and is illustrated in the figure below; it is the curve 
swept out by the tip of the electric vector in the plane orthogonal to the direction of propagation of 
the plane wave. 
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The principal axes of the ellipse are aligned with the (Ex, Ey) coordinate axes only if  = 0, i.e., if  
is an odd multiple of /2. Note that, in time, the ellipse may be traced in either a clockwise or 
counter-clockwise sense. Conventionally, the rotation direction is based on the behavior of the 
electric vector when viewed from the direction of propagation, i.e., the wave is traveling toward 
the observer. If the E vector is rotating clockwise (sin  > 0), the polarization is said to be right-
handed. Conversely, if the rotation is counter-clockwise (sin  < 0), the polarization is left-handed. 
In summary, the polarization state is determined by three quantities: i) the ratio of the minor axis 
of the polarization ellipse to the major axis of the polarization ellipse, ii) the orientation angle of 
the polarization ellipse major axis to one of the coordinate system axes (This is the y-axis in 
OSLO, so the orientation angle is 90 – .), and iii) the handedness of the polarization. In OSLO, 
these quantities for the incident electric field are specified by the polarization operating 
conditions.  

There are two important special cases of the general case of elliptical polarization. If  is equal to 
an integer multiple of , then Eq. (2.57) reduces to  

y
y x

x

a
E E

a
   

(2.59)   

This is the equation of a straight line and so we say that the light is linearly polarized. For linear 
polarization, the ratio of the axes of polarization ellipse is zero and the orientation angle of the 
ellipse is the angle between the y-axis and the plane of vibration of the electric vector. Obviously, 
handedness is not really a meaningful quantity for linearly polarized light. 

The other special case occurs when ax = ay = a, and  is equal to an odd multiple of /2. In this 
case, Eq. (2.57) reduces to 

2 2 2
x yE E a   (2.60)   

This is the equation of a circle and so we say that the light is circularly polarized. For circular 
polarization, the ratio of the axes of the polarization ellipse is unity and the orientation angle of the 
ellipse is arbitrary.  

For this analysis, we have assumed that the electric field vector varies in a regular way. For 
thermal light sources, which are based on spontaneous emission from excited atoms or molecules, 
the changes in the polarization state may occur too rapidly and in too unpredictable a fashion for a 
defined polarization state to be determined. In this case the light is called unpolarized (or natural) 
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light. In general, light is neither completely polarized nor completely unpolarized. In this case, we 
say that the light is partially polarized. The degree of polarization is the ratio of the intensity of 
the polarized portion of the light to the total intensity in the beam. If the degree of polarization is 
zero, the light is completely unpolarized. Conversely, a degree of polarization of one means the 
light is completely polarized. 

Fresnel equations 
In order to calculate the polarization state along the rays being traced through an optical system, 
we must calculate the effect on the electric field upon passing through an interface between media 
of different refractive indices. In general, when a plane wave is incident upon the interface part of 
the wave is refracted and part is reflected. (We assume the media are non-absorbing, for 
simplicity.) The relations describing the ratios of the transmitted and reflected fields to the 
incident field are called the Fresnel equations.  

The geometrical optics laws of refraction and reflection state the incident ray, the refracted or 
reflected ray, and the normal to a surface lie in a plane. Solving Maxwell’s equations and applying 
the necessary boundary conditions yields results entirely consistent with geometrical optics: a 
beam is reflected at an angle that is equal in magnitude but opposite in sign from the incident 
beam and a beam is refracted into the second medium at an angle given by Snell’s law. The plane 
defined by the propagation vectors s of the incident, reflected and refracted beams (i.e., the rays) 
and the normal vector to the surface is called the plane of incidence, which is the plane illustrated 
in the figure below. 

Incident wave Reflected wave

Transmitted wave

n

n

i i

t

n n 

E s, incident

E p, incident

E s, reflected

E p, reflected

E p, transmitted
E s, transmitted

 

The electric field can always be decomposed into a component that is parallel to the plane of 
incidence and a component that is perpendicular to the plane of incidence. The parallel component 
is known as p, , or TM (transverse magnetic) polarization, while the perpendicular component is 
known as s, , or TE (transverse electric) polarization. [s stands for senkrecht, the German word 
for orthogonal.] If we denote the angle of incidence by i, the angle of refraction by t, the ratio of 
the amplitude of the reflected beam to the amplitude of the incident beam by r, and the ratio of the 
amplitude of the transmitted (refracted) beam to the amplitude of the incident beam by t, the 
Fresnel equations have the following form.  
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(2.61)   
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(2.64)   

In Eqs. (2.61) - (2.64), n is the refractive index of the medium in which the incident wave travels, 
and n is the refractive index of the medium in which the transmitted (refracted) wave travels. Also 
note that we have made the assumption that we are dealing with dielectrics with permeabilities 
equal to that of free space, i.e.,  =  = 0. The reflectance R (the fraction of the incident power or 
energy contained in the reflected beam is given by the squared modulus of the amplitude reflection 
coefficient 

* *
s s s p p pR r r R r r   (2.65)   

It can be shown that 

2 22 2
1 1s s p pr t r t     (2.66)   

Equation (2.66) can be interpreted as a statement that energy is conserved for a light wave incident 
upon a boundary between two dielectric media. In general, the reflectance is different for s and p 
polarization. Only for the case of normal incidence (where s and p are indistinguishable) are the 
reflectances the same value, namely 
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n n
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(2.67)   

Using values for a typical air-glass interface (n = 1.0, n = 1.5) in Eq. (2.67) yields the familiar 
result of 4% reflection loss for an uncoated refractive optical surface.  

As part of the polarization ray trace in OSLO, the incident electric field associated with each ray at 
a surface is decomposed into its s and p components, and the Fresnel equations are used to 
compute the amplitude of the transmitted electric field. The s and p directions for each ray are 
determined by the ray direction and the surface normal vector; they are, in general, different for 
each ray incident upon the surface. Thus one can not usually define overall s and p directions for 
non-planar waves incident upon non-planar surfaces.  

Jones calculus 
A convenient method, based on the use of linear algebra, for analyzing the propagation of 
polarized light is the Jones calculus, named for its inventor, R. Clark Jones. If we consider, as 
usual, a polarized wave traveling in the z direction, then the electric field has components in the x 
and y directions only. We write the instantaneous x and y scalar components of E as the column 
vector (Jones vector) 
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(2.68)   

Using the complex representations of Eqs. (2.54) and (2.55), we can rewrite Eq. (2.68) as 
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(2.69)   

It is only the phase difference  = y  x that affects the state of polarization. Thus, it is common 
to just use this relative phase difference in writing Eq. (2.69) as 
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For example, light that is linearly polarized in the y direction has the Jones vector 
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(2.71)  

Right-handed, circularly polarized light has the Jones vector 
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1
circular right a
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(2.72)   

while left-handed, circularly polarized light is represented by the Jones vector 
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(2.73)   

In terms of describing the state of polarization, an optical element or system can be considered by 
transforming an incident Jones vector Ei into a transmitted Jones vector Et. Mathematically, this 
transformation is represented by the 2 x 2 Jones matrix J, so that 

t iE JE  (2.74)   
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(2.75)   

The elements of the Jones matrix, JA, JB, JC, and JD, are, in general, complex quantities. The utility 
of the Jones calculus is that the Jones matrix J can represent any linear optical element. In OSLO, 
you can enter a polarization element by defining a Jones matrix for the surface. By default, an 
entered polarization element does not change the state of polarization, i.e., J is the identity matrix 
(JA = JD = 1; JB = JC = 0). Several example Jones matrices for common polarization elements are 
given below. 

 Ideal linear polarizer with pass-plane oriented along the x-axis 
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(2.76)   

 Ideal linear polarizer with pass-plane oriented along the y-axis 
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J  
(2.77)   

 Ideal linear polarizer with pass-plane oriented at an angle  with respect to the y-axis ( is a 
positive angle when measured from the positive y-axis toward the positive x-axis.) 

2

2
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(2.78)   

 Quarter-wave plate with fast axis along the x-axis 
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 Quarter-wave plate with fast axis along the y-axis 
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 Half-wave plate with fast axis oriented at an angle  with respect to the y-axis 
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(2.81)   

 Linear retarder with retardation  and with fast axis oriented at an angle  with respect to the y-
axis 
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 Homogeneous right circular polarizer 
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 Homogeneous left circular polarizer 
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(2.84)   

Optical materials 
The design of any optical system involves the selection of the proper materials, which depend on 
the spectral region, the environment, and the application. Of course the predominant optical 
material is glass, at least for refracting systems, so this term is used generically, in much the same 
way that the term lens is used to denote an optical imaging system. In practice, the term glass may 
refer to a wide variety of materials, ranging from polycrystalline infrared materials to reflectors. 

The performance of any optical system depends on the wavelength at which it is used, by virtue of 
diffraction if nothing else. In the case of refracting systems, the optical properties of materials 
change with wavelength. The variation of refractive index of optical materials with wavelength is 
called dispersion, and the defects in optical imagery caused by dispersion are called chromatic 
aberrations. Chromatic aberrations are considered separately from monochromatic aberrations 
because they can exist by themselves, in addition to causing chromatic variations of 
monochromatic aberrations. 

There are several factors that are important in selecting a material for an optical design. As noted 
above, the most important is often the dispersion, but many other attributes must also be 
considered, such as thermal characteristics, weight, mechanical and chemical properties, 
availability, and cost. Many of these attributes do not directly affect the computer optimization 
process, but are made available for the designer when data are available. 

Dispersion 
The refractive index of many optical materials can be described by the Sellmeier formula 
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(2.85) 

where  is the wavelength in m. This formula has recently been adopted by Schott and other 
glass manufacturers for describing the refractive index of optical glasses in the visible portion of 
the spectrum. Formerly, optical glasses were usually described by a Laurent series, sometimes 
called the Schott formula 
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Various other formulas are used for special purposes. Conrady found that in the visible portion of 
the spectrum, using data for only three refractive index-wavelength pairs, a good fit could be 
obtained using the formula 
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(2.87)  

More recently, Buchdahl introduced a chromatic coordinate for accurately characterizing the 
refractive index. The motivation for the chromatic coordinate was that the usual dispersion models 
(e.g., the equations above) do not have the form of a Taylor series, the function expansion form 
used in aberration theory. Starting from the Hartmann formula, Buchdahl proposed the use of the 
chromatic coordinate () 
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(2.88)   

where the wavelength  is expressed in m and 0 is a reference wavelength, typically the d line 
(0.5876 m) for visible light. The refractive index n is then given by a power series in  

  2 3
0 1 2 3n n            (2.89)   

where n0 is the index of refraction at the reference wavelength 0. The i coefficients are specific 
to each glass. The advantage of the chromatic coordinate is indicated by the rapid convergence of 
the above expansion. The paper by Robb and Mercado(3) states that a quadratic model (n0, 1, 2) 
yields a maximum error in n of 0.0001 over the visible spectrum for a sample of 813 glasses from 
five manufacturers. More details on the use of the chromatic coordinate may be found in 
Forbes.(4)  

A number of other parameters are used to describe the dispersion of optical glass. The one most 
used in the visible portion of the spectrum is the V (or ) number, or Abbe number, defined by 
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(2.90) 

where nd is the refractive index of the glass at the helium d (0.5876 m) line, nF is the refractive 
index at the hydrogen F (0.4861 m) line, and nC is the refractive index at the hydrogen C (0.6563 
m) line. Depending on the particular spectral region under study, wavelengths other than the F, d, 
and C lines may be used for the V number and partial dispersion. 

In OSLO, wavelength 1 is taken to be the primary wavelength, wavelength 2 to be the short 
wavelength, and wavelength 3 to be the long wavelength. Three wavelengths must be specified to 
enable the computation of chromatic aberrations. The default values of these wavelengths are d, F 
and C. If other wavelengths are used, the program computes the V-number using the assigned 
wavelengths. 

Typically, in the visible spectrum, the refractive index of optical glasses is a few percent higher in 
the blue portion of the spectrum than in the red. The difference in the refractive indices of a glass 
at two different wavelengths is known as the dispersion for the two lines in question. In the case 
where the wavelengths are the F and C lines, the dispersion is called the principal dispersion, and 
the dispersion for other lines is known as the partial dispersion. The partial dispersion is often 
expressed as a ratio. For example, the relative partial dispersion for the F and d lines is given as 

 
3. P. N. Robb and R. I. Mercado, “Calculation of refractive indices using Buchdahl’s chromatic 
coordinate,” Appl. Opt. 22, 1198-1215 (1983). 
4. G. W. Forbes, “Chromatic coordinates in aberration theory,” J. Opt. Soc. Am. A 1, 344-349 
(1984). 
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(2.91) 

The characteristics of optical glasses are often displayed on a two-dimensional graph, called a 
glass map. A glass map is a graph of refractive index plotted as a function of V-number, and any 
particular glass corresponds to a point on the glass map. By convention, the V-number is plotted 
along the x-axis, with decreasing values of V (i.e., increasing dispersive power) toward the right. 
A typical glass map is shown below. 
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Most glasses lie along or near a line forming the lower right boundary of the region occupied by 
optical glasses. This line is called the glass line. The availability of optical glasses that are located 
a considerable distance above the glass line gives the optical designer considerable flexibility in 
correcting the chromatic (and other) aberrations of optical systems. However, when an arbitrary 
choice is to be made, the glass chosen should be one on or near the glass line, since such glasses 
are cheaper and more readily available. 

 

Thermal coefficients 
OSLO has commands for setting the temperature of a lens and the atmospheric pressure of its air 
spaces. The tem command is used to set the temperature of the lens (in degrees Celsius), and the 
pre command sets the atmospheric pressure (in atmospheres). The default temperature is 20 
degrees C and the default pressure is 1 atmosphere. Changing the temperature changes the 
absolute refractive indices of the glasses in the lens; since the refractive index of the air changes 
with temperature and pressure, the relative (to air) refractive indices of the glasses also change. 
OSLO uses relative refractive indices for all computation, so the index of AIR is always given as 
1.0 for all temperatures, pressures, and wavelengths. To specify a vacuum as the medium between 
glass elements, set the pressure to zero.  

Changing the temperature also causes the glasses and mounting/spacer materials in the lens to 
expand or contract. In OSLO, the radii of curvature, axial thickness, and aperture radii of glass 
elements expand according to a linear model:  

     1L T T T L T      (2.92)   

where L is a length (e.g., thickness, radius of curvature, or aperture radius), T is the “base” 
temperature, T is the change in temperature, and  is the thermal coefficient of expansion (TCE). 
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Values of expansion coefficients are expressed in units of 1  10-7. The default values of thermal 
coefficients of expansion for glasses are taken from the glass catalogs; the default value for air 
spaces is that of aluminum (236.0  10-7). The default value can be overridden for any surface by 
using the tce command. Thermal expansion can be inhibited for any surface by setting the TCE 
value to zero.  

Other glass data 
In addition to the coefficients used to compute the refractive index, dispersion, and thermal 
properties, OSLO glass catalogs contain data describing several other properties of optical 
material (where available). Although most of the data, excepting the thermal coefficient of 
expansion and dn/dT, are not used explicitly by the program, they are displayed for the optical 
designer to see whenever a glass is entered from a glass catalog. The start of data included in the 
database are tabulated below.(5) Note there is additional information included in the glass 
database files, such as NvsT (refractive index versus temperature) information using the Sellmeier, 
single dn/DT value, or Corning thermal models. See the Program Reference and in-program help 
for more information. 
 

n Refractive index (at wavelength 1) 

V Abbe number (at wavelengths 1, 2, and 3) 

dens Density (g/cm3) 

hard Knoop hardness, HK 

chem Chemical properties (first digits of climatic 
resistance CR, stain resistance FR, acid resistance 
SR, alkali resistance AR, and phosphate resistance 
PR) 

dndT Derivative of refractive index with respect to 
temperature (1  10-6/K) 

TCE Thermal coefficient of expansion (1  10-7/K) 

bub Bubble group 

trans Internal transmittance (25 mm thickness, 400 nm 
wavelength) 

cost Cost relative to BK7 (for Schott catalog) or BSL7 
(for Ohara catalog) 

avail Availability code 

Model glasses 
The refractive index and dispersion of optical materials are discrete quantities. That is, the optical 
properties are characteristic of the material and cannot be varied. In order to optimize the glass in 
an optical system, it is necessary to construct a model that allows the optical properties to vary 
continuously, at least for the damped least squares algorithm used in OSLO. Following 
optimization, it is necessary to pick a real glass that has properties that are suitably close to those 
used in the model. OSLO contains a routine that takes a model glass and looks through the 
available glass catalogs to find the closest real match. It works by minimizing the RMS distance of 
the glass on the refractive index vs. V-number glass map. 

 
5. For information on the meaning and units of the data, see, for example, the Schott Optical Glass 
catalog (Schott Glass Technologies, Inc. 400 York Avenue, Duryea, PA 18642, tel 717-457-7485, 
fax 717-457-6960). 
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Because there are only a comparatively few glasses available, and because glass variables are 
inherently two-dimensional (refractive index and dispersion), optimization of glasses is more 
difficult than optimization of curvatures and thicknesses. To develop a practical optimization 
model for the optical properties of a glass, it is necessary to make a felicitous choice of variables, 
to reduce the dimensionality of the problem. As mentioned above, the model is two-dimensional, 
but actually the dimensionality is higher than two because of the nonlinearity of refractive index 
vs. wavelength. Using the Conrady formula mentioned above, for example, gives a three-
dimensional (n0, A, B) model, as does the quadratic chromatic coordinate model.  

It is possible to reduce the problem to a two-dimensional one by assuming that only normal 
glasses are to be used. A normal glass is one for which the partial dispersion at any wavelength is 
proportional to the V-number. That is, for any wavelengths x and y, the partial dispersion is 
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(2.93)   

The constants in this equation can be determined by taking two glasses deemed to be normal, and 
solving using the actual data. In OSLO, the two glasses used are K7 and F2, according to the 
recommendation in the Schott catalog. By using only normal glasses, we disallow the possibility 
of accounting for the nonlinearity of refractive index vs. wavelength, and hence of finding 
apochromatic combinations of glasses, i.e., pairs that correct the secondary spectrum, during 
optimization.  

Although the model described above is 2-dimensional, it is implemented in OSLO in a way that 
makes it possible to optimize the glass for most systems using a single variable. The basis for the 
OSLO model comes from modifying the standard glass map so that the refractive index is shown 
as a function of dispersion (nF – nC), rather than V-number. The figure below shows data for the 
same glasses used before. 
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The so-called glass line, which bounds the lower right edge of the chart and contains most of the 
real glasses, has been converted from a curve to a nearly straight line. This motivates the 
transformation of the material parameters n (refractive index) and n (dispersion) into two derived 
variables RN and DN. The derived variables RN and DN are defined in OSLO according to the 
following conditions. 

The variable RN changes both the refractive index and dispersion of a model glass along a straight 
line plotted on the new glass map. The line along which the index and dispersion is varied is the 
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one that connects the point characterizing the initial glass, to the point that characterizes FK5 glass 
(at the extreme lower left). The figure below shows the case where the initial glass is BASF51. 

The variable DN varies the dispersion without changing the refractive index. It is normalized in 
such a way that a value of 0.0 corresponds to a point along a line connecting the glass SK16 to the 
glass FK5, and the value 1.0 corresponds to a point along a line connecting the glass SF11 to the 
glass FK5. A DN of 1.0 thus denotes a glass along the glass line, and a value of 0.0 denotes a glass 
of approximately the lowest dispersion that can be obtained for the given refractive index. 

1.40

1.50

1.60

1.70

1.80

1.90

2.00

0 0.01 0.02 0.03 0.04 0.05
Dispersion

R
e

fr
a

c
ti

v
e

 i
n

d
e

x

SF11

SK16

FK5

D
N

=0 DN=1

BASF51

Vary DN

Vary RN (DN = 0.6)

 



The paraxial approximation 73 

 

Chapter 3 Paraxial Optics 
 

Paraxial optics deals with the propagation of light through a centered optical system. Such a 
system consists of rotationally symmetric refracting or reflecting surfaces having a common axis, 
called the optical axis. A simple lens is an example of such a centered system; its axis is the line 
passing through the centers of curvature of the two surfaces. A succession of simple lenses is a 
centered system if the lenses are aligned on a common axis. A system containing tilted plane 
mirrors may result in a centered system, if the lenses on either side of a given mirror lie on the 
symmetry axis, as reflected by the mirror. However, in general, systems containing tilted surfaces 
do not have a common axis of symmetry, and do not form a centered system. 

Centered optical systems have the property that a ray passing through them sufficiently close to 
the optical axis always makes a small angle of incidence with the normal to any surface. Such a 
ray is called a paraxial ray, and the refraction of such a ray is described by a much-simplified 
equation, compared to the law of refraction for an arbitrary ray. 

If a ray incident on a refracting surface makes an angle I with the normal to the surface, the 
refracted ray will make an angle I with the normal to the surface, where I and I are given by 
Snell’s law, 

sin sinn I n I    (3.1)    

and n and n are refractive indices on either side of surface. The incident and refracted rays 
intersect at the surface, and define a plane, called the plane of incidence. According to the law of 
refraction, the plane of incidence contains the normal to the surface at the point of incidence. If the 
system is a centered system, and if the optical axis is also contained in the plane of incidence, the 
ray is said to be a meridional ray; otherwise it a skew ray. 

The law of reflection states that the angle between the ray and the surface normal after reflection is 
equal in magnitude and opposite in sign to the angle of incidence. It follows from Snell’s law that 
reflection can be considered a special case of refraction, in which the refractive index following 
the surface is the negative of the refractive index preceding in the surface. In practice, however, it 
may not be desirable to use the negative index convention. In OSLO, all refractive indices are 
positive, and reflection is accommodated by the way the ray trace equations are programmed. 

The paraxial approximation 
If the ray is sufficiently close to the optical axis at all points, the angle of incidence of the ray on 
all surfaces of the system will necessarily be small, so the sines of the angles can be satisfactorily 
approximated by the angles themselves, and the law of refraction becomes 

ni n i    (3.2)    

where the lower case i is used to denote the paraxial value of the real angle of incidence I. The 
simplification of the law of refraction that is achieved by substituting the angles for their sines 
leads to the development of the paraxial theory of image formation. Before considering this theory 
in detail, we consider a simple graphical description of refraction for both real rays, which obey 
Eq. (3.1), and paraxial rays, which obey Eq. (3.2). 

According to the law of refraction, at a boundary that separates media of different refractive 
indices, the incident ray, the refracted ray, and surface normal form a certain vector triangle. In 
particular, if the incident ray is represented by a vector ne of length n and the refracted ray by a 
vector ne of length n, the law of refraction can be expressed as 

n n G   e e p   (3.3)    
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where p is a unit vector in the direction of the surface normal, e and e are unit vectors in the 
directions of the incident and refracted rays, respectively, and G is a quantity that can (in 
principle) be obtained by taking the scalar product of p with the above equation, noting that 
p p  = 1. Thus 
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The figure below shows a graphical construction that illustrates the law of refraction. Consider a 
ray incident on a surface whose normal vector at the point of incidence is known. At the point 
where the ray intersects the surface, construct two index circles having radii that are proportional 
to n and n. Extend the incident ray until it intersects the circle of radius n, then draw a line parallel 
to the surface normal from this intersection point to the point where this line intersects the index 
circle of radius n. The line from the point of incidence to this last point represents the refracted 
ray. 
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This construction is useful for graphically determining the trajectories of real rays through optical 
systems, and is convenient for use with “back-of-the-envelope” sketches when no computer is 
available. For the present, we are interested in how the construction is simplified when it is 
applied to paraxial rays. 

Consider a real ray passing through an optical system near the optical axis. As described above, 
the angle of incidence of the ray on any surface must then be small. In addition, under these 
conditions a spherical surface will be indistinguishable from a plane surface, so that the surface 
and the index arcs can be approximated by straight lines. 

The refraction law as shown above accurately predicts the trajectories of rays that pass through a 
system near the axis, but it is cumbersome to use in actual practice, because the rays are refracted 
by too small an amount to draw accurately. On the other hand, it turns out to be possible to use the 
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paraxial construction to predict the approximate trajectories of rays that pass through the system at 
large distances from the axis, as we shall now see. 

In the figure below, we show the paraxial construction for a ray passing through a system away 
from the axis. The surface is replaced by its tangent plane, and the index arcs are replaced by 
straight lines. To construct the refracted ray, first extend the incident ray until it crosses the first 
index line, then draw a line parallel to the line connecting the point of incidence of the ray on the 
tangent plane and the center of curvature. The line connecting the point of incidence with the 
intersection of the construction line and the second index line gives the refracted ray, in a manner 
similar to that found for real rays. 

n n´

n n´ =

=

P

R

R´

C

surface
 

The difference between the two constructions is that the second paraxial one is an approximation, 
and hence does not give the exact trajectory for the ray. A ray constructed according to the second 
paraxial scheme should be called a formal paraxial ray, to distinguish it from a true paraxial ray, 
which passes through the system close to the axis. In practice, the designation “formal” is usually 
omitted, and such rays are just called paraxial rays. In this section we will make the distinction 
clearly and generally omit the formal designation later. 

Because formal paraxial rays determine the locations of images in ideal systems, it is sometimes 
thought that a paraxial lens is an ideal lens. This is not true, because light does not travel along the 
trajectories of formal paraxial rays, even in an ideal system. 

The construction used to describe the trajectories of formal paraxial rays is of great utility in 
describing the general characteristics of optical systems. The reason for this is that the 
construction predicts ideal image formation by formal paraxial rays. Although trajectories of 
formal paraxial rays through an optical system do not represent the actual passage of light, they do 
lead to a prediction of the locations of image points in an ideal system. It is for this reason that 
these rays are extensively used in the description of image formation. 

The trajectories of a real ray and a formal paraxial ray are compared in the next figure. The two 
rays are refracted at different angles, of course, since they are constructed by different procedures. 
In addition, the real ray is refracted at the actual surface, while the formal paraxial ray is refracted 
at the tangent plane. The axial intercept of the formal paraxial refracted ray defines the location O 
of the paraxial image of the object point O; this is the point where true paraxial rays would form 
an image. The real ray crosses the axis at some other point O; the fact that this is displaced from 
O indicates that the surface introduces aberration. 
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The aberration introduced by refraction of real rays at a spherical surface is shown more clearly in 
the figure that follows, where we show an accurate drawing of the trajectories of several rays 
leaving a single object point and refracting into a material having a refractive index of 
approximately 1.9. Rays that strike the refracting surface at large angles of incidence depart 
strongly from the conditions needed for good image formation. In this particular case, the 
aberration introduced by the surface is called spherical aberration, and is characteristic of the 
refraction of a spherical wave by a spherical surface. 

O´

C

O

 

Cardinal points 
A great many approaches have been used to predict the image-forming properties of optical 
systems. Although real optical systems form images whose quality depends on the system and the 
conditions under which it is used, theories of image formation are usually developed within the 
framework of paraxial optics, for two reasons. First, paraxial rays propagate according to 
relatively simple laws that lead to straightforward techniques for describing image formation. 
Second, the ultimate formation of an image is determined by balancing or elimination of the 
aberrations so that the real rays converge upon the same image point as the paraxial rays. In this 
section, we consider the theory of paraxial image formation developed by Gauss, which 
characterizes optical systems by a number of special points, known as cardinal points. 

It is important to understand the definitions of object space and image space. Object space refers 
to the space in which a ray, or its extension, propagates before traveling through an optical system. 
Image space refers to the space in which a ray, or its extension, propagates after passing through 
the system. 

By convention, light initially travels from left to right. If light leaves an object, passes through a 
lens, then converges to the image, the image is real. If light diverges after passing through the 
lens, the image is virtual. Since both the object and image can be either real or virtual, object 
space and image space extend to both sides of the lens. 

real object

real image real object

virtual image

 

It is possible to find the properties of an image by direct paraxial ray tracing. For example, if one 
had a lens that formed an image of an extended object, one could select several typical points on 
the object and trace several rays from each point through the lens, using the graphical technique 
described in the previous section, to see where they converge after emerging from the system. 
Such a brute force approach to image formation is overly cumbersome. Since all paraxial rays 
leaving the same object point converge to the same image point, it suffices to trace only two rays 
from each object point to determine the location of the image point where all rays from that object 
point converge. 

Consider a centered lens in some sort of mount that does not allow us to observe the actual 
elements that are contained in the lens, as shown below. A ray R1 that enters the lens parallel to the 
optical axis from the left will emerge and intersect the optical axis at some point F. This point is 
called the focal point (specifically, the second focal point) of the lens. 
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Consider a ray R2 from a point on the left that passes through the lens to emerge parallel to the axis 
at the same height that R1 entered the system. This defines the first focal point F. Now we have 
two rays that intersect at some point O in object space and point O in image space. This implies 
that O is the image of O. 

F F´P P´

O O´

Paraxial optical system

f´ (EFL)f

R1

R2

 

Because the height of the rays entering the lens is arbitrary, it follows that any plane normal to the 
axis that contains O is imaged into the plane normal to the axis that contains O. The intersections 
of these planes with the optical axis are called the principal points P and P. The first principal 
point P is the one in object space, and the second principal point P is the one in image space; P is 
the image of P. Moreover, since O and O are equidistant from the axis, the lateral magnification 
of the image is unity. The planes OP and OP are called the principal planes of an optical system. 

The distance from the first focal point to the first principal point is called the first focal length, and 
the distance from the second principal point to the second focal point is called the second focal 
length, or effective focal length (EFL), or simply the focal length f . If the refractive index is 
different in object and image space, the first and second focal lengths are related by 

n n

f f


  


 

 (3.5)    

where  is the power of the lens. 

The concept of principal planes is very useful for tracing paraxial rays through an optical system, 
but for real systems, the surfaces of apparent refraction are not planes. A necessary condition for a 
perfect lens is that all rays from an object point infinitesimally displaced laterally from the axis 
pass through a single point in the image plane, independent of the height of the rays in the aperture 
of the lens. Such a lens is free from coma, and is called an aplanat. An aplanatic lens obeys the 
Abbe sine condition 
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which for rays from infinity can be written as 
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f
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 (3.7)    

For an aplanatic lens, the effective refracting surface for rays coming from infinity is a sphere 
centered on the second focal point, as shown below. Most real lenses more closely resemble 
aplanatic systems than paraxial systems. 
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There is another pair of conjugate points that is of significant importance in determining the first-
order imaging properties of an optical system. These are called the nodal points N and N, which 
are defined to be the conjugate points of unit positive angular magnification. If the refractive index 
is the same on both sides of the optical system, the nodal points are coincident with the principal 
points. However, if the refractive index is different in object and image space, the nodal points are 
shifted from the principal points. The figure below, ray R2 passes through nodal point N in object 
space and emerges from N in images space. The distance between the nodal points is equal to the 

distance between the principal points, and it can be shown that FP N F  . Another term, the back 
focus, is the distance from the last surface to the image point. If the object is at infinity, the back 
focus it is equal to the back focal length, but for finite conjugates it is called the working distance. 

F F´

P P´

N N´

f´ (EFL)f

R1

R2
refractive index n

refractive index n´

Aplanatic system with n´ > n
 

The focal points, principal points, and nodal points are called the cardinal points of an optical 
system. A knowledge of their locations allows one to determine its image-forming properties. 
Note that the cardinal points are defined in terms of the action of the system on light propagating 
through it. There are no direct relations between the positions of the elements of the system and 
the locations of the cardinal points. To provide such a link, some quantity that measures the 
distance of a cardinal point from a lens surface is needed. The most common quantity used for 
such a specification is called the back focal length of the system, which is defined to be the 
distance from the last optical surface to the second focal point. It is important to note that the 
effective focal length of a system is quite different from the back focal length of the system; the 
two measure totally different quantities. 

Once the locations of the cardinal points of a system are known, it is straightforward to find how 
the system transforms rays from object to image space. In the figure below, an unknown ray enters 
the first principal plane at a certain ray height and emerges from the second principal plane at the 
same ray height (since the principal planes are conjugate planes of unit positive lateral 
magnification). To determine the trajectory of the ray that emerges from the system, we can use 
any of three construction rays. 
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First, we may use for a construction ray the ray R1 that intersects the unknown ray in the first focal 
plane, and enters the system parallel to the axis. This ray must pass through the second focal point 
after it emerges from the system, but since it intersects the unknown ray in the first focal plane, it 
follows that the unknown ray must emerge parallel to it. 

Second, we may choose as a construction ray the ray R2 that enters the system parallel to the 
unknown ray, but which passes through the first focal point. Such a ray must emerge from the 
system parallel to the axis. Again, since the two rays enter the system parallel to each other, they 
must intersect in the second focal plane, as shown. 

Third, we construct a ray R3 parallel to the unknown ray that passes through the first nodal point of 
the system. Such a ray must emerge undeviated from the second nodal point of the system. Since 
the construction ray entered the system parallel to the unknown ray, the two rays must intersect in 
the second focal plane. 

Paraxial ray tracing 
Sign conventions 
To compute the propagation of rays through optical systems mathematically, it is necessary to 
adopt a number of conventions regarding nomenclature and the signs of variables. We consider an 
optical system to be described using a series of local right-handed coordinate systems in which the 
z-direction coincides with the optical axis and points to the right, the y-direction points up, and x-
direction points into the paper. Each surface of the system is described in the local coordinate 
system for that surface. Paraxial calculations are greatly simplified by the fact that tilted and/or 
decentered surfaces are not allowed. Thus the origin of each local coordinate system is on the z-
axis of the previous local coordinate system. 

When it is necessary to distinguish a quantity on both sides of surface, the quantity on the object 
side of the surface is written with an unprimed symbol, while the quantity on the image side of the 
surface is written with a primed symbol. Thus, for example, n is the refractive index on the object 
side of a surface, and n is the refractive index on the image side. By convention, light enters an 
optical system from the left, so that quantities on the left side of a surface are unprimed, and those 
to the right are primed, but the more general convention is needed for reflecting systems, where 
light may propagate from right to left. The prime notation is also used to denote conjugate 
relationships. Thus, the image point corresponding to the object point O is O. 

If a ray intersects the optical axis of a system, the ray and the optical axis are coplanar, and the 
plane defined by them is called the meridional plane. By convention, the yz plane is chosen as the 
meridional plane, so for meridional rays, x = 0 and the ray is fully described on a given surface by 
its ray height, y, and its slope, u. Rays that have non-zero values of x on any surface are called 
skew rays. 

OSLO handles cylindrical systems by providing a separate paraxial trace for the xz plane. 
However, this trace is not used in lens setup, which implies that skew paraxial constraints (e.g. 
solves) must be implemented as optimization operands rather than lens data. 

Note that the most general definition of a centered system would not necessarily imply rotational 
symmetry about the optical axis. Cylindrical surfaces, for example, could be permitted. However, 
in our discussion here, we consider only rotationally symmetric systems and assume that all object 
points lie on the y-axis. Because of the rotational symmetry, this entails no loss of generality. 
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A spherical surface may be specified by its radius of curvature, r, or by its curvature c, which is 
defined to be the reciprocal of the radius of curvature. The distance between two surfaces is called 
the thickness t of the space separating the two surfaces. 

In a system containing several surfaces, the various parameters specifying the system are given 
subscripts to identify them with a particular surface. Surface parameters, such as curvatures, are 
subscripted with the surface number to which they pertain. Inter-surface parameters, such as 
thicknesses and refractive indices, are given both subscripts and primes to indicate the surface 
with which they are associated. This results in a tautology, in which the same physical quantity 
can be described by two symbols. For example, the thickness that separates the current surface 
from the next can be designated as either t on the current surface or t on the next surface. In 
OSLO, the thickness associated with a given surface is called TH, which corresponds to t. 

The figure below illustrates the parameters used to describe an optical system for paraxial ray 
tracing. Note that all surfaces are replaced by their tangent planes. Although the subscripts j and j–
1 have been attached to all parameters in the figure to clearly identify them with the proper 
surface, usually we will eliminate the subscript j in cases where it is clear that it should be present. 
For example, 
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Paraxial ray trace equations 
Paraxial ray tracing is a subject that has received a great deal of study, and several efficient 
techniques for performing the required calculations have been developed. We consider here three 
methods that are in common use. These are the ynu method, and yui method, and the matrix 
method. The ynu method is the most efficient of the three, and is widely used for hand work. The 
yui method requires a few more steps but generates the paraxial angles of incidence during the 
trace and is probably the most common method used in computer programs. 

Consider the propagation of a true paraxial ray (as opposed to a formal paraxial ray) through an 
optical system. For such a ray, the slope is infinitesimal, so that the angle the ray makes with the 
axis and the tangent of that angle (i.e., the slope) are the same. Thus we have 

1y y
u

t


  
 (3.9)    

where we have omitted the subscript j, as described above. This equation may be transposed to 
give the translation equation for paraxial rays from one surface to the next, 

1y y tu    (3.10)   

The refraction equation may be derived with reference to the figure below. From the figure, we see 
that 
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Now in the paraxial limit, these angles can be taken equal to their sines or tangents, and hence we 
can write 
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Also, in this limit, the law of refraction can be written 

ni n i    (3.13)   

so that we have, using the above, 
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where  = c(n – n) is called the power of the surface. This is the paraxial refraction equation; it 
gives the slope of a ray emerging from a surface in terms of the ray height and slope of the ray 
incident on a surface having power . The sequential application of the paraxial translation and 
refraction equations allows one to trace any paraxial ray through an optical system. All of the ray 
trace methods discussed in this section are based on these equations, or on simple variations of 
them. 

YNU ray tracing 
The most efficient way to trace paraxial rays by hand is the so-called ynu method. This method 
utilizes a formatted worksheet to carry out the repetitive calculations of paraxial ray heights and 
slopes using an optimized form of the ray trace equations. 

For ynu ray tracing, the refraction equation is written in the form 

n u nu y       (3.15)   

and the translation equation is written 
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Since nu is the same as nu on the previous surface, the quantities y and nu calculated at one stage 
in the trace are used as input to the next stage. For example, given y and nu on the first surface of 
the system, use the refraction equation to calculate nu on this surface. This quantity is used, 
together with y, to calculate the ray height on the second surface, using the translation equation. 
The process then repeats, using the refraction and translation equations at the second surface. 

The ynu ray trace can be used for a number of purposes in addition to the straightforward 
calculation of ray data for a given system. One of the most important of these is to synthesize a 
system having desired properties. In such a case, the ray data is given, instead of the lens 



82 Paraxial ray tracing 

 

parameters, and the lens parameters are determined from the ray data. An alternative way to 
specify a lens is thus to state where the paraxial rays go. 

This way of specifying lens parameters is very common in computer programs for optical design. 
Two types of specification are commonly used. The first is called an angle solve, and specifies the 
curvature of a surface by the angle of a ray after refraction. For example, suppose we have traced a 
ray up to the jth surface, so that we know y and nu. If we want the ray to emerge from the surface 
with a slope u, then according to the paraxial refraction equation, the curvature of the surface 
must be 
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The second type of solve that is in common use is the height solve, in which the thickness on the 
image side of a surface is specified by giving the height of a ray on the next surface. According to 
the paraxial translation equation, the needed thickness is 

1y y
t

u


  
 (3.18)   

where y is given, and y-1 on the previous surface and u are known. 

YUI ray tracing 
An alternate method of paraxial ray tracing, which we call the yui method, uses the following 
equations, which can be readily derived from the paraxial refraction and translation equations: 
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Although three, rather than two, equations are used to trace a ray through a surface, the quantity i 
is needed to calculate the aberration contributions of the surface, so the additional labor produces 
useful data. In fact, if the aberrations of the system are to be calculated, the yui method is actually 
more efficient than the ynu method. The yui method is used in OSLO for paraxial ray tracing. The 
listing below shows typical output for the pxt all command. The lens is the same one used for the 
ynu example above. 

*PARAXIAL TRACE 
 SRF      PY          PU          PI          PYC         PUC         PIC 
  0        --     1.0000e-20  1.0000e-20 -1.0000e+20     1.00000     1.00000 
 
  1      1.00000    -0.03407     0.10000       --        0.65928     1.00000 
  2      0.99319    -0.02584    -0.13339     0.13186     0.61940     0.64610 
  3      0.99189    -0.04177    -0.02584     0.16283     1.00132     0.61940 
 
  4   2.8940e-05    -0.04177    -0.04177    23.94108     1.00132     1.00132 
 
As shown in the next section, it is necessary to trace two paraxial rays (the axial and chief rays) to 
completely characterize a system. In this text, the axial ray height and slope are indicated by ya, ua; 
the chief ray height and slope are yb, ub. Another common scheme is to indicate the axial ray by y, 
u and the chief ray by , .y u  The “bar” notation for the chief ray was popularized by the Military 

Handbook for Optical Design, and is the source of the nomenclature for the so-called y–ybar 
method of paraxial analysis, in which the chief ray height is plotted vs. the axial ray height. OSLO 
uses PY, PU, and PI to give data for the height, slope, and angle of incidence of the axial ray (the 
a-ray), and PYC, PUC, and PIC to give corresponding data for the chief ray (the b-ray). 
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Matrix optics 
It is possible to write the paraxial ray trace equations in matrix form, so that a series of matrix 
multiplications are used to determine the trajectory of a paraxial ray through an optical system. 

Let a ray be represented by a column vector giving the ray height and slope immediately to the 
image side of the jth surface of an optical system: 
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Define a translation matrix 
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Then 
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Writing this out in full, one obtains 
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The translation matrix thus takes a ray from one surface and translates it to the next surface. 

We next define a refraction matrix 
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then 
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that is, 
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The refraction matrix thus duplicates the paraxial refraction equation. By successive application of 
the refraction and translation matrices, one can trace rays through an optical system. 

Suppose we know the coordinates of a ray incident on surface 1. Then we have 1 1k kR R  M , or 
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where the transfer matrix is given by 
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The quantities A, B, C, D are sometimes called the Gaussian constants of the system, and the 
transfer matrix is also known as the ABCD matrix. The main reason for using matrix techniques in 
paraxial optics is to provide a compact formulation for describing the general transformation 
properties of an optical system. When numerical values of the matrix elements are needed, they 
can be found from the results of ynu ray trace, as we shall now show. 

Suppose that a ray Ra having initial coordinates (ya1, n1ua1) is traced through the system. Then 
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Next we trace a different ray, Rb, whose initial coordinates are (yb1, n1ub1). Then 
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The ray traces generate the data needed to solve equations for the 4 unknowns Ak1, Bk1, Ck1, and 
Dk1. We find that 

 
 

 
 

1
1 1 1 1

1
1 1 1

1
1 1 1 1

1
1 1 1

k ab bk a ak b

k ab ak b a bk

k ab k bk a ak b

k ab k b ak a bk

A L n y u y u

B L y y y y

C L n n u u u u

D L n y u y u









    
  

      
      

 

 (3.33)   

where 

 1 1 1 1 1ab b a a bL n y u y u    (3.34)   

The entrance pupil is the apparent stop as seen from object space, i.e., it is the image of the 
aperture stop in object space. 

In order for the equations to have a solution, the a and b rays must be linearly independent; that is, 
one must not be a scalar multiple of the other. There is no other formal requirement for these rays, 
but it is conventional to choose for the a ray, the ray that starts from the vertex of the object plane 
and passes through the edge (or margin) of the entrance pupil. The a ray is also called the axial 
ray, or sometimes the marginal paraxial ray. It determines the location of the image in image 
space. The b ray is conventionally chosen to be the ray from the edge of the field of view that 
passes through the center of the entrance pupil. This ray is also called the chief ray, or the 
principal ray. It determines the location of the exit pupil in image space. There is no difference in 
meaning between the terms chief ray and principal ray; both are in common use, and refer to the 
same ray (note that the principal ray does not, in general, go through the principal points). 

The matrix approach to paraxial optics gives considerable insight to some general properties of 
optical systems. The most important of these is just that the transfer matrix exists and can be 
determined by the trajectories of any two independent paraxial rays. This means that if we trace 
two such rays through a system, we can express any third ray in terms of the first two. That is, any 
paraxial data can be expressed in terms of the data for the axial and chief rays. 

A property of the transfer matrix that is of considerable importance is that its determinant is unity. 
Note that 
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and 
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1T   (3.36)   

Since the determinant of the product of several matrices is equal to the product of the determinants 
of the individual matrices, it follows that 
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If any two paraxial rays are traced through an optical system, the transfer matrix can be 
determined using the above equations. In that case, the fact that the determinant of the transfer 
matrix is unity implies that the quantity Lab is invariant throughout the system. That is 

constantab b a a bL ny u ny u     (3.38)   

on either side of any surface of the system. This quantity is known as the Lagrange invariant. 

Lagrange’s law 
Usually, in addition to knowing the location of the image plane corresponding to a given object 
plane, one wants to know the size of the image. This is specified by giving the lateral 
magnification of the system. If the object height is h, and image height is h, the lateral 
magnification is defined to be 
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A straightforward way to determine the lateral magnification of a system would be to locate the 
paraxial image plane by tracing an axial ray through the system and then trace the chief ray from 
the edge of the field of view, find the intersection point with the paraxial image plane, and 
calculate the required ratio to determine the lateral magnification. 

A better way to calculate the lateral magnification of an image is to use Lagrange’s law. 
Lagrange’s law allows one to find the magnification of an image using only the data for an axial 
ray. It is a simple consequence of the fact that the Lagrange invariant has the same value on any 
surface of the optical system. In particular, on the object surface, the axial ray, by definition, has 
zero ray height. This means that on the object surface the Lagrange invariant is given by 

1 0 1 1 1ab b a aL n y u hn u    (3.40)   

where the height h of the object has been taken to define the height of the chief ray, or b ray. 
Similarly, by definition, the height of the axial ray on the image plane is also zero, so that the 
Lagrange invariant there is 
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Equating these two expressions for the Lagrange invariant, we find that 
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 (3.43)   

The lateral magnification is thus equal to the ratio of the optical slope of the axial ray in object 
space to the optical slope in image space. Thus, both the location and lateral magnification of an 
image are determined by the axial ray. Moreover, since the magnification depends only on the 
slope of the ray, it is not necessary to know the precise location of the image plane in order to 
know the size of the image. 

Lagrange’s law is one of the most powerful invariance principles of geometrical optics. In addition 
to its use for finding the magnification of images, it can also be used for example, to find the 
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magnification of pupils, to determine the throughput of an optical system, or the information 
capacity of a diffraction-limited system having a given aperture. 

Paraxial constants 
OSLO computes seven numbers, labeled paraxial constants, when the pxc command is given. 
Four of these are related to (but are not the same as) the A, B, C, D Gaussian constants discussed 
above. 

The effective focal length (EFL) is given by  
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 (3.44)   

where e is the radius of the entrance pupil. 

The Lagrange (paraxial) invariant (PIV) is  

ab aPIV L hnu    (3.45)   

Corresponding to the lateral magnification is the longitudinal magnification LMAG = (n/n)(m1m2). 
If the refractive indices are equal in object and image space and the object is small, then LMAG = 
m2. 

The lateral magnification (TMAG) is computed using Lagrange’s law, as described above. 
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The Gaussian image height (GIH) is computed as 
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 (3.47)   

Three additional items are printed with the paraxial constants. The numerical aperture (NA) of the 
system in image space is defined by 

sinNA n U    (3.48)   

In computing the NA, OSLO assumes that the system is aplanatic, in which case the NA can be 
found from the Abbe sine condition. Then  
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where NAO is the numerical aperture in object space, which can be determined from  
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The f–number (FNB) is defined as 

1

2
FNB

NA
  

 (3.51)   

The f–number FNB reduces to the common focal ratio f/d for a lens used at infinite conjugates, but 
for finite conjugates it gives what can be called the working f-number. The f–number and other 
quantities that measure aperture are discussed in more detail in the next chapter. 

The Petzval radius (PTZRAD) is computed from the surface curvatures and refractive indices. The 
Petzval radius is the radius of curvature of the surface on which an image of an extended plane 
object would be formed, if the imaging system has no astigmatism (called an anastigmat). 
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Although the Petzval radius is not really a paraxial quantity, it is a fundamental performance 
indicator and is easily computed. If there are k surfaces, the Petzval radius is given by 
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 (3.52)   

Note that all of the above paraxial constants are independent of the location of the final image 
surface. 

Image equations 
The theory of matrix optics can be effectively applied to imaging between an object point at h and 
an image point at h. Consider the case where object and image distances are measured from the 
principal points, rather than the first and last surfaces of the system. The transfer matrix linking 
two conjugate planes can be written as 
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 (3.53)   

where m is the lateral magnification of the system, and  is the power of the system.  

The principal points, as discussed before, are the conjugate points of unit, positive, lateral 
magnification. It follows that a ray entering the first principal plane will be transferred to the 
second principal plane by an object-image matrix having a magnification of +1. The transfer 
matrix between the principal planes must be: 
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 (3.54)   

Let s be the distance from the object to the first principal plane, and let s be the distance from the 
second principal plane to the image. The overall matrix is given by 
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Carrying out the indicated multiplication, one finds that 
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The equation determining the image distance in terms of the object distance is found by setting the 
upper right-hand element to zero: 
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which becomes, upon dividing by (ss)/(nn), 
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 (3.58)   

The lateral magnification of the system is determined by the diagonal elements of the overall 
matrix: 
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(3.59) 
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The formulas relating the object and the image thus assume a simple form (often called the 
Gaussian form) when the object and image distances are measured from the principal planes. If the 
object and image are both in air, the Gaussian image equation reduces to the well-known equation 
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 (3.61)   

Specification of conjugate distances 
In OSLO, it is possible to specify object and image distances referred to cardinal points, rather 
than physical lens surfaces.  

Principal point PP1 Principal point PP2

Object distance Image distance

 

 

The location of the principal points (PP1 and PP2) is calculated using the paraxial properties 
spreadsheet. The spreadsheet allows you to enter a value for any one of the items shown in the 
figure. The other items are then calculated automatically. The figure shows typical data for a thick 
lens having a focal length of about 50 mm. According to the spreadsheet, the first principal point 
is located 152.19 – 150 = 2.19 mm to the right of the first lens surface, while the second principal 
point is located 74.86 –72.67 = 2.19 to the left of the last surface. 

When a lens is set up using the conjugates spreadsheet, the object and image distances are set 
automatically if necessary. However, this relationship is not maintained if other data are changed 
later. 

Lens setup 
We have seen in the preceding sections that paraxial ray tracing can provide a great deal of 
information about an optical system. Using a contemporary desktop computer, a complete paraxial 
analysis of a typical system can be accomplished in a matter of milliseconds. In OSLO, whenever 
any lens data is entered or updated, a paraxial ray trace is carried out automatically. This process is 
called lens setup. The lens setup routine allows OSLO to integrate paraxial optics with lens data 
entry. That is, lens data such as curvatures or thicknesses can be specified either directly, or 
indirectly in terms of paraxial ray data. Whenever the lens setup routine is executed, the indirect 
data specifications are used to compute the actual values of the lens data. 

We have already mentioned one example of indirect data specification in the section on ynu ray 
tracing: the paraxial solves used to specify curvatures and thicknesses according to ray data. 
OSLO includes both angle and height solves for the axial and chief rays, as well as curvature 
solves that establish aplanatic points or concentric geometries. Although there are several types of 
solves available, three types account for the majority of applications. 

An axial ray height solve (PY solve) is very commonly used to specify the last thickness (the one 
before the image surface). By setting PY = 0 on the image surface, the surface is automatically 



Lens setup 89 

located in the paraxial image plane. Then, no matter how the lens is changed, it is refocused 
automatically by the solve constraint. 

A chief ray height solve (PYC solve) can be used in image space similarly to the axial ray height 
solve. In this case, the final surface becomes the paraxial exit pupil. 

An angle solve on the last surface is used very frequently to constrain the f–number of a lens. For 
example, suppose you want to use the curvature of the last surface to constrain the f–number to f/2. 
Assuming that the object is at infinity, this means that the slope of the axial ray in image space 
must be –0.25. Using an angle solve PU –0.25 to specify the curvature of the last surface will 
impose the necessary constraint. 

Angle solves also have the effect of constraining the focal length of a system. This is because the 
entrance beam radius is fixed. Thus in the above system, if the entrance beam radius is 12.5, the 
focal length must be EFL = 12.5/0.25 = 50.0. No matter how the curvatures or thicknesses of the 
lens are changed, the focal length will always be held to this value. This technique is often used to 
hold the focal length of a lens during optimization. 

A second type of indirect data specification is a link that specifies one data item in terms of 
another one; this is called a pickup. Pickups are used to maintain relationships between elements 
in systems containing mirrors, or to establish other geometrical constraints (e.g., an equiconvex 
lens). Although pickups do not involve paraxial ray tracing, they are resolved in the lens setup 
routine at the same time as solves. 

Solves and pickups are examples of what may be called paraxial constraints, which, since they are 
resolved each time that any data are changed, establish OSLO as an interactive program that 
responds automatically to data updates. Paraxial constraints can be distinguished from more 
general constraints that are based on exact ray data. General constraints are ones included in 
optimization error functions, and require an optimization cycle to resolve. Paraxial constraints are 
separated from general constraints because they involve easily computed, linear relationships. 
Paraxial equations almost always have a solution, unlike exact ray equations, which are nonlinear, 
and often fail due to rays missing surfaces or total internal reflection. 

In actuality, paraxial constraints can fail at a few singular points, such as when an axial ray angle 
solve is placed on a dummy surface, or a height solve is specified in a region where the paraxial 
ray travels parallel to the axis. For this reason, it is a good idea to enter lens data in an order that 
prevents these conditions from happening during data input. For example, you should enter glass 
data before specifying a surface by an angle solve. 
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Chapter 4 Stops and Pupils 
 

A pinhole camera is a perfect optical system. If the pinhole is sufficiently small, the resolution will 
be limited only by diffraction. Unfortunately the image will be rather dim. The angular resolution 
will be 

pinholed


   

 (4.1)   

Curiously, this relation indicates that the larger the hole, the better the resolution. Of course, to 
accommodate a larger pinhole, the back focus must also become large, and the camera soon grows 
to unwieldy size. However, we can put a lens behind the pinhole to effectively move the image 
plane closer to the pinhole. Now we can make the hole as large as we please to increase the 
irradiance of the image, and at the same time increase the resolution! 

Obviously the aperture of an optical system is one of its most important attributes. The limit on 
aperture size is caused by the fact that the image quality will deteriorate if the aperture becomes 
too large. The optical designer’s task is to balance the complexity of the design with the 
requirements for a specified aperture. 

Radiometric concepts and terminology 
The amount of light that passes through an optical system is a radiometric issue. Although the 
overall field of radiometry is extensive, we are concerned only with the basic laws and geometrical 
relationships that are important for optical design. The fundamental terms and concepts used in 
radiometry are geometrical in character. When it is necessary to apply these geometric concepts to 
a particular system, the subject is called photometry if the system is visual, or radiometry if the 
system is physical. For simplicity, we use only the radiometric terms. 

For our discussion, it is convenient to employ a spherical coordinate system. 

r d
r sind
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In the coordinate system shown, the differential element of area is 

dA r d d 2 sin    
 (4.2)   

The solid angle , subtended by some area A, as seen from a point, is defined to be the ratio of the 
area of a spherical surface bounded by the edge of the area A, divided by the square of the radius 
of the sphere. 
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In the spherical coordinate system shown above, the differential element of solid angle is 
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 (4.3)   

Many problems have azimuthal symmetry. In these problems, it is convenient to consider the 
differential element of solid angle to be an annular cone, as shown below 




dA = 2r2 sin d

r

d = 2 sin d

y

x

z

P

 

If the surface is circular, and subtends an angle 0 as seen from P, then 

 (4.4) 

Ordinary radiometry is concerned with the propagation and measurement of radiation from 
incoherent light sources. To discuss light from incoherent sources, we introduce the following 
terminology: 

1. The time rate of change of energy is called the flux, denoted by . In MKS units, the unit of 
flux is the watt. 

2. The flux per unit area impinging on a surface is called the irradiance of the surface, denoted by 
E. In MKS units, the unit of irradiance is watts/m2. 

3. The total flux per unit solid angle coming from a small source is called the intensity, denoted by 
I. It is assumed in the definition of intensity that the size of the source is small compared to the 
distance to the point where the intensity is measured. In MKS units, it is measured in watts/sr. A 
uniform point source is one that radiates uniformly in all directions. For such a source, the 
intensity is 

I
d

d
 





4  

 (4.5)   

4. To discuss an extended source, we need a term to describe the intensity per unit area of the 
source. This general quantity is called the radiance of the source, defined to be the flux emitted 
per unit solid angle, per unit area projected in the direction of observation, and denoted by L. 
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A source having a radiance independent of direction is called a Lambertian source. Blackbody 
sources are Lambertian sources, and most diffusing surfaces behave approximately like 
Lambertian sources. 

Radiance conservation theorem 
It can be shown that radiance is conserved along any tube of rays propagating through an optical 
system. Consider a boundary separating two media of refractive index n and n, as shown below 
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Let dA be an infinitesimal area on the boundary. The flux on dA from the tube of rays contained 
within the solid angle d is (cf. Eq. (4.3)) 

d

dA
L d

2
 cos

 

 (4.7)   

This flux will be transmitted into the second medium, where the radiance will be 
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It follows that the radiance along the tube of rays in the second medium is related to the radiance 
along the tube of rays in the first medium by 
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 (4.9)   

Now 
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 (4.10)  

Since the incident and refracted rays are co-planar, we have 

d d     (4.11)  

Differentiating Snell’s law, we find 

n n

n d n d

sin sin

cos cos

 
   

  
     

 (4.12)  

Using these equations in Eq. (4.9) yields 
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 (4.13)  

 

so that radiance, divided by the square of the refractive index, is conserved along a tube of rays. 
This result is called the Radiance Conservation Theorem. It implies that it is impossible to 
increase the radiance of an incoherent source using a (passive) optical system such as a lens. In 
forming an image, a lens can only increase the apparent solid angle of a source, not its radiance. 

Irradiance by a flat circular source 
Let us now consider the irradiance of a small flat target due to a flat circular source having a 
uniform radiance L, and subtending an angle . 
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From the definition, Eq. (4.6), of radiance, 
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 (4.14)  

so the irradiance is 

 

 (4.15) 

 

The quantity sin20 is sometimes called the projected solid angle p subtended by the source. 
Thus 

E L p 
 

 (4.16)  

This result is the basic equation used to calculate the irradiance on a surface. It states that the 
irradiance is equal to the source radiance times the projected solid angle subtended by the source, 
as seen from the surface. Thus, to calculate irradiance, we imagine that we are on the surface, and 
look back at the source to determine the solid angle subtended by it. 

In OSLO, the quantities that are used to describe the convergence of light beams are the numerical 
aperture, abbreviated NA, and the f–number, or relative aperture, abbreviated FNB. The numerical 
aperture is defined by 

NA n sin 0  (4.17)  

where n is the refractive index. The f–number is defined by 
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Using these definitions in Eq. (4.15), we find 
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 (4.19)  

Cos4 law 
For a non-uniform or an off-axis system, the integration required in Eq.(4.15) must generally be 
done numerically. There is one simple off-axis case to consider, which approximates the situation 
when the source is small, as shown below. 

source
area As

target


p = As cos/ r2 r

z  

In this situation, the projected solid angle p of the source decreases as cos3, since the projected 
area of the source as seen from the target decreases as cos, and the distance r from the source to 
the image increases as cos2. In addition, the projected area of the target decreases as cos so the 
overall irradiance of the target becomes 

I I 0
4cos   

 (4.20)  

Vignetting 
Many optical systems, used off axis, do not obey the cos4 law, because they suffer from vignetting. 
Vignetting is a term that refers to the reduction in aperture of a system caused by the axial 
separation of two apertures. A simple example of vignetting is shown by a short length of pipe 
viewed at an oblique angle, as shown in the drawing below. The cat’s-eye aperture of the view on 
the right is typical of lens vignetting. Of course, in a lens, the aperture of each element is imaged 
by the lenses between it and the observer, often with different magnification. 

 

Although vignetting might appear to be undesirable from a radiometric point of view, it is often a 
useful way for the designer to control aberrated rays that occur near the edges of lenses. Some 
lenses, such as the Cooke triplet, depend on vignetting to achieve satisfactory performance. 
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A general estimate of vignetting can be obtained from paraxial ray data. If a chief ray is traced 
through a system from an off-axis object point, then if the system is not to have any vignetting, the 
aperture radius of each lens must be at least as big as the sums of the absolute value of the axial 
and chief ray heights on the lens. OSLO uses this fact to compute the default aperture radii of 
lenses in the case where no other value is specified. 

Computation of irradiance 
To compute irradiance, OSLO uses the model described above, where the solid angle subtended 
by the apparent source is determined in image space, and multiplied by the radiance of the source 
to determine the irradiance. OSLO only computes irradiance relative to the on-axis value, so the 
absolute value of the source radiance is not used by the program. Two models are used. In the 
first, the actual pupil is approximated by an ellipse that passes through its top, bottom, and 
maximum x extent. 

 

In the second, only available in OSLO Premium, a grid of rays is traced through the optical 
system. The grid is set up so that each ray subtends an equal amount of solid angle in image space, 
and is weighted according to the solid angle that it subtends in object space. This algorithm makes 
the irradiance of a small area in image space proportional to the weighted sum of the number of 
rays that fall on it. 

To achieve accurate results from illumination calculations of the type used in OSLO, it is 
necessary to use aplanatic ray aiming rather than paraxial ray aiming, at least for systems 
involving finite conjugates. With aplanatic ray aiming, fractional coordinates are based on 
numerical aperture, while with paraxial ray aiming, fractional coordinates are based on the 
entrance beam radius. The figures below compare exit pupil coordinates for a  perfect lens having 
a numerical aperture of 0.8, with default (aplanatic) ray aiming (below), and with paraxial ray 
aiming (next page). 

 

 

Stops and pupils 
Consider a lens with an iris diaphragm behind it, as shown below. The diaphragm limits the 
diameter of the beam that can pass through the lens, and is called the aperture stop. 
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aperture stop
entrance pupil

 

The apparent aperture stop, as seen from object space, is called the entrance pupil. The apparent 
aperture stop, as seen from image space, is called the exit pupil. In the drawing, the exit pupil is 
the aperture stop itself, since there are no lenses following the stop. In general, since the entrance 
pupil is the image of the aperture stop in object space, and the exit pupil is the image of the 
aperture stop in image space, the exit pupil is the image of the entrance pupil by the entire system. 

In the system shown above, if the object is somewhat off the axis, the beam diameter will still be 
limited by the aperture stop. The ray from an off-axis object point through the center of the 
aperture stop is called the chief ray. If the object is extremely far off axis, the edge of the lens will 
limit one side of the beam, and the aperture stop the other. Then we will have a vignetted pupil, as 
described above. With a vignetted pupil, the chief ray is generally not the central ray of an off-axis 
bundle. 

In old optics literature, the term field stop is used to describe a surface that limits the field of view 
of a system, and the entrance window and exit window are defined to be the image of the field stop 
in object and image space. Field stops are commonly found in visual relay systems that include 
field lenses and reticles, or infrared systems where internal baffles are used to control stray light. 
However, the concept is not useful in many systems where there is no surface within the system 
that serves as a field stop. Then the field of view is limited by the edge of the object, the edge of 
the image, or some vignetting condition that occurs within the lens. 

The paraxial entrance and exit pupils serve to define the effective aperture of a simple system 
whose behavior is adequately characterized using paraxial optics. In systems containing tilted and 
decentered elements, paraxial optics may not exist. Even within the realm of paraxial optics, 
complications occur for systems in which a single surface does not serve as the aperture stop. For 
example: 

In a system containing cylindrical lenses, the surface that limits the yz beam may be different than 
the one that limits the xz beam. 

The effective pupil off axis is often determined by one aperture for the lower portion of the beam 
and a different one for the upper portion of the beam. 

In a zoom system, the aperture stop may depend on the magnification of the system. 

In real systems, it is often necessary to consider pupil aberrations. For example, in wide-angle 
systems, aberrations often distort and move the actual pupil so much that real rays launched 
towards the paraxial pupils can not even pass through the system. The actual pupil may appear to 
rotate towards the observer, and may grow in size as the field angle is increased. 

Specifying aperture and field of view 
Although the individual surface apertures determine the system performance, it is preferable to 
specify the aperture and field of view of the overall system independently of the apertures during 
the design phase. The reason for this is that the apertures do not change the trajectories of rays that 
are that are used during automatic design to optimize a system; apertures can only block or 
transmit rays.  
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It takes a minimum of two items, which we call paraxial operating conditions, to specify the 
aperture and field of a system. In OSLO, both the aperture and field can be specified in several 
ways. The paraxial data spreadsheet can be used to enter the required data. In the spreadsheet, the 
program continually recalculates all data so that conflicting specifications are automatically 
resolved. The figure below shows typical data for a Cooke triplet lens set to work at a 
magnification of –0.5, a numerical aperture of 0.1, and an image height of 18 mm. 

 

 

In the spreadsheet, the top five rows contain data entry fields, while the bottom four rows contain 
calculation fields. The items in the conjugates column have been described in the previous chapter. 
The items in the aperture and field columns, and their values, require some explanation. 

The specification of aperture in OSLO is somewhat complicated by the fact that OSLO assumes 
that all systems are aplanatic rather than paraxial, even when setting up the paraxial data. This 
assumption allows OSLO to more accurately describe systems that work at finite conjugates than 
it would if aperture specifications were strictly paraxial. In the current system, the image NA, 
defined as nsin, is set to 0.1. The magnification of the system is –0.5. Since the system is 
assumed to be aplanatic, we have 

m
n

n


 
sin

sin


  

 (4.21)  

which implies that the NA in object space must be 0.05. Now if the NA in object space is 0.05, the 
actual angle of the axial ray entering the system must be  = sin-1 (0.05) = 2.865984 degrees. The 
slope of the entering ray must therefore be PU = tan(2.865984°) = 0.050063. Since the 
magnification is –0.5, the slope of the emerging axial ray must be PU =  –0.100125. As described 
before, the focal ratio, or f–number, used in OSLO is the working f–number, defined as 1/(2 NA), 
or 5.0, in the present case. 

Note that the aperture can be specified by the “entrance beam radius,” but not the entrance pupil 
radius. The entrance beam radius is the radius of the beam on the first surface of the system. If the 
object is at infinity, the entrance beam radius is equal to the entrance pupil radius, but at finite 
conjugates they are different. The reason for using the entrance beam radius is that, if the aperture 
stop is inside the lens, the entrance pupil moves and changes size as the lens curvatures and 
thicknesses are changed. Moreover, the entrance pupil is often ill-defined in a real system because 
of aberrations or vignetting. The entrance beam radius, on the other hand, is a known quantity that 
is readily understood. The entrance pupil location and size are automatically computed and 
displayed in the spreadsheet as an information item. 

Although any of the five items on the spreadsheet can be used to specify the aperture of a system 
used at finite conjugates, the default specification is the numerical aperture in object space. On the 
other hand, this item cannot be used when the object is at infinity, and the entrance beam radius is 
the default for infinite-conjugate systems. 

In OSLO the field of view of an optical system can be specified by the object height, the image 
height, or the field angle. The field angle is the angle of a ray from the edge of the object to the 
center of the entrance pupil (not the center of the first surface). The field angle is not useful for 
finite-conjugate systems, since it changes as the entrance pupil moves. 
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Optical system layout 
Optical system layout is too big a subject to be covered in detail in this manual. However, it is 
important to understand a few fundamental principles in order to work sensibly with OSLO, 
particularly those that concern the trajectories of the axial and chief rays. Hence we review a few 
common systems. 

Thin lens 
A thin lens is one having zero thickness. Naturally such a lens does not actually exist, but the 
effects of the thickness of a lens are often negligible, and the elimination of thickness as a lens 
parameter simplifies many optical equations. Thin lenses are often drawn as double-headed 
arrows, with the arrows pointing out to indicate a positive lens, or pointing in to indicate a 
negative lens. 

axial ray axial ray

chief ray chief ray
 

For a single thin lens, the aperture stop is coincident with the lens, so that the axial ray is the ray 
from the vertex of the object that passes through the edge of the lens, and the chief ray is the ray 
from the edge of the field that passes through the center of the lens. More complicated thin-lens 
systems may contain several thin lenses, so that the image of the stop by all of the lenses must be 
found to determine the locations of the pupils, prior to determining the trajectories of the axial and 
chief rays. 

Photographic objective 
The photographic objective is a type that includes an enormous number of examples from 
relatively simple lenses such as the Cooke triplet, to very complicated photolithographic systems 
that may contain dozens of elements. An important characteristic of a photographic objective is 
that it has tan mapping. That is, the image height is proportional to the tangent of the incoming 
chief ray, so that the image will have the same shape as the object. The difference between the 
actual mapping and tan mapping is called distortion. 

An example of a typical photographic lens is the double Gauss objective. This design is the most 
common type of high-speed lens used for normal focal length 35 mm cameras, typically working 
at a speed of about f/2. Like other lenses, it works by balancing aberrations introduced by positive 
and negative surfaces. The double Gauss lens is approximately symmetrical, with the aperture stop 
between the two negative central elements. 

The trajectories of the axial and chief rays are important for balancing aberrations. To a first 
approximation the axial ray goes through the edge of the overall lens, and the chief ray goes 
through the center. In detail, the ratio of the height of the chief ray to the height of the axial ray on 
a particular surface is an indicator of the effectiveness of the surface in controlling off-axis 
aberrations.  
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axial ray

chief ray

Double Gauss "normal" lens

 

If the positive power in a lens is concentrated more towards the front of the lens than the rear, the 
principal points will be shifted towards the front, and the lens becomes a telephoto lens, in which 
the effective focal length is longer than the distance from the center of the lens to the focal point, 
as shown below. 

axial ray

chief ray
2nd principal point

Telephoto objective

 

On the other hand, if the positive power is concentrated towards the rear of the lens, the focal 
length will be shorter than the distance from the center of the lens to the focal point, and the lens 
will be called a retrofocus lens. 

axial ray

chief ray
2nd principal point

Retrofocus objective

 

Many, if not most, photographic objectives are zoom lenses, in which the focal length is varied by 
moving one or more groups of elements within the lens, as shown below. 
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In the first view, the central four-element zoom group is moved towards the back of the lens, 
concentrating the power towards the rear, and making the lens behave as a retrofocus design. In 
the second view the zoom group is moved towards the front, shifting the power towards the front, 
making the lens more like a telephoto. Note that both the internal location of the zoom group and 
the back focal length are changed as the lens is zoomed. As drawn, the image height is variable, 
but in use it would be more common to fix the image height and vary the field of view. 

Magnifier 
The human eye, although it cannot be designed itself, forms an important part of any overall visual 
system. The refraction of light in the eye occurs largely at its outer surface, called the cornea. The 
image is formed on the back of the eye, on an array of light-detecting rods and cones that make up 
the retina. The outer portions of the eye, which have mostly rods as detectors, do not contribute to 
high-acuity vision. The portion of the retina that has the highest acuity is called the fovea, and the 
eye normally pivots in its socket to bring the image of the point of visual interest into the foveal 
region. 

axial ray

chief ray

cornea

retina

fovea

 

Because of the eye’s ability to rotate in its socket, the axial ray and the chief ray for the eye are not 
precisely defined. The axial ray is the ray from the vertex of the object through the edge of the 
entrance pupil of the eye, which is the image of the iris of the eye by the cornea. The chief ray is 
sometimes taken to be a ray from the intended field of view through the center of rotation of the 
eye, since the eye will automatically pivot to view an off-axis image. Care must be taken in the 
design of any visual instrument to ensure that the pupil is large enough to accommodate the 
motion of the iris that occurs when the eye pivots. 

A simple magnifier is a lens that is used in conjunction with the eye, to extend the accommodation 
range of the eye to permit close-range viewing of small objects. The near focus point of the human 
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eye ranges from approximately 10 cm for children to several meters for people past the age of 60; 
a value of 25 cm is used as a reference in computing the power of a magnifier. Thus a magnifier 
with a focal length of 25 mm would be called a 10 magnifier. 

The drawing below shows typical use of a magnifier. As shown, the axial ray emerges from the 
magnifier parallel to the axis, indicating that the focal point is at infinity. Such a system is 
sometimes termed afocal on the image side. In actual use, the layout is up to the user, who adjusts 
it for maximum visual comfort, usually keeping the object somewhat inside the focal point. 

axial ray

chief ray

object

 

Telescope 
The inverting telescope is one form of a family of optical systems known as compound 
magnifiers. Such systems include an objective that forms an aerial image, and an eyepiece that 
serves as a magnifier to view the image. The objective serves as the aperture stop. The entrance 
pupil is thus located in the plane of the objective, and the exit pupil is located in the plane where 
the objective is imaged by the eyepiece. The eye of the observer should be placed in the exit pupil 
of the instrument, so that the entire field can be viewed without vignetting. The distance between 
the rear surface of the eyepiece and the exit pupil plane is called the eye relief. 

axial ray

chief ray

exit pupil

entrance pupil reticle plane
 

The axial ray enters the objective parallel to the axis and emerges from the eyepiece parallel to the 
axis, so that the image can be viewed with the relaxed eye. The chief ray passes through the center 
of the objective and the edge of the eyepiece. From the figure, it can be seen that the field of view 
of the telescope is limited by the diameter of the eyepiece. The chief ray trajectory shows that the 
telescope forms an inverted image. From Lagrange’s Law, it follows that the angular 
magnification of the telescope is proportional to the ratio of the entrance and exit pupil diameters. 

The above telescope is termed afocal because both the principal planes and focal points are at 
infinity. OSLO has a special mode of evaluation that displays ray data for afocal systems in 
angular rather than linear format. In afocal mode, the paraxial constants are displayed as follows. 

*PARAXIAL CONSTANTS 
   Angular magnification:     -3.39831    Paraxial invariant:        -1.04890 
   Eye relief:                46.01604    Petzval radius:           -44.23070 
 
An alternate form of telescope is the Galilean telescope shown below. 
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The Galilean telescope differs from the inverting telescope, in that it forms an erect image. The 
paths of the axial and chief rays are shown in the figure. The axial ray enters the system parallel to 
the axis, and leaves the system parallel to the axis, so the system is afocal. 

The objective serves as the aperture stop, but since the eyepiece has a negative focal length, the 
chief ray diverges after passing through the eyepiece, placing the exit pupil inside the telescope. 
Since it is impossible to put the observer’s eye in the exit pupil of the instrument, the field of view 
will be limited by the diameter of the pupil. 

Galilean telescopes are occasionally used for visual instruments having low power (e.g. opera 
glasses), but the negative eye relief is a severe shortcoming that restricts the usefulness of the 
system at high powers. The Galilean system has considerably shorter overall length than the 
inverting system, and is often used for laser beam expanders, where its narrow field is of no 
consequence. 

Relay system 
Telescopes are often coupled to relay systems that transmit images to a different location for 
viewing. The paraxial layout for a typical relay system is shown below. The axial and chief ray 
trajectories are the same in image space as in object space, but are shifted to the right by the length 
of the relay. Relay systems consist of alternate sequences of objectives and field lenses that bend 
the chief ray but not the axial ray. In an actual relay system, curvature of field is often a significant 
problem. 

axial ray

chief ray

field lensfield lens

 

The figure below shows a zoom telescope that contains a relay/erector system. In this system, a 
field lens at the front of the erector system constrains the chief ray height, and the two small 
doublets relay the primary image near the field lens to the reticle plane. The position and spacing 
of the erector lenses can be varied to change the magnification of the relay. 
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chief ray
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erector lenses reticle

eyepiece

objective
 

Telecentric lens 
An increasing number of lenses are telecentric on the object, image, or both sides. Telecentric 
means that the chief ray is parallel to the axis, or equivalently that the pupil is at infinity. Such 
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lenses are useful in various metrology applications, because they have the property that the image 
height does not change as the lens is focused. The lens below is a typical example that is 
telecentric on both sides. 

axial ray

chief ray
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image
entrance pupil

exit pupil

 

Other examples of telecentric lenses include scanning lenses, which are often required to be 
telecentric to preserve geometrical relationships, and Fourier transform lenses, in which the axial 
ray in one direction is the same as the chief ray in the other direction. 

Specifying lens apertures 
The amount of light that passes through a real system depends on the actual physical apertures 
present, not an arbitrary specification of paraxial aperture and field. At the same time, the 
apertures predicted by paraxial ray tracing can provide an approximate indication of the necessary 
aperture sizes for many systems that have no vignetting. To accommodate these requirements, 
OSLO uses two methods for specifying apertures. Apertures may be either directly specified by 
the user, or solved using paraxial optics. 

The term aperture in OSLO is used in a general sense to describe features that limit the extent of 
an optical surface. Thus a hole in a lens is called an aperture, as is a mask used to block light from 
passing through some part of a surface. These aperture types are called special apertures and are 
discussed later. For the present discussion, apertures are considered to be circular and to bound the 
edges of optical surfaces. 

The aperture radius required to pass a beam traveling along the axis is equal to the axial ray height 
on the lens. If the beam is from an off-axis point, the required aperture radius is the sum of the 
magnitudes of the axial and chief ray heights. The paraxial algorithm is very fast to evaluate, and 
is used in OSLO to compute the aperture of solved apertures every time the lens setup routine is 
carried out. 

The paraxial apertures will generally differ on each surface. An actual fabricated lens will 
normally have edges that are parallel to the optical axis. For drawing pictures, the radius of an 
element is made equal to the larger of the two apertures. A line perpendicular to the axis is drawn 
between the smaller aperture and the larger aperture. This leads to elements that appear as follows. 

 

In the drawing, the second lens is impossible to fabricate using traditional grinding and polishing 
technology, but can be made by molding or other modern methods, such as diamond turning. The 
third lens has a flat region that is commonly used to reduce the weight of thick negative elements. 

The figure below shows the way that OSLO assigns apertures for a Cooke triplet lens. The 
paraxial surfaces are shown as straight lines whose length is equal to twice the paraxial aperture, 
and the actual surfaces are shown as curved lines, with apertures assigned using the solving 
algorithm described above. The ray trajectories are for real rays. The pupil locations, but not sizes, 
are shown by dots. 
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By looking at the figure, we can see which rays are responsible for the apertures, as well as the 
differences between the paraxial apertures and the actual apertures required to pass the beams. The 
lower rim ray is responsible for the apertures before the stop, and the upper rim ray for the 
apertures after the stop, a common, but not necessary, condition. The real chief ray misses the 
center of the paraxial entrance pupil by a little, indicating some pupil aberration. The upper rim 
ray misses the paraxial apertures of the last two surfaces by a significant amount, showing that this 
lens must be made larger than the expected value to pass the entire real beam from the edge of the 
field. 

It should be stressed that aperture values per se do not affect ray tracing. In the left-hand figure 
below, rays are shown passing through a lens outside of the drawn apertures. This is because there 
is nothing in the ray trace equations that mathematically prevents this from happening. Moreover, 
for the lower and upper rim rays in the drawing, small glitches can be seen in the ray trajectories at 
the first and last surfaces. This is caused by the fact that at that distance from the axis, the front 
surface crosses behind the back surface, a so-called “feathered edge” that is not physically 
realizable. Again, this does not prevent a solution of the ray trace equations. 

In order to exclude rays that fall outside defined apertures, OSLO provides a checked aperture 
type that causes the ray trace to check the ray heights on each surface to see if the ray is outside 
the aperture, and terminate the trace if it is. The figure on the right below shows what happens 
when checked apertures are put on the first and last surfaces. 

 

Generally, it is not desirable to put checked apertures on more surfaces than required, since it 
slows down the ray trace needlessly. There are parts of the program, such as optimization, where 
checked apertures can inhibit derivative computations and prevent the program from working 
properly. In fact, OSLO is set up so that apertures are never checked in the DLS optimization 
routines. There is a general operating condition called apck that controls whether rays will be 
blocked by checked apertures. The action of apck is different in different parts of the program, as 
shown in the following table. 

Ray blocking at checked apertures Apck Off Apck On 

Paraxial routines no no 

Ray trace evaluation no yes 

Lens drawings no yes 



Specifying lens apertures 105 

Spot Diagram Setup yes yes 

DLS Optimization no no 

ASA Optimization no yes 

 

Special apertures 
The discussion above concerns only the circular apertures that define the edges of lenses. There is 
a need for more complicated apertures to describe complex shapes, or other conditions such as 
central obstructions or holes that affect the amount of light that is transmitted through an optical 
system. OSLO has what are called special apertures to meet this need. 

A special aperture is an aperture that is built up from ellipses, rectangles, triangles, or quadrangles. 
Rectangles and ellipses are specified by two points that define the bounding box surrounding the 
shape. Triangles and quadrangles are defined by x and y coordinates that give their vertices. 
Rectangular and elliptical apertures can be rotated around their centroids, as shown below. 

Obviously, squares and circles are special cases of rectangles and ellipses. Complex aperture 
shapes can be constructed by grouping and combining several primitive shapes on a single surface. 
In a complex aperture, the primitive shapes are combined using logical operations to establish the 
effect of the overall aperture. Each primitive shape can be transmitting or obstructing. Any number 
of primitives can be placed in a group, and each surface can have any number of groups. 

The logical rules for combining primitives within a group are that a ray passes through the group if 
it passes inside every transmitting primitive, and outside every obstructing primitive. This 
corresponds to the intersection, or anding, of the primitives. The logical rule for a ray passing 
through an overall surface aperture is that it pass through any group defined on the surface. This 
corresponds to the union, or oring of the groups. 
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Chapter 5 Aberrations 
 

Optical aberration theory is a topic that has long held a key place in optical design and 
engineering. Treatment of the subject and available references are varied throughout the years. 
Our purpose in the OSLO reference manual is to provide a link how specifics in OSLO relate to 
the governing physics of optical aberrations. Throughout the Optics Reference Manual, we cite 
different references useful to readers. To list all references that have ever touched on the topic of 
optical aberrations is a formidable task, so we suggest interested readers find references that suit 
their needs. Common choices, but certainly not an exhaustive list, are Welford6 and Sasián7. 

Axial and lateral chromatic aberration 
The dispersion of optical glass causes the properties of a lens to be dependent on the wavelength 
of the light transmitted by it, i.e., to have chromatic aberration. There are two types of first-order, 
or paraxial, chromatic aberrations. One is called axial chromatic aberration, or axial color, and 
relates to the ability of a lens to bring light of all wavelengths to a focus in the same plane. Axial 
chromatic aberration is illustrated in the figure below, where the difference in the position of the 
focal point of a lens is shown (exaggerated). In the example shown, the blue focus is closer to the 
lens than the red focus; this is called undercorrected axial chromatic aberration, and is typical of a 
positive singlet lens. 

Axial Color

C (red)
F (blue)





 

The magnitude of the axial chromatic aberration of a lens can be specified by either the 
longitudinal shift in the focal position, , or by the difference in height, , on the nominal image 
plane, between axial rays having long and short wavelengths. This last specification is called 
primary axial color (PAC). If the blue focus is closer to the lens than the red focus, so that the 
blue ray intersects the image plane at a lower ray height than the red ray as in the figure above, the 
primary axial color is negative, or undercorrected. 

The figure below shows a two-lens system that has been corrected for primary axial color, but 
which possesses a different type of paraxial chromatic aberration. In the lens shown, the red and 
blue focus have been made to coincide, but the effective focal length of the lens is different in red 
and blue light. This difference in focal length causes a chromatic difference in magnification of the 
lens, called primary lateral color (PLC). Lateral color can be measured by giving the difference in 
ray height on the image plane of chief rays traced through the system in short and long 
wavelengths. If the red image is larger than the blue image, the aberration is undercorrected and is 
negative. 

 
6 W. T. Welford, “Aberrations of Optical Systems”, Adam Hilger, Ltd., Bristol (1986). 
7 J. Sasián, "Introduction to Aberrations in Optical Imaging Systems,"Cambridge University Press, 
Cambridge (2012). 
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In addition to primary axial and lateral color, there is another paraxial chromatic aberration that is 
often of considerable importance, called secondary spectrum. Secondary spectrum arises from the 
fact that the refractive index of glass does not vary linearly with wavelength. An achromatic lens 
is corrected for chromatic aberration at two wavelengths, but has residual aberration, or secondary 
spectrum at other wavelengths. In OSLO, secondary spectrum is displayed as secondary axial 
color (SAC) and secondary lateral color (SLC), which are computed using the refractive index 
difference for wavelengths 1 and 2, rather than 2 and 3. Lenses that are corrected for three (or 
more) wavelengths are called apochromatic. 

In addition to the paraxial chromatic aberrations, there is a chromatic variation of the normal 
(monochromatic) aberrations. Of these, the most important is usually the chromatic variation of 
spherical aberration called spherochromatism. 

Calculation of chromatic aberration 
The amount of chromatic aberration in an optical system can be determined by paraxial ray 
tracing. Below, we show a paraxial ray trace in three colors for a simple lens, made of BK7 glass. 

SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.7633e+19             AIR      
 
  1     50.731000 F    6.500000 F   15.000000 AF          BK7 F *  
  2    -50.731000 F   47.986599     15.000000 F           AIR      
 
  3        --            --          8.847573 S                    
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1         RN2         RN3        VNBR        TCE 
  1      BK7           1.516800    1.522376    1.514322   64.166410   71.000000 
 
*PARAXIAL TRACE 
 SRF      PY          PU          PI          PYC         PUC         PIC 
  3       --       -0.298941   -0.298941    8.847573    0.168629    0.168629 
 
*PARAXIAL TRACE (WAVELENGTH 2) 
 SRF      PY          PU          PI          PYC         PUC         PIC 
  3    -0.157135   -0.302119   -0.302119    8.842187    0.168575    0.168575 
 
*PARAXIAL TRACE (WAVELENGTH 3) 
 SRF      PY          PU          PI          PYC         PUC         PIC 
  3     0.069839   -0.297529   -0.297529    8.849979    0.168654    0.168654 

Subtracting the axial ray height in color 3 from the axial ray height in color 2, we find that the 
axial color is PAC = –0.157135 – 0.069839 =    –0.226974. Repeating the calculation for the chief 
ray shows PLC = 8.842187 – 8.849979 = –0.007792. 

Although the direct tracing of paraxial rays through lenses provides a straightforward procedure 
for calculating chromatic aberration, it is often more useful to consider the individual effects of the 
various surfaces of a lens on the total axial or lateral chromatic aberration. The total chromatic 
aberration of a lens can be expressed as a sum of surface contributions. In a system with k 
surfaces, the transverse aberration of the axial and chief rays can be written as 

andy y x xh mh h mh    (5.1)  

 



108 Symmetry properties of centered systems 

 

The surface contributions are given in terms of the paraxial ray data (c.f. Eqs. 1.19) and the 
dispersions dn = nF – nC = (n – 1)/V on either side of the surface by 
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(5.2)  

In OSLO, the surface contributions for the above lens are displayed by the chr command: 

*CHROMATIC ABERRATIONS 
 SRF      PAC         SAC         PLC         SLC 
  1    -0.078779   -0.054544   -0.046980   -0.032527 
  2    -0.148222   -0.102624    0.039172    0.027122 
 
 SUM   -0.227001   -0.157168   -0.007807   -0.005406 
Evaluating the image of an optical system can be carried out using either direct ray tracing or 
aberration theory. Ray tracing gives exact results for the rays traced. Aberration theory gives 
approximate results that are valid over the entire field and aperture of the system.  

Aberration theory considers defects in optical imagery to be described by a polynomial expansion 
in which the ray displacement from an ideal image point, or the wavefront displacement from an 
ideal reference sphere, is written in terms of object and pupil coordinates. The expansion 
coefficients can be computed using only paraxial ray data. The accuracy of predictions made on 
the basis of aberration theory depends on the order of the expansion polynomial and the particular 
system under study. For monochromatic light, OSLO computes both third-order (Seidel), and 
fifth-order (Buchdahl) aberrations. A single term, the spherical aberration, is computed to seventh 
order. 

Aberration theory uses the symmetry of an optical system to reduce the number of terms that must 
be included in the aberration polynomial. In this chapter, we explore this aspect of image 
evaluation in some detail.8 Many of the results are also applicable to ray trace analysis. 

Symmetry properties of centered systems  
A centered optical system consists of rotationally symmetrical surfaces whose symmetry axes 
coincide and thereby define an optical axis. Such a system is not only invariant under an arbitrary 
rotation about the optical axis, but also under a reflection in any plane containing the optical axis. 

Consider two planes normal to the optical axis. The ideal state of imagery for a centered system is 
that whereby the system forms a sharp and undistorted image of an object in one plane, in the 
other plane. The two planes are then said to be conjugate. 

object O

image O´

optical axis

 

 
8 Portions of this section are based on “Analysis of the aberrations of a symmetric system”, notes 
prepared by P.J. Sands, CSIRO, Australia. 
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Consider any point O in the object space of a centered system. If all rays from O pass through a 
unique point O in the image space, imagery of the point O is said to be stigmatic. The definition 
of a centered system implies that the following theorem is valid: If O is the stigmatic image of 
some point O then the two points O and O lie in a plane containing the optical axis, called the 
meridional plane. 

meridional plane

optical axis

y

z-x

 

Next suppose that the point O is confined to lie in the object plane and that the images of all such 
points are stigmatic. According to the definition of a centered system, it follows that the stigmatic 
image of a plane surface P, normal to the optical axis, is a surface of revolution about the optical 
axis. If the surface is not a plane, we say that the image suffers from field curvature, and this is 
regarded as a defect, or aberration, of the image. 

Consider the case where the stigmatic image of the object plane is also a plane. The image of some 
curve in the object plane will be a curve in the image plane, which will in general not be 
geometrically similar to the original curve. In this case one says the image suffers from distortion. 
If the image is not distorted, then the ratio of some characteristic length in the image to the 
corresponding length in the object is the magnification m, a constant characterizing the image. 

If the coordinates of the object point O are (hy, hx) and those of the stigmatic image point O (hy, 
hx), imagery of O into O will be free of distortion if 

andy y x xh mh h mh     (5.3)   

 

  
where m is the magnification of the image and is independent of hy and hx.  

The ideal image of a plane object normal to the optical axis satisfies three conditions: it is 
stigmatic, free of field curvature, and free of distortion.  

An important property of any centered system is that paraxial imagery is ideal in the sense just 
discussed. The problem of optical design is to manipulate the optical system so that the actual 
image of a non-paraxial object is identical with the ideal image. In general some arbitrary ray from 
O will pass through a point O1 with coordinates (hy, hx) in the neighborhood of O. The extent to 
which (hy, hx) fail to satisfy the above equation is defined to be the displacement (y, x) of the 
ray, where 

andy y y x x xh mh h mh         (5.4)   

The displacement depends on the ray and vanishes if imagery is ideal. Actual systems, however, 
have aberrations. Our discussion here will be devoted primarily to the qualitative features of the 
displacement (y, x) that are a result of the symmetry properties of a centered system. 

The specification of rays 
Rays traversing an optical system are conveniently specified by the coordinates of their points of 
intersection with two surfaces that are not conjugate. Since we are interested in the imagery of 
objects lying in a plane, the object plane is a natural choice for one of these two surfaces.  
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We have already seen in Chapter 2, that for perfect imagery by real rays, the Abbe sine condition 
indicates that the magnification is given by the ratio of the sines of angles in object and image 
space. A natural choice for the second surface is thus a sphere centered on the object point. This 
leads to what Hopkins calls canonical coordinates for specifying rays, and this is what OSLO uses 
(by default) for exact ray tracing. We call this aplanatic ray aiming. 

For the development of aberration theory, which is a generalization of paraxial optics, it is 
preferable to choose a plane surface, since paraxial rays refract at the tangent planes to spherical 
surfaces. The normal choice, and the one used here, is the paraxial entrance pupil. We call this 
paraxial ray aiming.  

The difference between aplanatic and paraxial ray aiming is only observed at finite object 
distances, and can usually be neglected when the numerical aperture in object-space is less than 
about 0.5. Aplanatic ray aiming results from taking direction cosines as the unit of measure, while 
paraxial ray aiming results from using direction tangents. 

If we define coordinates (y, x) in the entrance pupil, then a ray can be specified by four coordinates 
(hy, hx) and (y, x). Since our discussion here is restricted to centered systems, all our results are 
invariant to a rotation of the system about the optical axis. We use this fact to eliminate hx. That is, 
we can always rotate the system to make hx = 0.0. We are left with three numbers (hy, y, x) that 
uniquely specify a ray. 

object point

optical axis
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entrance pupil
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Often it is convenient to specify the pupil coordinates by cylindrical coordinates (, ) where  

cos and siny x        (5.5)   

A ray in the yz plane, i.e., with  = 0 or  = , is called a meridional ray. A ray with  = /2 or  = 
3/2 is a sagittal ray. 

Regardless of the coordinate system chosen, the actual values of the coordinates are normalized to 
unity at the edge of the aperture and field. That is, the value of  is between 0.0 and 1.0, as is the 
value of h. In OSLO, the entrance beam radius EBR gives the maximum aperture extent, and the 
maximum object height is called OBH. Thus to convert fractional aperture or field coordinates to 
world coordinates,  or h must be multiplied by EBR or OBH. 

Ray-intercept curves 
A number of graphical techniques for representing the aberration function are used by lens 
designers. These are all based on the fact that a necessary condition for ideal imagery is that the 
image of a point be stigmatic, i.e., the aberration function (y, x ) be independent of the ray 
coordinates (,  h). The most common representation used in optical design is the ray-intercept 
curve, a plot of ray displacement as a function of aperture coordinates. Although ray-intercept 
curves are ordinarily generated by ray tracing, they are equally useful for describing aberrations. 
In this section, we consider the ray- intercept curves for a cemented doublet lens designed to 
illustrate aberrations, rather than to have best performance. The lens is shown on the lower-right 
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portion of the figure below, and the ray-intercept curves for three field points are shown on the left 
side. 

 

Consider first the meridional curve corresponding to an object on the optical axis. A ray is said to 
be meridional if it lies entirely in the meridional (yz) plane of the system. If the object lies in the 
meridional plane, a ray contained in the meridional plane in the object space of the system will 
remain in that plane as it traverses through the system. 

It should be clear that the meridional ray-intercept curve of a system that forms a perfect 
geometrical image is just a straight line along the abscissa. Moreover, for a system having a 
perfect image that is displaced along the optical axis from the nominal image plane, the ray-
intercept curve is a straight line that passes through the origin with a non-zero slope. 

In view of the symmetry of a centered system, the aberration of a ray from an on-axis object point, 
with aperture – is opposite in sign but of the same magnitude as the aberration of the ray with 
aperture . Consequently, the curve obtained by plotting the aberrations of meridional rays from 
an axial object point is always anti-symmetrical about the origin. In OSLO, standard formatting 
shows y (called DY) vs. meridional fractional aperture coordinate y (called FY) with x = 0, i.e., 
cos for  = 0, and also x (called DX) vs. sagittal fractional aperture coordinate x, (called FX) 
with y = 0, i.e., sin for  = /2. For an on-axis point, only half of the meridional curve is 
independent. 

The ray-intercept curve for the on-axis point in the above example shows three aspects of the 
image. First, the image plane is evidently at the paraxial focus, since the displacements of rays 
coming from aperture coordinates near the axis are very small. Second, the system evidently has 
negative (undercorrected) low-order aberration and positive (overcorrected) high-order aberration. 
This can be understood by observing that the ray displacement initially becomes negative as the 
aperture coordinate is increased, but turns around at an aperture of about 0.8, and is positive at the 
edge. Finally, with the exception of rays coming from the edge of the aperture, all rays have 
displacements less than about 0.2 m, so we expect the axial image to consist of a core of about 
this radius, with a flare patch of about 1 m. 

The meridional curves (DY vs. FY) for off-axis points at the 0.7 zone and the edge of the field 
show increasing aberration and lack of symmetry about the y axis. The fact that the curves are 
neither symmetrical or anti-symmetrical about the y axis means that the image at these field points 
has both coma and astigmatism, as discussed in the next section. 

Assuming that the object lies in the meridional plane, a sagittal ray is defined to be a ray that 
intersects the entrance pupil in points for which  = ±/2. The symmetry of a centered system does 
not imply that in the image space these rays will lie in a plane normal to the meridional plane and 
containing the ideal image. On the contrary, both components of the aberration of a sagittal ray 
will in general be non-zero, although the component y is usually an order of magnitude less than 
x (In OSLO, only the DX vs. FX sagittal curve is normally plotted, although there is an option to 
plot DY vs. FX). However, the symmetry properties of a centered system do imply that if the 
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displacement of the sagittal ray (0, x) is (y, x ), then the displacement of the sagittal ray (0, x) 
must be (y,-x), because the image must be symmetrical about the meridional plane. Consequently 
we need only consider the aberrations of sagittal rays over half the aperture. 

The sagittal curves (DX vs. FX) for off-axis points are remarkably similar to the on-axis curves. 
The reason for this is that the sagittal cross section of the lens seen from the object point does not 
change so rapidly as the meridional section as the object point is moved off axis. 

Comatic and astigmatic aberrations 
The on-axis image in a centered system must have complete radial symmetry about the ideal 
image point. Because of this, it is possible to precisely locate the ideal image even if the actual 
image is far from stigmatic. In the off-axis case, all one can say about the ideal image is that it 
must lie in the meridional plane. As a further example, suppose that in addition to having its 
meridional section as a line of symmetry, the image is symmetrical about a line normal to the 
meridional plane. Then it must also be symmetrical about the point of intersection O of these two 
lines of symmetry. Since an optical system produces only a single ideal image of a given object, 
the point O defined above must in fact be the ideal image, assuming for the moment that there is 
no distortion.  

In view of the above discussion, locating the precise position of the ideal image is a simple task if 
the image is symmetric about a point but will in general be quite difficult, if not impossible. It 
proves convenient when discussing the aberrations of a point object to decompose the aberration 
into two distinct parts according to how they transform under a change of sign of the aperture 
coordinate . Note that a change in the sign of  is equivalent to changing the angle  by . 

We have already seen that because of the symmetry of centered systems, the x-displacement of a 
ray is symmetric about the y axis. The y displacement of a ray (,  h) will be written as the sum 
of two parts:  

     , , , , , ,y s ch h h             (5.6)   
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 (5.7)   

The two components s and c are respectively known as the astigmatic and the comatic 
aberrations of the ray (,  h). Their significance and the reasons for decomposing the aberration 
as in Eq. (5.6) are most readily seen by considering the image for s and c separately. 

First note that s changes sign under a change in the sign of . As a result, the image produced for 
s will be symmetric about the ideal image, i.e., corresponding to the point (y, x ) in the image 
there is a point (y, x ) and if the aperture coordinates of the ray producing one of these are (, 
 h), those of the ray producing the second are (,  h). In view of this high degree of symmetry 
the aberration s is sometimes called the symmetrical aberration of the ray (,  h). 

Next consider the comatic aberration c. This is invariant under a change in sign of  and hence 
two rays will pass through each point in the image. As a result the image will in general be 
asymmetrical about the origin and is accordingly sometimes called the asymmetrical aberration of 
the ray (,  h). 

It is interesting to apply the above decomposition to the ray-intercept curves provided in the 
example on p. 111. The figure below shows the decomposition of the meridional curves for the 0.7 
field point into comatic and astigmatic components. 
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The decomposition of y into the astigmatic and comatic components shows one very important 
property: since s is of necessity symmetric about the ideal image any asymmetry in the image 
must come about from the asymmetry of the comatic aberration. 

Defocusing 
In the introduction to this section, we noted that in order for an image to be ideal it had to satisfy 
three conditions. The first of these was that it be stigmatic. The second was that there be no 
curvature of field. This section is devoted to a detailed discussion of this aberration and the related 
astigmatism. These two aberrations are intimately associated with the effects of defocusing the 
image, and accordingly this topic will be considered first. 

Consider a plane in image space displaced by an amount z from the paraxial image plane. On this 
plane, the height of the ray can be written as  
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 (5.8)   

Note that Eqs. (5.8) assume that z is small so that the paraxial approximation for the directions 
tangents (i.e., ua and ub) is permissible. Inspection of these equations shows that the image in the 
displaced image plane will be stigmatic provided the quantities 
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 (5.9) 

vanish. If this is indeed the case, the image height on the shifted plane is proportional to the object 
height (hy, hx) and the constant of proportionality is  

 z bm m u     (5.10)  

It therefore seems natural to call the quantities given in Eqs. (5.9) and (5.10) the aberration in the 
displaced image plane and the magnification in the displaced image plane, respectively. From Eq. 
(5.9) it is seen that the effect of defocusing by the amount z is to increase the aberration by the 
amount (zuay, zuax) and accordingly this term in Eq. (5.9) is called the defocusing term. Certain 
things should be immediately noticed about the defocusing term. First of all it depends on the 
aperture coordinates but not on the object height. Second, it is clearly an astigmatic aberration. 
Together these imply that defocusing can be used to improve an astigmatic aberration, but 
asymmetry in the image cannot be controlled by defocusing. In fact it is easy to show that if the 
aberration in the ideal image plane is purely comatic, the images obtained in the displaced images 
planes situated a distance z on each side of the ideal image plane are identical. In other words, a 
comatic image is symmetric about the ideal image plane. 

There is a simple method for determining the affects of a focal shift on the meridional curve. This 
is based on Eq. (5.9) and consists simply of drawing a straight line through the origin having slope 



114 Symmetry properties of centered systems 

 

zua on the ray-intercept curve. The distance parallel to the y axis from this line to the meridional 
curve is then the meridional aberration in the displaced image plane.  

Curvature of field and astigmatism 
Suppose that the image in the ideal image plane is stigmatic. It follows from Eq. (5.9) that in some 
displaced image plane the aberration is strictly proportional to the aperture (y, x). The image 
formed in the displaced plane is circular and of uniform intensity, and the radius of the image is 
proportional to the aperture  and the amount of defocus z. One can of course turn these 
observations around and say that if the image in the ideal image plane has these properties, it is 
possible to find a displaced image plane in which the image is stigmatic. 

To pursue this further, suppose that in the ideal image plane the aberration is given by 
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 (5.11)  

Where  is a constant. It follows from Eq. (5.9) that the displacement z required to obtain a 
stigmatic image is 

z
au


 


 

 (5.12)  

If the constant of proportionality  is a function of h, we have a stigmatic image of the plane 
object formed on a rotationally symmetric surface whose sag z is given by Eq. (5.12). In this case, 
the image suffers from curvature of field.  

If the aberration is given by Eq. (5.11), the slopes of the meridional and sagittal ray-intercept 
curves will be equal. This need not be the case. Consider the situation where the aberration in the 
ideal image plane is given by 
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 (5.13)  

The slope of the meridional curve is y and that of the sagittal curve is x and these slopes may 
depend on h. We could define two quantities analogous to Eq. (5.12) that would give the 
displacement required to obtain a stigmatic image for either the meridional rays or the sagittal 
rays. The fact that the meridional and sagittal field surfaces are distinct means that the image 
suffers from astigmatism. (If x = y, we have pure curvature of field.) The location of the 
meridional image is sometimes called the tangential focus (zT), and the location of the sagittal 
image is sometimes called the sagittal focus (zS).  

The astigmatism and curvature of field of a system are usually represented by the so called field 
curves. The sags zT, and zS are plotted as a function of h, with h as ordinate. An example of these 
is given in the upper right portion of the figure on p. 111. 

To complete this discussion, something should be said about the appearance of the image in the 
case when the aberration is due solely to astigmatism and curvature of field. If we temporarily 
write y for y and x for x,, we obtain a parametric equation for the image in a displaced image 
plane for a particular object height h. 
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 (5.14)  

This pair of equations indicates that the aperture curves corresponding to astigmatism and 
curvature of field are a set of ellipses centered on the ideal image, with their axes parallel to the 
coordinate axes. The image patch is thus elliptical and symmetric about the ideal image. As the 
position of the displaced image plane is varied, the lengths of the axes of the ellipses will vary. In 
particular, at the tangential focus (z = zT), y vanishes identically; the image is a straight line 
perpendicular to the meridional plane and passing through the meridional focus. This is the 
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tangential focal line. Similarly, at the sagittal focus (z = zS) x vanishes identically and the image 
reduces to a straight line in the meridional plane and passing through the sagittal focus. This is the 
sagittal focal line. Midway between the two foci the image is circular. 

tangential focus

sagittal focus

paraxial image

 

Distortion  
The one remaining requirement for ideal imagery that has not been discussed in detail is that the 
image must be geometrically similar to the object. Let it be assumed that the image is stigmatic 
and is formed in the ideal image plane. However, in order that imagery is ideal, the stigmatic 
image height must satisfy (Eq.3). In general this will not be the case and the ray displacement, 
although independent of the aperture, will depend on the object height h. As a result the stigmatic 
image of an object will be displaced from the ideal image and the image will not be geometrically 
similar to the object. The distortion of the image is defined to be the aberration of the ray for 
which  is zero; that is, distortion is the aberration of the chief ray. Distortion is often expressed as 
a percentage of the ideal image height and plotted as a function of h. This has been done for the 
doublet on p. 111 in the upper right portion of the figure. For this system, the distortion is 
extremely small, since the field angle is small, and the stop is in contact with the lens. Because of 
the resulting image of a square grid, positive distortion is called pincushion distortion, while 
negative distortion is referred to as barrel distortion. 

Aberration polynomials 
The detailed computation of the magnitude of aberrations involves a substantial amount of tedious 
algebra, but the general form of the aberration polynomial for a centered system can be derived 
from symmetry conditions alone. In a system with rotational symmetry, the optical path along a 
ray must not change when the system is rotated about the optical axis. We describe a ray by its 
pupil coordinates (y, x) and object coordinates (hy, hx). At this point we do not restrict the object 
point to lie in the yz plane. Because of the rotational symmetry, any polynomial approximation to 
the optical path must be a function of combinations of y, x, hy, and hx that are rotation invariant. 
These combinations are 

2 2 2 2
x y x yx y xh yh h h     (5.15)  
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We now use the rotational symmetry of the system to note, just as on p. 110, that we only need to 
consider object points on the hy axis. Thus, we set hx = 0, and define the rotation invariant 
variables as 
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 (5.16)  

Aberrations are usually designated according to ray displacements, which are one order less than 
the wavefront retardations. Thus a fourth-order wavefront term corresponds to a third-order 
aberration, etc. 

The most general expansion of the optical path will involve all combinations of the above terms, 
taken one at a time, two at a time, three at a time, etc. We write the overall wavefront as 

2 4 6W W W W      (5.17)  

The terms taken one at a time give rise to paraxial imagery. We have  

2 2
2 1 2 3cosW a a h a h       (5.18)  

The first term represents a curvature of the wavefront, which accounts for focusing. The second 
represents a tilt proportional to the object height, which accounts for magnification. The third is a 
constant called piston error (a term that is independent of pupil coordinate), which has no effect on 
imagery. 

The lowest order aberrations involve the rotational invariants taken two at a time, i.e. 

2 2 2        (5.19)  

Expressing these in cylindrical coordinates, we obtain the third-order contribution to the wavefront 
(omitting the piston error term in 2). 

4 3 2 2 2 2 2 3
4 1 2 3 4 5cos cos cosW b b h b h b h b h            (5.20)  

It is convenient to express the third-order wavefront aberration polynomial, Eq. (5.20), in terms of 
the five Seidel sums, SI – SV. 
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The ray displacements are proportional to the derivatives of the optical path. Thus if W is the 
optical path, the ray displacements are 
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 (5.22)  

If we differentiate Eq. (5.21), we find that the lowest order transverse ray aberrations have the 
form 
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 (5.23)  

The are called the third-order aberration polynomials, because the sum of the powers of  and h all 
add to 3. If we take the rotational invariants (in W) three at a time and perform a similar 
differentiation, we obtain the fifth-order aberration polynomials 
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(5.24)   

One can in principle extend the same procedure to find the seventh, ninth, etc., order aberration 
polynomials. The  and  terms in the above equations are called aberration coefficients. 
Although it might appear that there are 12 fifth-order aberrations, in fact only 9 are independent. 
In a system where the third-order aberrations are corrected, the following identities exist: 
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 (5.25) 

The table below shows various representations of the third-order aberrations (n.b. H = Lagrange 
invariant, n = refractive index in image space, ua = axial ray angle in image space, ub = chief ray 
angle in image space, SI  = first Seidel sum evaluated for chief ray). 

 

Name Wavefront Transverse Longitudinal 

Spherical SI/8 SI/(2nua) –SI/(2nua2) 

Coma SII/2   

Sagittal Coma  SII/(2nua)  

Tangential Coma  3SII/(2nua)  

Astigmatism 3SIII/4   

T–S distance   SIII/(nua2) 

Petzval SIV/4   

Image Plane to 
Petzval Surface 

  –SIV/(2nua2) 

Curvature of 
Petzval Surface  

  –nSIV/H2 

Sagittal Field 
Curvature 

 (SIII + SIV)/(2nua) –(SIII + SIV) 
/(2nua2) 

Tangential Field 
Curvature 

 (3SIII + SIV) 
/(2nua) 

–(3SIII + SIV) 
/(2nua2) 

Distortion SV/2 SV/(2nua)  

Fractional 
Distortion 

 SV/(2H)  

Entrance Pupil 
Spherical 

 SI /(2nub) –SI /(2nub2) 
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Aberration types 
Aberration types (transverse ray aberrations) are characterized by their dependence upon  and h. 
Those aberrations that depend on an odd power of  are astigmatic, and those that depend on an 
even power of  are comatic. The aberration depending on  and h in the combination n-hs is said 
to be of the type nth order, sth degree coma if (n  s) is even, of nth order, (n  s)th degree 
astigmatism if (n  s) is odd. For example, the aberration in 5 that depends on  and h in the 
combination 3h2 is fifth order, cubic astigmatism. 

An inspection of the aberration polynomials shows that two new aberration types are introduced in 
each order. One of these is astigmatic, the other comatic. There are four distinct aberration types 
represented by the third order aberrations, six in the fifth order, eight in the seventh order and so 
on. Some of the aberration types, especially those represented in the third and fifth orders, have 
simple names. These are: 

 

Simple Name Aberration Type Third Order Fifth Order 

Spherical Aberration nth order, nth degree astigmatism 1 1 

Coma or Linear Coma nth order, first degree or linear coma 2 2, 3 

Astigmatism nth order, first degree or linear astigmatism 3, 4 10, 11 

Distortion nth order, nth degree coma 5 12 

Oblique Spherical Aberration nth order, (n – 2)th degree astigmatism  4, 5, 6 

Elliptical Coma nth order, (n – 2)th degree coma  7, 8, 9 

 
Each of the above six aberration types is governed by a number of coefficients, the number 
varying from type to type. In the next few sections, we consider the relationship between the 
aberration types and coefficients on the one hand, and the form of the image patch on the other 
hand. Only the six types present in the third and fifth orders will be considered in detail. The 
somewhat artificial assumption will be made that only a single aberration type is present. 

To represent aberrations, we use both ray-intercept curves, as described previously, and annular 
aperture curves, which are plots of y vs. x, at a fixed field point and aperture radius, with the 
angle  being varied through a complete circle. 

Spherical aberration 
The simplest aberration to study is spherical aberration, the aberration present in the image of an 
object on the optical axis. It is evident from the symmetry of the system that the image of an axial 
object is radially symmetric about the optical axis, and is given by 

3 5 7
1 1 1            (5.26)  

The definition of an astigmatic aberration implies that spherical aberration is astigmatic, in fact nth 
order spherical aberration is nth order, nth degree astigmatism. The aperture curves for spherical 
aberration of any order are circles centered on the ideal image, as shown below. 
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The meridional ray-intercept curve for third-order spherical aberration is simply a cubic, flat near 
the origin and increasing rapidly for large positive and negative apertures. The only significant 
difference between this case and that of the higher orders is that the higher the order, the flatter is 
the meridional curve. In other words, the high order aberrations do not become effective until a 
sufficiently high aperture is reached. The ray-intercept curves below illustrate this effect. The two 
curves at the bottom show balancing equal amounts of third and fifth-order spherical, and also the 
balance achieved by also adding a focus shift, which causes a tilting of the ray-intercept curve at 
the origin. 

 

Linear coma 
Of the aberration types that depend on the object height, perhaps the most important are those that 
depend linearly on h, i.e., linear coma. Linear coma is the simplest comatic aberration and is the 
classical aberration from which the term “comatic” is derived. Linear coma is given to the fifth 
order by 
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 (5.27)  

Insight into the nature of linear coma can be gained by assuming that all aberration coefficients 
except those of a single order of coma vanish. The annular aperture curves then consist of a family 
of circles, one for each value of . 

 

Considering third-order coma, if 2 is positive, the image patch is directed radially away from the 
optical axis whereas if 2 is negative, it is directed radially toward from the optical axis. These 
two cases are referred to as positive (overcorrected) and negative (undercorrected) coma, 
respectively. The image is highly asymmetrical, lying entirely on one side of the paraxial image, 
and as such the presence of coma in an image is very undesirable. The meridional curve for third 
order coma is a parabola; the sagittal curve is a straight line along the x axis. The aberration curves 
for higher order coma are similar to those of third order coma, but the meridional curves are much 
flatter, as shown below. 

 

The pair of meridional rays of aperture  intersect the image in the same point (as they must since 
any comatic aberration is a periodic function of  of period ). Moreover, the pair of sagittal rays 
of aperture  (i.e., = /2, 3/2) also intersect the image in a single point, and this point lies on 
the meridional section of the image. By taking into account the identities between the coefficients 
of linear coma, the following important result is established: 

For a given aperture, the maximum displacement of the meridional rays is three times that of the 
minimum displacement for third order linear coma, and five times for fifth order linear coma. 

Linear astigmatism 
The third terms in the third order aberration polynomial, Eq. (5.23), are linear in the aperture 
variable . In accordance with our definition, these terms are third-order linear astigmatism. 
Astigmatism and curvature of field were previously discussed in general terms. From Eqs. (5.23) 
and 5.24), linear astigmatism is given to fifth order by 
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The significance of the third order coefficients 3 and 4 should be considered. Since astigmatism 
causes the tangential and sagittal images to be sharp, but displaced longitudinally from each other, 
the ray-intercept curves are straight lines, tilted differently for meridional and sagittal rays. 
Moreover, the tilt of the lines depends on the field angle, as shown below. 

 

The aperture curves for third-order astigmatism are ellipses on the paraxial image plane, as shown 
below. At the tangential and sagittal foci, the curves become straight lines, as shown in the figure 
on p. 115. 

 

The astigmatic focal difference is proportional to 3. If this coefficient vanishes, a stigmatic image 
is formed, for a narrow bundle of rays near the principal ray, on a surface called the Petzval 
surface, whose sag is given by 
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 (5.29)  

The coefficient 4 is proportional to the curvature of this surface and is sometimes called the 
coefficient of Petzval curvature. Comparison of the sags of the third order tangential and sagittal 
field surfaces with that of the Petzval surface shows that the two field surfaces always lie (in the 
third order) on the same side of the Petzval surface; to the right if 3 is positive and to the left if 3 
is negative. Moreover it follows from Eqs. (5.28) that the distance, measured parallel to the optical 
axis, from the Petzval surface to the third order tangential field surface is three times the 
corresponding distance from the Petzval surface to the third order sagittal field surface. 

In Chapter 1 (c.f. Eq. (1.52)), the expression for the Petzval radius (the reciprocal of the Petzval 
curvature) was shown to be a function only of the curvatures and refractive indices of the lens. 
Accordingly, for a given system, the Petzval curvature of field is independent of: 

the position of the object 

the position of the aperture stop 

the separations of the surfaces 

the bending of any pair of adjacent surfaces (assuming that the two surfaces define a lens in a 
medium). 
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Because of these properties, Petzval curvature must be controlled at a very early stage in the 
design of a system. 

Distortion 
Distortion is the aberration type classified as nth order nth degree coma and was discussed 
previously from the context of ray trace data. Correct to the fifth order, the aberration polynomial 
for distortion is 
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 (5.30)  

The coefficients  and  appearing in this are the coefficients of third and fifth-order distortion, 
respectively. If a particular coefficient is positive, the corresponding distortion is said to be 
pincushion distortion; if negative, the corresponding distortion is said to be barrel distortion. 
Distortion could be controlled, in principle, by balancing third-order barrel distortion, say, with 
fifth-order pincushion distortion, and so on. In practice distortion is often controlled by making the 
system longitudinally symmetrical about the aperture stop, which reduces all comatic aberrations. 

barrel distortion

pincushion distortion

 

Oblique spherical aberration 
The four previous sections have been devoted to a discussion of the third-order aberrations. As the 
order is increased, so are the number of distinct aberration types represented in that order. For 
instance, there are four aberration types in the third order, six in the fifth order, eight in the 
seventh order, and so on. Each order introduces two new aberration types. One of these is an 
astigmatic type, the other is comatic. The higher the order, the greater the number of independent 
coefficients that characterize these new aberrations. Accordingly the aberrations become 
progressively more and more complicated as the order is increased. 

Of the two new types of aberration introduced in the fifth order, the astigmatic type is fifth-order 
cubic astigmatism, more commonly called oblique spherical aberration, which is given by 
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 (5.31)  

As with the other aberration types that appear in the fifth and higher orders, oblique spherical 
aberration is much more difficult to control than spherical aberration, linear coma, linear 
astigmatism or distortion. The coefficient 5 governs the oblique spherical aberration of sagittal 
rays and 4 and 6  govern the meridional oblique spherical aberration.  

That three coefficients appear in Eq. (5.31) is to some extent misleading. In view of the fact that 4 
= 5 + 6, (assuming that the third-order aberrations are zero; c.f. Eqs. (5.25)), oblique spherical 
aberration of any order is governed by only two independent coefficients. The ray intercept curves 
for oblique spherical aberration are similar to those for ordinary spherical aberration, except that 
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the magnitude of the aberration is proportional to the square of the field angle, as shown in the 
following plots for the case in which 5 = 6. 

 

In general, the discussion of the aperture curves for oblique spherical aberration is not so straight 
forward as for the cases of spherical aberration or linear coma, since two independent coefficients 
are involved. For example, the figure below shows annular aperture curves plotted for various 
values of the ratio 5/6. 

Oblique spherical aberration

 

For large values of 5/6 we have oval shaped curves. For 5/6 between 1 and 0 the sides of the 
oval are pulled in and actually touch each other along the y-axis for 5/6 = 0. For 5/6 less than 0 
the curves intersect themselves at two points along the y-axis, and as 5/6 approaches 1 these 
points of intersection move away from the origin and the outer loops become tighter. In the limit 
when 5/6 = 1 the curves have cusps at the points where they cross the axes. 

Elliptical coma 
The remaining fifth-order aberration to be discussed is elliptical coma, i.e., the aberration 
proportional to 2h3. This aberration is typical of the type classified as nth order, (n – 2)th degree 
coma, that is, fifth-order cubic coma. Correct to the fifth order, elliptical coma is given by 
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 (5.32)  

The ray-intercept curves for elliptical coma are similar to those for ordinary coma, except that the 
magnitude of the aberration increases as the cube of the field angle, instead of linearly, as shown 
below. 
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Although three coefficients appear in each order in the expression (5.32) for elliptical coma, from 
Eqs. (5.25) we see that 7 = 8 + 9 (assuming zero third-order aberration), so again there are only 
two independent coefficients. The aperture curves below are plotted for various values of the ratio 
8/9. 

Elliptical coma

 

For large negative values of the ratio 8/9, the curves are ellipses tangent to the x-axis at the point 
of intersection of the paraxial ray. As shown, the ellipses are below the axis, but a corresponding 
series exists with the ellipses above the axis when 7 is positive. For large positive values of the 
ratio 8/9, the aperture curves become similar to those for ordinary third-order coma. For very 
small values of the ratio 8/9, the eccentricity of the ellipses increases greatly, and the ellipses 
degenerate into straight lines when 8 = 0. 

Pupil aberrations 
The discussion so far has been concerned with the displacements of rays in the ideal image plane. 
The various aberrations depend on where rays leave the object and pass through the entrance 
pupil. There is an entirely analogous set of aberrations that pertain to imagery of the entrance pupil 
into the exit pupil. The aberrations can be computed by interchanging the roles of the axial and 
chief rays. In OSLO, they are denoted as PSA3, PCM3, PAS3, and PDS3. The pupil aberration 
that corresponds to PTZ3 is in fact identical to it, and hence is not separately computed. 

In a typical lens system, pupil aberrations tend to be smaller than image aberrations, because the 
pupils are located in the vicinity of the lens, and the pupil magnification is near unity. However, in 
lenses such as eyepieces or scanning lenses, which have external pupils, pupil aberrations can play 
a major role in limiting performance. 

Computation of aberration coefficients 
In OSLO, the aberration coefficients are computed by commands that are accessed through the 
Calculate>>Aberration Analysis menu. The third-order aberrations are computed and displayed 
using the sei command. The numerical output depends on the aberration mode setting, which can 
be unconverted, transverse, or angular. For systems evaluated in focal mode, the default output is 
transverse, which provides transverse aberrations in the paraxial image plane. For afocal systems, 
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the default output is in angular form. Unconverted output provides the Seidel sum Si coefficients, 
which can be converted to various representations using the table on page 6-117. 

The table below compares the nomenclature used in OSLO and Smith’s Modern Lens Design 
book. 

 

Name OSLO Smith 

Spherical 
Aberration 

SA3 TSC 

Coma CMA3 CC 

Astigmatism AST3 TAC 

Petzval Blur PTZ3 TPC 

Distortion DIS3 DC 

 

There are two commands used to compute fifth-order aberrations in OSLO. The normal fif 
command computes fifth-order analogs to the third-order aberrations. The command buc  causes 
the fifth-order aberrations to be presented in the form used by Buchdahl, with the notation MU1, 
… , MU12 corresponding to the 1, … , 12 in Eq. 5.24). The nomenclature for fifth-order 
aberrations is shown in the table below. OSLO also computes the seventh-order spherical 
aberration, which is printed with the fifth-order coefficients using the fif command. 

 

The oblique spherical aberration and elliptical coma are not computed explicitly by OSLO, 
although they can be formed from the Buchdahl coefficients, as shown. 

 

Name OSLO Buchdahl 

Spherical Aberration SA5, MU1 1 

Coma CMA5, MU3 3 

Astigmatism AST5, 

(MU10 – MU11)/4 

 

(10 – 11)/4 

Petzval Blur PTZ5, 

(5MU11 – MU10)/4 

 

(511 – 10)/4 

Distortion DIS5, MU12 12 

Tangential Oblique Spherical 
Aberration 

MU4 + MU6 4 + 6

Sagittal Oblique Spherical 
Aberration 

MU5 5

Tangential Elliptical Coma MU7 + MU8 7 + 8

Sagittal Elliptical Coma MU9 9 

Aldis theorem 
The Aldis theorem is an example of a “finite aberration formula,” i.e., an expression for the entire 
aberration of a ray. This can be contrasted to the familiar Seidel (third-order), fifth-order, etc., 
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aberrations, which are truncations of a power series expansion of the aberration. This theorem was 
derived by H. L. Aldis, but not published until A. Cox’s book “A System of Optical Design”, The 
Focal Press, London (1964). Perhaps the clearest derivation of the Aldis theorem is given by W. T. 
Welford in his book “Aberrations of Optical Systems”, Adam Hilger, Ltd., Bristol (1986), Section 
9.2. Before giving the actual form of the theorem, we need to define some notation. As usual, 
quantities measured after refraction or reflection will be indicated by a prime. The Lagrange 
invariant for the chosen paraxial field and aperture is denoted by H. We will assume a system of k 
centered, spherical surfaces. The refractive index is denoted by n, the angle of the paraxial axial 
ray by u, and the angle of incidence of the paraxial axial ray by i. Then, the refraction invariant for 
the paraxial axial ray at surface j is denoted by Aj = njij = nj’Ij’. A real ray intersects surface j at the 
point (xj, yj, zj) with direction cosines (Kj, Lj, Mj). Welford gives the following form for the total 
transverse ray aberration (x, y). 
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j j

x j j j j j
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(5.33)   
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(5.34)   

In the above expressions,  means, as usual, the change in the indicated quantity upon refraction 
or reflection. Cox and Welford give extensions of the above equations that can be used for 
aspheric surfaces. Obviously, a real ray must be traced to evaluate the above expressions, and x 
and y can be computed from the ray data on the image surface (given a reference point). The 
value of the Aldis theorem is that it gives the contributions to the aberrations on a surface-by-
surface basis (as the Seidel aberration coefficients do) so that the source of the aberration can be 
located.  

In OSLO, the SCP command “*aldis ” can be used to compute the surface contributions to the 
total ray aberration. The computations are valid for centered systems of refracting or reflecting 
surfaces. The supported surface types are spheres, conics, standard aspheres (ad, ae, af, ag) and 
asr surfaces up to tenth order. The syntax of the command is 

 *aldis   fby    fy    fx 

where fby is the fractional object height and fy and fx are the fractional pupil coordinates. This 
command is also available from the General Analysis pull-right menu of the User main menu. The 
contribution of each surface to the total aberration of the ray will be displayed. For comparison 
purposes, the Seidel values of the ray aberration will also be displayed. 

Note that the Aldis theorem, like the Seidel aberration coefficients, gives the ray aberration with 
respect to the paraxial image point, which is not necessarily the same as the reference ray 
intersection with the image surface. Thus, the values of DELTA Y and DELTA X may not be the 
same as DY and DX computed by the OSLO ray trace if the image surface is not at the paraxial 
focus. The values labeled “SUM” in the output are the total ray aberration and total Seidel 
aberration with respect to the paraxial image point. The value labeled “Dyref” is the sum of the 
paraxial image height for the chosen field plus the SUM value for DELTA Y, minus the 
intersection height of the reference ray with the image surface. The difference between the SUM 
value for DELTA Y and Dyref is indicative of how much of the total ray aberration is due to 
distortion. 

Zernike analysis 
The power series expansions used in the previous sections are only one way to represent the 
aberrations of an optical system. Another common approach is the use of Zernike polynomials to 
express the wavefront. The Zernike representation is widely used in interferometry and optical 
testing. The Zernike polynomials are one of the infinite number of complete sets of polynomials 
that are orthogonal over the interior of the unit circle. Because of the orthogonality of the 
polynomials, a Zernike decomposition results in coefficients that are independent of the expansion 
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order used. This is in contrast to a power series expansion, where the coefficients can be strongly 
influenced by the maximum order of the expansion polynomial that is used. The reader is warned 
that the terminology, normalization, and notation used for Zernike polynomials is far from 
uniform. In this discussion, we follow the article by Wyant and Creath.9  

As mentioned above, the Zernike polynomials are orthogonal in two real variables,  and , in a 
continuous fashion over the interior of the unit circle. The polynomials are not orthogonal over 
domains other than the entire unit circle, or, in general, for discretely represented data. The reader 
is cautioned to be aware of the conditions under which the orthogonality of the Zernike 
polynomials (and, hence, the uniqueness of a Zernike representation) is assured. As an additional 
caution, Wyant and Creath note that there situations for which Zernike polynomial representations 
are not well-suited (e.g., air turbulence, alignment of conical elements). As with all numerical 
techniques, the user of Zernike polynomials should be aware of the assumptions and limitations 
governing their use. 

The Zernike polynomials have three distinguishing characteristics. 

5. The polynomials Z(, ) separate into the product of a function R() of the radial 
coordinate  and a function G() of the angular coordinate .  

     ,Z R G      (5.35)   

The angular function G() is a continuous, periodic function, with a period of 2. It also has the 
property that a rotation of the coordinate system by an angle  does not change the form of the 
polynomial, i.e., a rotation by angles  and  must be equivalent to a rotation by  + . Hence,  

     G G G      (5.36)   

The general solution for the function G() is the complex exponential 

  imG e    (5.37)   

where m is zero or a positive integer.  

2. The radial function R() is a polynomial in  of degree n and contains no power of  less than 
m.  

3. The radial function R() is an even function of  if m is an even integer and is an odd function 
of  if m is an odd integer.  

The radial polynomials are denoted by  m
nR   and are a special case of the Jacobi polynomials. 

The orthogonality condition for the radial polynomials is 
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(5.38)   

In the above equation, nn  is the Kronecker delta, i.e., 1nn   if n = n and 0nn   if n  n. 
There are several normalizations that are found in the literature. The normalization we shall use is 

 1 1m
nR   (5.39)   

The reader is warned that the normalization given by the above equation is common but by no 
means universal.  

When computing the explicit forms of the radial polynomials, it is convenient to factor the 
polynomial into 

 
9 J.C. Wyant and K. Creath, “Basic Wavefront Aberration Theory for Optical Metrology,” pp. 2-
53, in Applied Optics and Optical Engineering, Vol. XI, R.R. Shannon and J.C. Wyant, Eds. 
(Academic Press, Boston, 1992).  
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where the polynomial  m
nQ  , of order 2(n  m), is given by 
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(5.41)   

Usually, real polynomials (using sines and cosines) are used in place of the complex exponential. 
In this case, the Zernike expansion of the wavefront aberration W(, ) takes the form 
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(5.42)   

where W  is the mean value of the wavefront aberration, and An, Bnm, and Cnm are expansion 
coefficients. Since the “0th” polynomial is the constant (or piston) term 1 and the average value of 
all of the other Zernike polynomials (over the unit circle) is zero, the average value of W is the 
coefficient of this 0th term, A0. With this ordering, the above equation is equivalent to 
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(5.43)   

For a rotationally symmetric system, the object lies in the meridional plane, so the wavefront 
aberration is symmetric about the yz plane. In this case, only the even functions of , i.e., the 
cosine terms, are non-zero.  

Because of the orthogonality of the Zernike polynomials, it is easy to compute the variance of the 
wavefront aberration, 2.  
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(5.44)   

The rms (root-mean-square) wavefront error, or rms OPD, is just the square root of the variance, 
i.e., . The above expression for the wavefront variance is indicative of another property of 
Zernike polynomials: each Zernike term minimizes the rms wavefront aberration to the order of 
that term. The addition of lower order aberrations can only increase the rms wavefront aberration 
value. In other words, each Zernike term represents an aberration that is optimally balanced, in the 
sense of the addition of lower order aberrations to minimize the rms value.  

The set of 37 Zernike polynomials that is used by OSLO when performing a Zernike analysis of a 
wavefront is tabulated below. The ordering matches ISO 14999-2:2019 and ISO 14999-4:2015 
except for the Z36 term which is the 48th term (Z48) in the standards. The reader is again warned 
that although this ordering is common, other orderings are also used. 
 
With reference to the table below, Zernike term 0 is seen to be a constant (or piston error) term. 
Since the average over the unit circle of all of the other Zernike polynomials is zero, the 
coefficient of term 0 is the average OPD of the wavefront. Terms 1 – 3 represent the paraxial 
properties of the wavefront (y tilt, x tilt, and focus respectively). Terms 4 – 8 represent third-order 
aberrations; terms 9 – 15 represent fifth-order aberrations; terms 16 – 24 represent seventh-order 
aberrations; terms 25 – 35 represent ninth-order aberrations; term 36 represents eleventh-order 
spherical aberration.  

There is a common misconception: that the low-order Zernike polynomials have a one-to-one 
correspondence to the common Seidel aberrations. For example, the Zernike coefficient Z8 is 
compared to the primary spherical aberration SA3. This is misleading, because it is not generally 
possible to compute Z8 from SA3, nor vice versa.  If the aberration function, defined continuously 
over the unit circle, has no aberrations higher than third order and completely describes the 
system, then there is such a correspondence. But if fifth or higher-order aberrations are present, 
then the equality of the third-order relationships is not maintained. 
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Z N n,m No. Zernike polynomial 
Z0 0 0,0 0 1
Z1 1 1,1 1 cos 
Z2  1,-1 2 sin   
Z3  2,0 3 22 1   
Z4 2 2,2 4 2 cos2   
Z5  2,-2 5 2 sin 2   
Z6  3,1 6  23 2 cos    

Z7  3,-1 7  23 2 sin    

Z8  4,0 8 4 26 6 1    
Z9 3 3,3 9 3 cos3   

Z10  3,-3 10 3 sin3   
Z11  4,2 11  2 24 3 cos2    

Z12  4,-2 12  2 24 3 sin 2    

Z13  5,1 13  4 210 12 3 cos      

Z14  5,-1 14  4 210 12 3 sin      

Z15  6,0 15 6 4 220 30 12 1      
Z16 4 4,4 16 4 cos4   
Z17  4,-4 17 4 sin 4   
Z18  5,3 18  2 35 4 cos3    

Z19  5,-3 19  2 35 4 sin3    

Z20  6,2 20  4 2 215 20 6 cos2      

Z21  6,-2 21  4 2 215 20 6 sin 2      

Z22  7,1 22  6 4 235 60 30 4 cos        

Z23  7,-1 23  6 4 235 60 30 4 sin        

Z24  8,0 24 8 6 4 270 140 90 20 1        
Z25 5 5,5 25 5 cos5   
Z26  5,-5 26 5 sin5   
Z27  6,4 27  2 46 5 cos4    

Z28  6,-4 28  2 46 5 sin 4    

Z29  7,3 29  4 2 321 30 10 cos3      

Z30  7,-3 30  4 2 321 30 10 sin3      

Z31  8,2 31  6 4 2 256 105 60 10 cos2        

Z32  8,-2 32  6 4 2 256 105 60 10 sin 2        

Z33  9,1 33  8 6 4 2126 280 210 60 5 cos          

Z34  9,-1 34  8 6 4 2126 280 210 60 5 sin          

Z35  10,0 35 10 8 6 4 2252 630 560 210 30 1          
Z48 6 12,0 36 12 10 8 6 4 2924 2772 3150 1680 420 42 1          
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Chapter 6 Ray tracing 
 

Ray tracing is the essence of an optical design program. Although aberration theory provides 
many insights into the behavior of an optical system, exact ray trace data provide reassurance to 
lens designers that a design will work as predicted. In fact, this reassurance is sometimes 
unwarranted, because the data only describe the rays that are traced, not all rays. Nevertheless, 
practical optical design is almost always carried out using ray tracing, at least in its final stages. 

The complexity of ray tracing is twofold. One part involves the development of algorithms that 
accurately compute the trajectories of rays through optical systems that are increasingly complex. 
The other involves the specification of the rays to be traced, and the interpretation of the resulting 
data.  

Ray trace algorithms 
The basic algorithm for tracing rays involves translating rays from one surface to the next, then 
refracting them at the surface, starting from the object surface, and ending at the image surface. 
The translation step involves computing the intersection of a line and a surface, while the 
refraction step involves applying Snell’s law at the point of incidence. If the medium is isotropic 
and homogenous, rays propagate along straight lines. 

A ray can be described by a vector in the direction of propagation. The magnitude of the ray 
vector is equal to the refractive index of the medium in which it propagates. At the interface 
between two refracting (not diffracting) media, the tangential component of the ray vector is 
continuous, or equivalently, the change in the ray vector is perpendicular to the surface. Let ne be 
the ray vector in an initial medium, and ne be the ray vector in a second medium. If p is a unit 
vector perpendicular to the surface, Snell’s law states that  

 
 

 (6.1)   

Once the point of incidence on the surface defined by z = F(x, y) is established, it is 
straightforward to differentiate F(x, y) to find the surface normal, whence Eq. (6.1) can be used to 
determine the emergent ray.  

incident ray e

refracted ray e´

surface normal p

point of incidence

y

z

x

surface z = f(x,y)

 

Of the two steps needed to propagate a ray through a surface, translation is usually the more 
difficult, particularly if the equation of the surface is of some general form F(x, y, z) that cannot be 
solved analytically. Then an iterative procedure must be followed to find the point of incidence. In 
many cases, (e.g., a sphere) there may be more than one intersection, and it is not always possible 
to know which point is correct.  
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1st intersection

2nd intersection

 

In some systems, it is not possible to enumerate the surfaces according to the order in which rays 
strike them. Examples include roof prisms, light pipes, and lens arrays. For these, when a ray 
leaves a surface, all possible surfaces that a ray might hit must be tested to see which one the ray 
actually intersects. This is called non-sequential ray tracing, and is of course a much slower 
process than ordinary ray tracing. 

Ray tracing is complicated by the need to specify the apertures associated with surfaces. OSLO 
uses the term aperture to indicate a region on a surface where some particular action on a ray is 
defined. For example, rays that strike a surface outside its edge would ordinarily be considered to 
be blocked in sequential ray tracing, or passed without deviation in non-sequential ray tracing. In 
addition, a surface might have one or more interior apertures bounding holes, obstructions, or 
reflecting spots. These must be accounted for in ray trace algorithms. 

There is a question of how to handle apertures during design. For example, although rays that miss 
the edge of a lens will clearly fail in a finished lens, during the design phase the possibility exists 
to make the lens aperture bigger to avoid this situation. Thus in optimization, the effects of 
apertures on rays are not considered. 

The amount and type of aperture checking to do is defined by the program and/or the user. 
However, if a ray fails to intersect a surface, it obviously cannot refract, regardless of the aperture 
specification. Similarly, if a ray strikes a surface beyond the critical angle, it must be reflected. If a 
sequential system is set up under the assumption that rays striking the surface are refracted, then 
rays that undergo total internal reflection (TIR) are effectively blocked. 

The above discussion indicates that there are a number of issues related to ray tracing that go 
beyond simple mathematics. Some of these relate to the types of surfaces involved, others to the 
way that the system is set up. To make optimum use of OSLO, you should understand the basic 
rules it uses for tracing rays. 

Paraxial ray tracing 
Paraxial ray tracing is restricted to systems that have an optical axis. The paraxial equations take 
no account of surface tilts or decentration, nor surface types such as splines, holograms, gradient 
index, or diffractive elements. Special coordinate data such as return coordinate data or global 
coordinates, are not recognized. OSLO is programmed to provide a warning message in most 
cases when paraxial data is not valid. However, because the data may provide useful information 
(with the proper interpretation), paraxial ray tracing is not prohibited. 

The principal discussion of paraxial ray tracing is given in Chapter 3. OSLO has special 
commands to compute paraxial-like data for systems that are not recognized by the normal 
paraxial equations. The *pxt command carries out an effective paraxial ray trace by tracing a real 
ray and differential rays around it, then scaling the resulting data to the given aperture and field. A 
related command, *pxc, computes the paraxial constants. 

Real ray tracing 
Exact rays, more commonly known as real rays, are ones that obey Snell's law exactly. OSLO uses 
two types of real rays to evaluate optical systems. The first is called an ordinary, or Lagrangian 
ray. This is a ray that starts from a given point on the object surface, in a prescribed direction, that 
is traced through the system. The second is called a reference, or Hamiltonian ray. This is a ray 
that starts from a given point on the object surface, but in a direction that is initially unknown, the 
direction being determined by the requirement that the ray pass through some prescribed interior 
point in the system, as mentioned above. A typical example of a reference ray is the real chief ray, 
which is defined by the requirement that it emanate from the edge of the field and pass through the 
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center of the aperture stop. (The names Lagrangian and Hamiltonian are used in analogy with 
their use to describe the trajectories of particles in classical mechanics.) 

To compute the trajectory of a Hamiltonian ray, a trial direction is assumed, then a Lagrangian ray 
is traced up to the interior surface of interest. Next, two differential rays are traced (displaced in 
the x and y directions) to determine the directional derivatives of the ray with respect to aperture, 
on the interior surface. A correction in direction is then applied, based on the differential ray data, 
and a new Lagrangian ray is traced. This process is repeated until the ray passes acceptably close 
to the prescribed point. Typically, three iterations may be required, which implies that 
Hamiltonian rays are traced about an order of magnitude more slowly than Lagrangian rays. 

Once an exact ray has been traced, it is often possible to trace a ray that is only slightly displaced 
in aperture or field using simplified equations. Such a ray is called a differential ray, and is useful 
for a variety of purposes. Differential rays are used to compute the tangential and sagittal field 
sags around a real chief ray, to compute paraxial constants of systems when there is no paraxial 
ray trace, and to compute derivatives needed to iterate rays that must pass through prescribed 
interior points in an optical system. 

Centered conic surfaces 

The vast majority of lenses have spherical surfaces, so the speed and stability of the spherical 
surface ray trace is of paramount importance. Spherical surfaces are considered a special case of 
conic surfaces. Since conics can be described by quadratic equations, the ray translation equation 
can be solved analytically, which significantly speeds up ray tracing. 
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The various forms of conic surfaces are shown in the above figure. In addition to the forms shown, 
a hyperboloid with an extremely small curvature and large conic constant can be used to 
approximate a cone (axicon). As shown, conic surfaces are defined in a coordinate system whose 
origin is at the point where the symmetry axis intersects the surface. This leads to equations that 
have a different form from those found in standard mathematics texts. In addition, the so-called 
conic constant (cc) is used to describe the type of conic, rather than the eccentricity e (cc = –e2). In 
terms of the curvature cv (1/rd) and the rotational invariant r2 = x2 + y2, the sag of a conic surface 
is 

 
 

 (6.2)    

The following code shows a very simple ray trace, written in OSLO’s CCL language. 
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#define LENSIZE 4 
static double  curv[LENSIZE]  = {0.0,0.01,-0.01,0.0}; // lens data 
static double  thik[LENSIZE]  = {0.0,1.0,0.0,0.0};    // lens data 
static double  rindx[LENSIZE] = {1.0,1.523,1.0,1.0};  // lens data 
static double  n1[LENSIZE], n2[LENSIZE]; // index-related setup items 
static double  fx_pupil = 0.5;           // fractional pupil coordinates 
static double  fy_pupil = 0.5;           // fractional pupil coordinates 
static double  ebr = 8.0;                // entrance beam radius 
static double  tho = 1.0e20;             // object distance 
static double  oby = -1.0e19;            // object height 
static double  kray,lray,mray;           // direction cosines of ray 
static double  xray,yray,zray;           // coordinates of ray 
static void setup(); 
static void rayinit(); 
 
void raytrex() 
{ 
 int    ray,srf; 
 double ray_incr,tl,ts; 
 double r1,s1,ncosi,ncosi2,p1,u1,w1; 
 
 setup(); 
 rayinit(); 
 for (srf = 1; srf <= 3; srf++) 
 { 
  zray = zray - thik[srf - 1]; 
  r1 = mray - curv[srf]*(kray*xray + lray*yray + mray*zray); 
  s1 = curv[srf]*(xray*xray + yray*yray + zray*zray) - zray - zray; 
  ncosi2 = r1*r1 - n1[srf]*s1; 
  ncosi = sqrt(ncosi2); 
  u1 = sqrt(n2[srf] + ncosi2) - ncosi; 
  w1 = curv[srf]*u1; 
  p1 = s1/(r1 + ncosi); 
  xray = xray + p1*kray; 
  yray = yray + p1*lray; 
  zray = zray + p1*mray; 
  kray = kray - w1*xray; 
  lray = lray - w1*yray; 
  mray = mray - w1*zray + u1; 
 } 
 printf("\nAccuracy test:\n"); 
 printf("x, y, z = %16.12f %16.12f %16.12f\n",xray,yray,zray); 
 printf("k, l, m = %16.12f %16.12f %16.12f\n",kray,lray,mray); 
 printf("sumsq   = %16.12f\n\n",kray*kray + lray*lray + mray*mray); 
} 
 
static void setup() 
{ 
 int i; 
  
 for (i = 1; i < LENSIZE; i++) 
 { 
  n1[i] = rindx[i - 1]*rindx[i - 1]*curv[i]; 
  n2[i] = (rindx[i] + rindx[i - 1])*(rindx[i] - rindx[i - 1]); 
 } 
} 
 
static void rayinit() 
{ 
 double  b1; 
  
 xray = fx_pupil*ebr; 
 yray = fy_pupil*ebr; 
 zray = 0.0; 
 b1 = (yray - oby)/tho; 
 kray = -xray/tho; 
 mray = sqrt(1.0/(kray*kray + b1*b1 + 1.0)); 
 lray = mray*b1; 
 kray = -mray*kray; 
} 
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It is probably not necessary for you to know the details of algorithms used for ray tracing, but you 
will find it helpful to understand the basic procedure(10). Although the above code is very simple, 
it is in fact a working program that traces skew rays through a singlet lens. It consists of an 
initialization section, a loop, and an output section. The initialization section consists of two parts, 
one that pre-computes some data related to refractive index, and the other that sets up the data for 
a ray entering the system. The loop traces the ray from one surface to the next, and includes 19 
add/subtract operations, 17 multiplications, and 2 square roots. This is approximately the 
minimum number of operations needed for real ray tracing. A general-purpose ray trace would 
need several additional steps for error checking and additional features. 

Each surface is defined in a local coordinate system whose origin is at the surface and whose z-
axis points along the symmetry axis. The sign conventions used to describe conic surfaces are 
determined by the sag of the surface near the vertex. If the sag is in the positive z direction, the 
curvature is positive, otherwise it is negative. 

As mentioned above, it is not always possible to predict the intersection point of a ray with a 
surface. In the case of a conic surface, an alternate surface intersection (ASI) flag can be attached 
to a surface, instructing the ray trace to choose a different intersection point from the one normally 
used. The figure below shows a typical application of the ASI flag. 

ASI off ASI on
 

In the figure, rays are reflected by the parabolic mirror, but continue to propagate in the +z 
direction (Normally, rays are expected to propagate in the –z direction after a single reflection; 
rays such as the above are sometimes called strange rays). As shown, the ray trace computes the 
ray intersection with the wrong side of the inner spherical surface. The situation is remedied by 
turning on the ASI flag, as shown to the right. 

Cylinders and toroids 
Cylindrical and toroidal surfaces are handled in a special way in OSLO to provide efficient ray 
tracing. A toroidal lens has different curvatures in the yz and xz planes. Moreover, a toroidal 
surface is generated by sweeping one of the curvatures around a point, and the other around a line. 
A toroidal surface is named according to the direction of the line around which it is generated. The 
figure below shows a y toroid. Because the sections in the two planes are generated differently, a y 
toroid cannot be converted into an x toroid by interchanging the curvatures in the two planes. To 
produce an x toroid, a y toroid must be rotated 90 degrees about the optical axis. (OSLO has 
another type of surface, defined according to ISO 10110, which permits a surface to be designated 
as either a y toroid or an x toroid without rotation). 

In OSLO, the profile in the yz plane can be aspheric, of the form 
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The profile in the xz plane is circular, with curvature 

1

xr
=cvx   (6.4)    

 
10 G.H. Spencer and M.V.R.K. Murty, "General Ray Tracing Procedure", J.Opt.Soc.Am. 52, 672-
678 (1962). 
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A cylindrical lens is one for which cvx is zero. For such a lens, the generating axis is in the x 
direction. To define a cylindrical lens with the generating axis in the y direction, you must rotate 
the lens about the optical axis as described above. It is possible, of course, to define a lens where 
cv is zero, and cvx is non-zero. However, this surface will be traced as a toroid by OSLO, which 
means it will use an iterative ray trace that is generally slower than the cylindrical trace.  

There are some issues concerning the paraxial optics of systems containing cylindrical lenses that 
are important to understand. During lens setup, OSLO traces two paraxial rays through the lens to 
resolve solves and set apertures. For maximum speed, this trace is carried out in the yz plane, 
which means that solves in the xz plane are not allowed. In the evaluation routines, however, 
separate traces are provided in the yz and xz planes, so the paraxial properties of systems 
containing cylindrical optics can be readily determined. In order to impose a paraxial constraint 
(e.g., a solve) in the xz plane, you should define a suitable constraint operand in the optimization 
error function. 

Polynomial aspherics 
There are a variety of forms of aspheric surface (more complicated than conic sections) used in 
optical design. Most of these are written as polynomials, and are described in the OSLO Help 
system. The most common is an aspheric surface of the form 

 
 

 (6.5)    

which OSLO calls a standard asphere. 

In a standard asphere the aspheric constants give the sag of the surface in terms of its departure 
from a conic, not necessarily a sphere. If the conic constant is –1, then 
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 (6.6)    

To trace a ray through a polynomial aspheric surface, it is necessary to employ an iterative 
procedure to find the point of incidence of the ray on the surface. Several schemes have been 
proposed for such a procedure. One typical procedure uses successive approximations to the 
intersection of the ray and the tangent plane to the surface. This is used in the sample code 
provided for the User ray trace. The scheme works as shown in the figure below. 
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The ray is first translated from the preceding surface to the conic surface tangent to the asphere at 
the vertex. In the figure, this yields point 1. The sag of the asphere relative to the conic surface is 
computed, and point 2 is generated as a trial point. The surface normal is computed, which 
determines the tangent plane T1. The intersection of the ray with this tangent plane is then 
computed, which yields point 3. The relative sag is then found to determine point 4, a new tangent 
plane T2  is computed, and so forth. When the intersection points differ by less than some 
prescribed tolerance, the iteration is terminated. 

Typically, the iteration procedure described above converges in 2 or 3 iterations. However, in 
pathological cases, iteration may be much slower, or even fail to converge at all. For example, 
consider the case shown below.  

ray

asphere

base sphere
 

Here, the incident ray never intersects the base sphere, so the iteration fails on the very first step. 
Various more sophisticated iteration procedures can be used to circumvent this problem. 

Spline surfaces 
Although the representation of an aspheric surface by a polynomial is convenient when the 
deviation of the surface from a conic is small, when the aspheric deviation is large, a large number 
of terms are typically needed to adequately characterize the surface. In such a case, it is often 
preferable to represent the surface by a spline function. A spline function is a series of cubic 
polynomials, each valid in a region of the surface, so that there is no single function that represents 
the entire surface. Often, spline surfaces are represented by a series of point-value pairs, but ray 
tracing through spline surfaces is simplified if the spline is expressed as a series of point-slope 
pairs, the scheme used in OSLO. The reason for this is that both the surface sags and curvatures 
can be computed directly, without solving any equations, if the data are given in this form. 

Spline surfaces are useful for describing surfaces that cannot be represented by polynomials that 
are rotationally symmetric about an optical axis. An example is the CD pickup lens shown below, 
which works at a numerical aperture of 0.9, and whose surfaces are markedly different from 
spheres. 
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In OSLO, the spline ray trace uses a parabola as the starting point for the translation iteration. The 
parabola is determined by its vertex curvature, which is used to specify the second derivative of 
the spline function at the vertex of the surface. In general, setting up spline surfaces that deviate 
strongly from their base parabolas may involve considerable experimentation by the user to 
achieve a stable iterative ray trace. 

Diffractive surfaces 
Many people think of diffraction as physical optics, and optical design as geometrical optics, and 
conclude that there must be some conflict. In fact, there is none. Ray tracing through diffractive 
surfaces has been an established procedure for many years, and has been incorporated in optical 
design software since about 1960.  

In Eq. (6.1), Snell’s law was presented in vector form, showing that the tangential component of 
the ray vector is continuous across a refracting (or reflecting) surface. 

Consider a section of an optical surface small enough to be considered plane, and suppose that this 
section contains a grating. It doesn’t make any difference whether the grating is in amplitude or 
phase. If the section is small enough, the grating grooves can be considered straight and equally 
spaced with spacing d. Consider a coordinate system on the surface, as shown in the figure below. 
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The effect of the grating is to add a component in the r-direction to the refracted ray vector e. 
Snell’s law, including diffraction, becomes 

     n n
m

d
e p e p q


 

 (6.7)    

If e and e lie in the rp plane, Eq. (6.7) reduces to the standard diffraction equation, derived with 
reference to the figure below. 
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Consider a plane wave incident on a surface separating two media, and suppose that the surface is 
covered by a double slit. Light incident on each slit will be diffracted into a large angle. Because 
of the presence of two slits, light propagating in directions where there is constructive interference 
will be reinforced. These directions are given by  

  n n
m

Ld i
vsin sin  

 

 (6.8)    

where m is an integer called the order number. When there are more slits, the direction of the 
diffracted light becomes more precisely defined, the uncertainty in direction being determined by 
the diffraction angle associated with the size of the region in which the grating spacing can be 
considered uniform. 

The above figure shows that a diffractive surface is a phase surface. Light emerges in directions 
corresponding to an integer number of wavelengths path difference between adjacent grooves. The 
shape of the grooves is not important, nor does it matter whether the grooves are amplitude or 
phase objects; these only affect the amount of light that is diffracted into a given order. The 
amount of diffracted light, or the diffraction efficiency, is discussed in Chapter 10. 

Ray tracing serves to determine the direction of propagation of diffracted rays, regardless of 
whether light is actually propagated in that direction. During the computation, in addition to the 
square root needed to refract a ray passing from one medium to another, another square root is 
needed to renormalize the ray vector e as given by Eq. (6.7). Failure of this square root indicates 
that the effective grating spacing for the order considered is less than a wavelength, so there is no 
diffracted ray. 

A phase surface can be simulated by a thin prism of artificially high refractive index (~ 104), 
which permits optical software to handle diffractive surfaces without modification; this is called 
the Sweatt model. Although the OSLO real ray trace is set up to handle diffractive surfaces 
directly, the Sweatt model is also useful because it enables the computation of aberrations and 
other items based on paraxial ray data. 

There are three major classes of diffractive elements that are available in OSLO. As a result of 
their method of manufacture, they differ in the way that the grating periods are specified and 
computed. Although any diffractive surface produces, in general, multiple diffracted waves, 
OSLO only ray traces one order at a time, so you must specify the diffraction order in which the 
diffractive optic is to be evaluated. You are free, of course, to change the diffraction order so that 
the behavior of other, non-design, diffraction orders may be studied.  

Linear grating 

The linear grating models a classical ruled diffraction grating. The grating lines are parallel to the 
local x-axis, thus the grating spatial frequency only has a y component. If the grating substrate is 
not planar, the grating lines are equally spaced along the chord to the surface, not on the surface 
itself. In other words, the grating lines are parallel to the local x-axis and are equally spaced in y 
on the local z = 0 plane.  

Optical hologram 
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The hologram or holographic optical element (HOE) is the recorded interference pattern of two 
point sources, i.e., two spherical waves. The local grating spacing is determined by the location 
and orientation of the resultant interference fringes. In OSLO, you specify the locations of the two 
sources, the wavelength of the source beams, and whether the source beams are real (rays 
traveling from the point source to the hologram surface) or virtual (rays traveling from the 
hologram to the point source). The point source locations are used directly in the process of ray 
tracing through the hologram; the interference pattern is not explicitly computed. See Welford(11) 
for details on ray tracing through holographic optical elements.  

Phase model 

The third type of diffractive surface is the general class of computer generated hologram (CGH) 
type surfaces. These surfaces are specified by the additional phase that is added to a ray when it 
strikes the diffractive surface. Since each “grating groove” means that another 2 of phase is 
added to the ray, the phase function (x, y) at a point (x, y) is 2 times the total number (i.e., the 
integral) of grating grooves crossed, or equivalently, the effective grating spatial frequencies fx = 
1/Lx and fy = 1/Ly in x and y are 
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 (6.9) 

Ray tracing through a diffractive surface is performed by using Eq.(6.9) to find the effective 
grating spacing at the intersection point of the ray with the surface and then applying the grating 
equation to find the direction of the diffracted ray. The optical path length (or phase) increment 
along the ray is calculated from the phase function. The different phase models available in OSLO 
are different series expansions of the phase function (x, y). Rotationally symmetric and 
asymmetric power series and axicon-like expansions may be used, or the phase may be expanded 
as a series of Zernike polynomials.  

An alternative to the use of the phase model is the so-called Sweatt model. Sweatt(12) and 
Kleinhans(13) showed that a diffractive lens is mathematically equivalent to a thin refractive lens, 
in the limit as the refractive index goes to infinity and the curvatures of the two surfaces of the thin 
lens converge to the substrate curvature of the diffractive surface. The designer can treat a 
diffractive lens as just a thin lens with a very high refractive index, e.g., 10,001. To model the 
chromatic properties of the diffractive lens, the refractive index is proportional to the wavelength, 
i.e., 

 
 (6.10) 
 
The two curvatures of the equivalent Sweatt model lens of nominal power 0 and substrate 
curvature cs are 

 

 (6.11) 

 
 

11 W. T. Welford, “A vector raytracing equation for hologram lenses of arbitrary shape,” Opt. 
Commun. 14, 322-323 (1975). 
12 W. C. Sweatt, “Describing holographic optical elements as lenses,” J. Opt. Soc. Am. 67, 803-
808 (1977); “Mathematical equivalence between a holographic optical element and an ultra-high 
index lens,” J. Opt. Soc. Am. 69, 486-487 (1979). 
13 W. A. Kleinhans, “Aberrations of curved zone plates and Fresnel lenses,” Appl. Opt. 16, 1701-
1704 (1977). 
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Aspheric surface terms are used to model higher order terms in the diffractive surface phase 
polynomial. OSLO has two SCP commands, *dfr2swet and *swet2dfr, that can be used to 
convert a rotationally symmetric diffractive surface to a Sweatt model lens, and vice versa.  

  

Fresnel surfaces 
Some Fresnel surfaces bear an outward similarity to diffractive surfaces, but in fact work 
according to a different principle. Fresnel lenses are constructed to contain several facets that 
simulate a curved surface by a flat surface, as shown in the figure below. 

Plano-convex lens Fresnel lens
 

Fresnel lenses have been traditionally used where the design requirement is to minimize weight, 
such as in searchlights,. More recently, plastic Fresnel lenses have been used for a variety of low-
resolution applications, such as the design of condenser lenses for overhead projectors. Unlike 
diffractive lenses, Fresnel lenses operate by incoherent superposition of light from adjacent facets. 

OSLO allows aspheric Fresnel surfaces to be placed on any conic substrate, in addition to a plane 
substrate. The ray trace translates rays to the base conic substrate, then refracts them as though the 
surface had a slope at that point equivalent to the aspheric Fresnel surface. Thus no account is 
taken of the actual facet height, which introduces some error in the refracted ray trajectory. If the 
facet dimensions are large enough that the error is significant, the model should not be used. 
Instead, for such a case the lens can be modeled as a non-sequential surface. 

Gradient index surfaces 
Snell’s law, as presented above, gives the change in the direction of rays that cross boundaries 
separating homogeneous materials. If the materials are inhomogeneous, rays no longer propagate 
in straight lines. Inhomogeneous, or gradient-index materials are finding increased application in 
optical design, both as lenses in micro-optical systems, and as a substitute for aspherics in 
conventional imaging systems. 

To trace rays through gradient index systems, it is necessary to generalize Snell’s law. The figure 
below shows the propagation of a ray through such a system. 
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grad n
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The equation of the ray is 

 

 (6.12) 

 

which can be solved by a variety of numerical techniques, the one used in OSLO being the so-
called Sharma method, which is based on the Runge-Kutta method for solving differential 
equations. The numerical solution of Eq.(6.12) involves the choice of a step size ds, as shown in 
the figure above. Tracing a ray through a gradient index material proceeds step by step, until the 
ray intersects the next surface. 
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The choice of step length determines both the accuracy and speed of gradient-index ray tracing. 
The default step size in OSLO is set to 0.1 (lens units), which produces acceptable accuracy for 
typical gradients. It is a good idea to test the step size by decreasing it until you are convinced that 
the trace will yield acceptable accuracy for the particular system you are working with. In 
addition, it may be that an acceptable accuracy for ray displacement analysis is not acceptable for 
OPD analysis. 

Gradient index materials are specified in a variety of ways. If the gradient is in the direction of the 
optical axis, it is an axial gradient. If the gradient is perpendicular to the axis, it is a radial 
gradient. If the gradient is spherically symmetrical about some point, it is a spherical gradient. 
OSLO contains ray trace routines for handling ten different forms of gradient. In each case, the 
gradient is given by a power-series expansion, similar to an aspheric surface. If the standard 
gradient types are not sufficient, it is possible to specify a user-defined gradient, in which the 
quantities n(r) and grad n(r) (c.f. Eq.(6.12)) are specified by a CCL command. 

The dispersion of gradient index materials is specified by giving values for the gradient 
coefficients at each of the defined wavelengths. During optimization, the -number and partial 
dispersion can be varied, but these quantities are subject to heavy restriction during the fabrication 
process. A special Gradium™ material can be used for axial gradients. Unlike the other gradient 
materials, Gradium materials have dispersive properties that are specified by the manufacturer and 
can not be varied during optimization. 

Aperture checking for gradient index surfaces is more complicated than for ordinary surfaces, 
because rays can be blocked between surfaces, as shown in the figure below. A general operating 
condition (grck) controls whether each individual step is aperture checked during transfer through 
a gradient medium. 

Aperture check GRIN segs onAperture check GRIN segs off
 

Specification of ray data 
For the designer, the most important aspect of ray tracing is to specify the correct rays, and to 
understand the data that the program computes. This involves a knowledge of the coordinate 
systems in which systems are described, and the quantities that are used to describe rays in those 
systems. 

Surface coordinates 
OSLO describes optical systems using a surface-based model. Each surface is described in a local 
coordinate system, whose origin is relative to a base coordinate system for that surface. The base 
coordinate system, in turn, is located on the z-axis of the previous local coordinate system, if local 
coordinates are being used, or at some point (x, y, z) in a global coordinate system, if global 
coordinates are being used. Each coordinate system is right-handed and the z-axis is the symmetry 
axis of the surface (if there is one). 

The case where there is a centered system with local coordinates is shown in the figure below. For 
such a system, each local coordinate system is congruent with its base coordinate system. The 
location of the next vertex is called the thickness of the surface. The surfaces are numbered 
sequentially, starting with 0 for the object surface. The highest numbered surface is called the 
image surface, whether or not there is an “image” on that surface.  
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The orientation of the surfaces does not depend on whether there are reflecting surfaces. In the 
above system, if surface 4 were reflecting, the system would appear as follows (the image surface 
is not shown). The thicknesses following the reflecting surface are negative because each vertex 
lies on the negative z axis of the previous surface. 
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Many optical systems are designed using tilted and decentered surfaces, and all fabricated systems 
have tilted and decentered surfaces due to manufacturing errors. In local coordinates, the vertex of 
the base coordinate system normally lies on the z-axis of the previous local coordinate system. In 
global coordinates, the vertex of the current base coordinate system is relative to the base 
coordinate system of the global reference surface. 

Since tilting and de-centering are non-commutative, the program must be told which comes first. 
OSLO uses a special datum (called dt) to accomplish this. If tilting is carried out after de-
centering, tilt operations are carried out in the order tla, tlb, tlc. If tilting is carried out before de-
centering, tilt operations are carried out in the order tlc, tlb, tla. This method of specifying tilted 
and de-centered surfaces allows one to restore the original position and orientation of a surface 
that has been tilted and de-centered by picking up all the tilt and de-centering data with negative 
signs. 

dcy dcydt = 1 dt = -1

tla
tla

y' y'

z' z'

base coordinate system

local coordinate system

 

When a surface is tilted and/or decentered, its local coordinate system is separated from its base 
coordinate system, as shown in the figure below. The origin of the local coordinate system is 
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specified by three coordinates dcx, dcy, and dcz measured from the origin of the base coordinate 
system. The orientation of the local coordinate system is given by tilt angles tla, tlb, and tlc. 
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base coordinate system
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decenter = (dcx, dcy, dcz)

tilt = (tla, tlb, tlc)

 

In addition, the surface tilt can be made relative to an offset tilt point specified by three 
coordinates tox, toy, and toz relative to the nominal location of the local coordinate system vertex. 
For a surface in local coordinates, if the decenter-tilt order is to decenter, then tilt, the tilt vertex 
offset (tox, toy, toz) is measured in the coordinate system that results from applying the 
decentration coordinates to the base coordinate system of the surface. If tilts are applied before 
decentration, tox, toy, and toz are given in the base coordinate system. For a surface in global 
coordinates, the coordinate system for tox, toy, and toz is the system of the global reference 
surface (decentered, if decentration is performed before tilts). 

In local coordinates, since the vertex of the coordinate system following a tilted surface lies on the 
new z-axis, tilting a surface effectively redefines the optical axis for all of the following surfaces. 
In the following figures, the base coordinate system for each surface is not shown. 
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OSLO contains a special return-coordinates command (rco) that overrules the above convention. 
If no argument is given, or the argument is equal to the current surface number, the vertex of the 
next surface is placed on the z-axis of the current base coordinate system. If the argument is a 
previous surface number, the vertex of the next surface is placed on the z-axis of the previous local 
coordinate system, unless the surface is specifically designated to always use the base coordinate 
system for rco. In both cases the thickness of the current surface gives the distance along the z-
axis to the next vertex. In many cases when the rco is applied OSLO will automatically recalculate 
the thickness of the rco surface to include the surface shift along the axis (the offset value due to 
the rco). When OSLO makes that adjustment it is to maintain the location of the succeeding 
surface location. In many cases when an rco is removed OSLO will reverse this process and adjust 
the former rco surface thickness to maintain the succeeding surface location. 
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In a normal system, the next surface is expressed in the local coordinate system of the current 
surface, that is, the thickness is measured along the z-axis of the local coordinate system. 
However, OSLO also has a return_coordinates command (rco) that causes the thickness to be 
measured along the z-axis of the base coordinate system of the current surface. An option to the 
command allows you to measure the thickness along the z-axis of any previous local coordinate 
system. Thus you can, for example, refer the coordinates of any surface to some base surface (e.g. 
surface 1). This provides a way to specify coordinates globally. Return_coordinates are not the 
same as global coordinates; you cannot transform back and forth between local and global 
coordinates when using rco. 

A convenient way to work with systems that have tilted mirrors is to use the bend (ben) command. 
The bend command automatically sets the optical axis after reflection to be coincident with the ray 
that connects the previous vertex with the current vertex, i.e. it in effect propagates the optical axis 
through the system. The new coordinate system is adjusted, if necessary, so that the meridional 
plane remains the meridional plane after reflection. 

If a tilted surface is reflecting, normally it will be marked with a flag that is set by the OSLO bend 
(ben) command, as shown below. This command rotates the base coordinate system of the current 
surface (after applying the transformation to the local coordinate system) by twice the tilt, and 
places the vertex of the next surface on the rotated base coordinate system z-axis. This accounts 
for the physical reflection of the beam at the vertex of the current surface. If necessary, an 
azimuthal tilt is applied so that the meridional plane of the next surface is its yz plane. 
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Tilt conventions 
Tilted coordinate systems are handled using an Euler angle system, in which each of the three tilt 
angles tla, tlb, and tlc takes place in the tilted coordinate system determined by the previous tilts. 
The tilt angles tla, tlb, and tlc are sometimes called meridional, sagittal, and azimuthal tilts, 
respectively. Tilt angles are measured in degrees, according to the figure below. Note that the tla 
and tlb tilts are left-handed, while the tlc tilt is right-handed. Although not common in other 
disciplines (e.g. mechanical design), this convention is widely used in optical design software. 
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Since tilting is a non-commutative operation, it is necessary to undo tilts in the opposite order to 
that in which they were applied. OSLO provides a pickup command (pk tdm) that does this 
automatically. 

A common error is using a tilt angle that is wrong by 180 degrees. The reason for the error is that 
there are two ways to express the same surface. Suppose you have a system where a beam, 
initially traveling from left to right, reflects from a mirror that is tilted at 45 degrees. Then the 
beam is traveling perpendicular to the original beam, as shown in the following figure. 
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The question then arises about whether the next surface should be tilted by +90 degrees or -90 
degrees with respect to the original system, since it doesn’t seem to make any difference. If the 
surface is tilted by -90 degrees, the curvature as shown is positive, whereas if the surface is tilted 
by +90 degrees, the curvature is negative.  

Actually, it does make a difference, and the correct answer is +90 degrees. While the two cases are 
geometrically identical, for the purpose of ray tracing they are not. A line intersects a sphere in 
two places, so in solving the ray trace equations, there must be a convention as to which 
intersection point to choose. 

In OSLO, the ray trace equations are set up to use the normal intersection points predicted by the 
standard sign convention. This convention, when generalized to handle tilted surfaces, states that 
the z-axis of each local coordinate system should point in the same direction as the beam 
propagation after an even number of reflections, and in the opposite direction after an odd number 
of reflections. In the present case, the beam has undergone one reflection by the 45 degree mirror, 
so the z-axis of the next local coordinate system should point against the direction of beam 
propagation, as shown in the figure to the right. 

In OSLO, there is a special flag on each surface called the ASI (alternate surface intersection) flag. 
If you turn it on, the ray trace intersection points will be opposite from the normal, so you could 
handle a -90 degree tilt by using the ASI flag. But then you would have to deal with the next 
surface in a different way from normal, so it is simpler to set your system up according to standard 
conventions. 

 

Global coordinates 

As mentioned above, the base coordinate system of a surface is obtained by translating the local 
coordinate system of the previous surface along its z-axis by a distance equal to the thickness 
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assigned to the previous surface. If tilt angles and/or decentered coordinates are specified at the 
surface, they are applied to reorient and/or reposition the local coordinate system of the surface 
with respect to this base coordinate system. 

In situations involving a number of surfaces that are tilted and decentered with respect to one 
another, it is sometimes more convenient to specify the position and orientation of a surface with 
respect to a global coordinate system. The gc (global coordinates) command specifies the surface 
number of a surface within the system whose local coordinate system will be used in place of the 
base system of another surface, when that surface is tilted and/or decentered. Note that gc is a 
surface data item, so that some surfaces in a system may be specified in global coordinates and 
some in local coordinates. A global tilt/decenter specification can be deleted with the gcd 
command. 

When global tilt angles and decentered coordinates are used at a surface, the thickness assigned to 
the surface preceding the surface is not used. The z position of the surface is controlled solely by 
the z decentration dcz on the surface.  

Whenever the gc or gcd command is used on a surface, a new set of tilt angles and decentered 
coordinates is calculated automatically so that the position and orientation of the current surface 
remains unaltered. Thus, for example, tilt angles and decentered coordinates for one or more 
surfaces may be set up initially in global coordinates and then changed to a local coordinate 
representation simply by changing the coordinates specification.  

The set of tilt angles defining the orientation of a surface is not unique. For example, a tla of 180 
degrees followed by a tlc of 180 degrees is equivalent to a tlb of 180 degrees. When tilt angles are 
calculated, the following limits are imposed in order to eliminate ambiguity:  
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90 90
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When switching to local coordinates, the z-decentered coordinate of the current surface is set to 
zero and a thickness is calculated and assigned to the preceding surface. When switching from 
local to global coordinates, the thickness assigned to the preceding surface becomes undefined and 
an appropriate z-decentered coordinate is assigned to the current surface.  

Fractional coordinates 
It has become common to specify an input ray by its fractional coordinates on two separated 
surfaces. The usual scheme uses the ratio of the object height of a ray to the overall object height, 
and the ratio of the pupil height of the ray to the overall pupil size, as shown in the figure below. 
When the object is at infinity, the aperture and field of view are modest, and paraxial ray tracing is 
accurate, this approach is adequate to define fractional coordinates. For more complicated 
systems, a more elaborate scheme is required. 

(FY,FX)

x

y

z Entrance
pupil
radius

Ray

(FBY,FBX)
Object (Surface 0)

Entrance
Pupil

OBH

 



Specification of ray data 147 

The meaning of fractional coordinates is a matter of definition. Fractional coordinates should be 
chosen so that they produce reasonable results when applied to practical problems. To specify the 
field of view, OSLO by default uses the field angle when the object is at infinity, or the object 
height when the object is at a finite distance. In either case, the fractional object heights FBY and 
FBX are chosen to be proportional to the tangent of the field angle. This is because a perfect lens 
is defined to be one that preserves shapes on a plane image surface. 

The fractional coordinates FY and FX used to specify aperture are more complicated, at least 
when dealing with objects at finite distances. OSLO provides two basic options, called paraxial 
ray aiming and aplanatic ray aiming. When paraxial ray aiming is used, the fractional coordinate 
used to specify a ray is proportional to the tangent of the ray angle. This is the convention used in 
paraxial optics. For small apertures, this is satisfactory, but when the aperture becomes large, as 
shown in the figure below, rays towards the edge of the aperture are compressed in angular space, 
just the opposite of what is desirable from a radiometric point of view. 

paraxial ray aiming:

 

When aplanatic ray aiming is used, fractional coordinates are chosen to be proportional to the 
direction cosines of ray angles. The is equivalent to aiming the rays at a sphere centered on the 
object point, as shown below. Now the rays towards the edge of the aperture are spread out, in 
concurrence with the Abbe sine condition for aplanatic imaging. 

aplanatic ray aiming:

 

Since most large aperture systems more closely obey the sine condition than the paraxial 
condition, OSLO uses aplanatic ray aiming by default. The difference is not noticeable at small 
apertures, and in fact when the object numerical aperture (nao) is less than 0.1, OSLO actually 
uses paraxial ray aiming. 

The definition of fractional coordinates should accommodate motion of the pupil gracefully, both 
in the longitudinal and transverse directions. OSLO uses nao to specify the aperture of a system 
having an object at finite distance. The aperture can then be considered to be defined by a cone of 
rays emanating from the origin of the object surface, symmetrical around the z-axis. The limits of 
this cone define the ±1 fractional aperture coordinates for an on-axis beam.  

When the object distance becomes infinite, the object numerical aperture drops to zero. Because of 
this, OSLO uses the entrance beam radius (ebr), defined as the radius of the beam on the plane 
tangent to surface 1, to describe the aperture of a system with an object at infinity. When the 
object is at infinity, the entrance beam radius is equal to the entrance pupil radius. 

It is important to understand that ebr and nao define the size of the illuminating beam. No 
Lagrangian rays are traced outside of the cone defined by these quantities, which corresponds to a 
fractional aperture of ±1. This is particularly important to remember when dealing with off-axis or 
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odd-shaped apertures. A simple example is a rectangular aperture, as shown in the figure below. If 
the beam underfills the aperture, fractional coordinates of ±1 will not represent the edge of the 
aperture. When the beam overfills the aperture, aperture checking can be used to block unwanted 
rays. 

rectangular aperture
correct ebr -
beam overfills aperture

incorrect ebr -
beam underfills aperture

y

x

 

Note that if ebr is adjusted to compensate for an unusual shaped aperture, it may be necessary to 
adjust paraxial quantities such as angle solves to maintain the correct focal length.  

Central reference ray-aiming 
When the object point moves off axis, or when the pupil is decentered, several effects arise that 
complicate the definition of fractional aperture coordinates. The figure below shows the situation. 
Since surface 1 is generally not coincident with the entrance pupil, the projection of the pupil is 
displaced laterally from the axis. 

reference ray

axis

nao = n sin 



FY = 1

FY = -1

 

The reference ray is the real ray from the off-axis object point that goes through the center of the 
aperture stop. The points FY = ±1 correspond to points located at ±ebr on the plane tangent to 
surface 1, measured from the intersection point of the reference ray, as shown. 

Note that the above definition of fractional coordinates produces a reduction in pupil area 
proportional to the cosine of the field angle. In some wide-angle systems, pupil distortion is 
sufficiently large to overcome this reduction. To obtain a correct evaluation of such systems, it 
may be necessary to increase the numerical aperture on axis, and use a checked aperture on the 
aperture stop to limit the size of the axial beam. Then the off-axis beam will be sufficiently large 
to completely fill the aperture stop. OSLO has a special wide-angle ray trace mode that can deal 
with this effect automatically. 

For paraxial ray aiming, the above definition of fractional aperture coordinates implies that the 
reference ray always passes through the point FY = 0. However, when aplanatic ray aiming is 
used, the reference ray is displaced from the point FY = 0, as shown in the figure below. This 
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displacement results from the tilt of the object sphere with respect to the tangent plane, and is not 
the result of pupil aberration. 

entrance beam radius (ebr)

ebr

FY
reference ray

object sphere

object point

 

It is possible to specify that the reference ray should go through some point other than the center 
of the aperture stop. When a reference ray is traced, its fractional heights FYRF and FXRF relative 
to the aperture stop radius can be provided. The reference ray will be iterated to pass through the 
given point, and FY and FX will be defined with respect to its intersection with surface 1, as 
described above. 

In addition to specifying non-zero coordinates for the reference ray in the aperture stop, it is 
possible to set up a reference surface that is different from the aperture stop. OSLO actually traces 
the reference ray to the point FYRF, FXRF on the reference surface (rfs). The default value of the 
reference surface number is coincident with the aperture stop surface number, but the two can be 
set independently. 

As discussed previously, OSLO uses two different types of rays, called ordinary (Lagrangian) and 
reference (Hamiltonian) rays. The former are rays whose coordinates can be completely described 
in object space, while the latter involve coordinates that are defined inside the lens. Hamiltonian 
rays must be iterated to pass through the specified points, so they take longer to trace than 
ordinary rays. 

The ray that is traced by the sop command is a Hamiltonian ray. In addition to passing through a 
precisely specified point on an interior reference surface, a Hamiltonian ray provides differential 
information needed to compute field sags. 

Because of speed considerations, Hamiltonian rays should only be traced when necessary. Most 
evaluation routine (lens drawings, ray fans, spot diagrams, etc.) are set up to use Lagrangian rays. 
In optimization, rays can be specified to be either Lagrangian or Hamiltonian, but excessive use of 
Hamiltonian rays can substantially decrease program performance, sometimes without 
compensating increases in accuracy. 

Rim reference ray-aiming 
In this mode, in addition to the reference ray that is traced to define the center of the ray bundle 
from the current object point, three (or four, depending on the symmetry of the lens) additional 
"rim" reference rays are traced for each new object point. These rays are traced for the "top" 
(FYRF = 1, FXRF = 0), "bottom" (FYRF = –1, FXRF = 0), and "right" (FYRF = 0, FXRF = 1) 
extremes of the reference surface and all surfaces that have "checked" apertures. If the lens is not 
symmetric, or FBX is not zero, the "left" (FYRF = 0, FXRF = –1) rim ray is also traced. Data from 
these rays is used to compute effective "vignetting" factors for the current object point, based on 
the object space fractional coordinates of the rays that define the extent of the transmitted ray 
bundle for that object point. 

Use of this mode, in effect, allows the entrance beam radius or object numerical aperture to "float" 
so that the real, possibly vignetted, pupil is filled by the –1 <= FX, FY <= +1 ray bundle. Of 
course, it also means that the ray bundle size will be equivalent to that specified by the entrance 
beam radius only if the marginal ray height on the reference surface set by the entrance beam 
radius and the aperture radius of the reference surface "match." In the absence of vignetting and in 
rim reference ray mode, then, FX and FY are the (approximate) fractional coordinates (based on 
the aperture radius value) on the reference surface. 
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Extended aperture ray-aiming 
Some imaging systems, and many illumination systems, collect light over greater than a 
hemispherical solid angle. OSLO has another ray aiming mode called XARM (eXtended Aperture 
Ray-aiming Mode) to handle such systems. Ordinarily, rays to be traced are specified by fractional 
object coordinates and fractional coordinates at the reference surface. Extended-aperture ray-
aiming mode replaces the reference surface coordinate specification with the specification of two 
object space angles. 

The direction of a ray in object space is specified by two Euler angles, A and B, which are defined 
similarly to the surface tilt angles tla and tlb. In terms of these angles, the direction cosines of a 
ray in object space are: 
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When XARM is on, the fractional coordinates FY and FX used in tracing single rays and ray fans 
are mapped to angles A and B through the following relations: 
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Here, Aobj and Bobj are the A and B Euler angles of the normal to the object surface at the current 
object point. For an untilted plane object surface, Aobj = Bobj = 0. XABA is the extended-aperture 
beam angle specified by the xarm_beam_angle (xaba) command. The extended-aperture beam 
angle (specified in degrees) may be as large as 180 degrees. If the extended-aperture beam angle is 
180 degrees, a y-fan defined by FYmin = –1.0 and FYmax = +1.0 will sweep through 360 degrees. 

If spot diagrams are traced when XARM is on, the object point should be thought of as radiating 
uniformly into a cone whose vertex is at the object point and whose axis coincides with the normal 
to the object surface. xaba is the half-angle of the cone. Thus, if xaba is 90 degrees, the object 
point radiates uniformly into a hemisphere; if xaba is 180 degrees, the object point radiates 
uniformly in all directions. 

For spot diagrams, the angular distribution of rays in object space is best described in spherical 
coordinates. Consider a sphere of radius R centered on the object point. Let the point at which the 
normal to the object surface pierces the sphere be the north pole of the sphere. For reference, 
construct a Cartesian coordinate system with its origin at the center of the sphere and its positive z-
axis extending from the center through the north pole of the sphere. Any point on the sphere may 
be specified by two angles,   and . Spot diagrams are calculated by tracing rays which pierce the 
sphere at points defined by a distribution of values for  and . The Cartesian coordinates of such 
ray points are:  
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When a spot diagram is calculated, the aperture divisions argument is used to calculate an 
increment for . This increment, which will be called , is just the extended aperture beam angle 
divided by the aperture divisions value. The set of  values to be used in calculating the spot 
diagram are 0, , 2*, … , XABA. For each such  value, a set of N equally spaced  values are 
chosen. The increment for , which will be called , is chosen to be as close to  as possible 
subject to the condition that N* = 360 degrees. The set of  values used for the spot diagram are 
0.5*, 1.5*, … , (N – 0.5)*.  

The figure below shows a paraboloidal mirror with a small but finite source located at its focus. 
XARM is turned on, with a beam angle XABA of 135 degrees. 
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Telecentric ray-aiming 
Ordinary lenses are divided into two groups for ray tracing: lenses where the object distance is 
infinite, and lenses where the object distance is finite. OSLO considers object distances less than 1 
 108 to be finite, and object distances equal or greater than 1 108 to be infinite (defined as 1 
1020). These must be handled separately because it is not possible to trace a ray over a distance of 
1  1020 without unacceptable loss of accuracy caused by numerical round-off.  

For finite conjugate systems, rays are normally traced from the object surface, and aimed at the 
entrance pupil. However, if the entrance pupil is at infinity, the lens said to be telecentric, and all 
chief rays enter the system parallel to the axis. Then the chief rays cannot be traced between the 
object and the entrance pupil, because of the above-mentioned loss of accuracy. 

OSLO has a general operating condition (tele) that defines the entrance pupil to be at infinity. In 
this mode, all chief rays (reference rays for new field points) will have an initial direction in object 
space that is parallel to the optical axis. The aperture stop and reference surface designations will 
be ignored, so in general, if no constraints are applied, the chief ray will not pass through the 
center of the aperture stop surface. 

If you want chief rays to pass through the center of the stop, you can either use a chief ray solve or 
include chief ray heights on the stop surface as constraints in the optimization error function. 

Telecentric mode is only valid for finite conjugate systems and is not used if wide-angle ray 
tracing mode is also enabled. The setting of tele of course has no effect on whether a system is 
telecentric in image space. 

Afocal mode 
An afocal system is one in which the principal points and focal points are at infinity. This does not 
necessarily imply that the object and image are at infinity. However, in the case where the image 
is at infinity, special procedures must be used in ray tracing because image-space rays can not 
actually be traced to infinity. The term afocal on the image side is sometimes used to describe the 
situation where the image is at infinity, whether or not the actual system is afocal. 

OSLO has an evaluation mode called afo that causes image-space ray displacements to be reported 
in angular measure, optical path differences to be referred to a plane wave in the exit pupil of a 
system, and field sags to be reported in diopters. Afocal mode has no effect on single ordinary 
rays. Afocal mode does not consider the image surface thickness, which is disregarded. 

Astigmatic sources 
Some types of laser diode emit coherent beams that are astigmatic, that is, the radius of curvature 
of the wavefront is different in different azimuths. This asymmetry is independent of the intensity 
distribution in the beam, and must be accounted for in ray tracing. OSLO can be set up to handle 
such astigmatic sources, assuming that they are located at the vertex of the object surface. The 
operating condition sasd gives the longitudinal distance between the effective source position for 
rays in the xz and yz planes.  
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Interpretation of ray data 
In this section, the types of output data available from OSLO are summarized and presented for a 
standard lens. Most of this ray output data is readily understood. An exception is optical path 
difference. Before turning to specific examples, it is worth considering some general concepts 
used in OSLO ray tracing, particularly the convention of a current object point. 

Current object point 
The paradigm for ray tracing in OSLO consists of setting up an object point, which automatically 
traces a reference ray from the selected object point through a given point (usually the origin) of 
the aperture stop, then tracing one or more ordinary rays from this object point. Often ray trace 
output data compares two rays, typically the ray under study, and the reference ray. 

In OSLO, all ray trace commands (excepting the trace_ray_generic command) assume that an 
object point has been defined using the set_object_point (sop) command. This command is 
identical to trace_reference_ray (trr), and provides values for the current object point fractional 
coordinates (FBY, FBX, FBZ), and the aperture-stop coordinates (FYRF, FXRF) of a reference 
ray traced from the object point. The reference ray is used to compute values for items needed to 
compute ray displacements, optical path differences, field sags, and other results that compare data 
for two rays. Because reference rays are always Hamiltonian rays, while ordinary rays are usually 
Lagrangian rays, in systems with large aberrations the interpretation of two-ray data can be 
complicated. 

Changing any lens data invalidates any previous reference ray data. OSLO is set up to 
automatically retrace the current reference ray if necessary, whenever its data are needed. In such 
a case, the previous object point data are used. However, if a new lens is opened, the object point 
data is reset to default values (on-axis, center of aperture stop). To check the values of the current 
field point data, you can use the sop command with no arguments. The object point data is also 
available in the global variables trr_fby, trr_fbx, trr_fbz, trr_fyrf, and trr_fxrf. 

Single ray trace 
The most fundamental ray-trace analysis in OSLO is the single ray trace, which shows the 
trajectory of a single Lagrangian ray through an optical system (a Hamiltonian ray is traced if 
WARM is on). The trajectory of the ray is specified by a point on a surface and a direction of 
propagation following the surface. The point and direction can be specified in either local or 
global coordinates. The global coordinate command for ray data (gcs) applies to the whole system, 
so either all or no ray data are reported in global coordinates, unlike the case of global coordinates 
used to specify surface data. 

The point specifying where the ray intersects the surface is given in the current coordinate system, 
whether it be local or global. Ray data are never given in the base coordinate system of a surface. 
The listing below shows typical output from the tra ful command in OSLO. 

*TRACE RAY - LOCAL COORDINATES 
 SRF        Y/L         X/K         Z/M      YANG/IANG   XANG/RANG      D/OPL 
 
  3       1.836269   -0.136580      --        9.974625   -6.880999    5.864380 
          0.172001   -0.118022    0.978001   12.040286   12.040286   10.683781 
 PUPIL      FY          FX                                              OPD 
          0.300000    0.500000                                       14.202026 
 
The direction of a ray is reported in three ways. The first gives the direction of a ray in terms of its 
direction cosines K, L, and M; that is, the projection of the normalized ray vector on the x, y, and z 
axes of the current coordinate system. Some internal calculations use optical direction cosines, 
which are normalized to the refractive index, rather than unity, but these are not reported as ray 
output data. The direction cosines of a ray are constrained by the requirement that their sum of 
squares be unity. Note in the listing that Y and L appear before X and K. The reason for this is that 
most rays are meridional rays, so specifying the y coordinates first produces a more compact 
notation. 



Interpretation of ray data 153 

Second, the direction of a ray is given by its angle in degrees, relative to the axes of the current 
coordinate system. Only two of the three angles (YANG and XANG) are reported. 

Finally, the direction is given by the angles of incidence and refraction (IANG and RANG), also 
measured in degrees, relative to the surface normal at the point of incidence. The figure below 
shows the various items used to specify ray trajectories. 

D

(K,L,M)
(X,Y,Z)

YANG

IANG RANG

 

The last column of the text output from the single ray trace command displays the values of D and 
OPL. These are the distance measured along the ray from the immediately preceding surface, and 
the total optical distance from the object sphere, a sphere having its vertex at surface 1, and its 
center on the object point. 

The last row of output from the single ray trace gives the pupil coordinates of the ray, in fractional 
units. At the far end of the last row is the optical path difference between the ray and the reference 
ray. This is only computed if the ray is traced completely through the lens. 

Ray fans 
Ray fans provide more information per unit computational effort than any other ray tracing 
evaluation, so there are a number of options for ray intercept curves in OSLO. The following 
output shows the basic data computed by the trace_fan (trf) command. Note that there are ten 
columns of output; only the first seven will normally be seen (without scrolling) unless the text 
output window is extended. 

*TRACE FAN - FBY  1.00, FBX  0.00, FBZ  0.00 
RAY      FY        FRAC RFS      DYA         DXA         DY          DX          DZ          OPD         DMD 
  1    1.000000    0.893566   -0.112783      --        0.136204      --          --       -0.875304    4.030302 
  2    0.500000    0.431721   -0.059022      --       -0.023215      --          --        1.590462    1.205471 
  3      --          --          --          --          --          --          --          --          --     
  4   -0.500000   -0.410141    0.061566      --        0.064471      --          --        2.663131    0.937402 
  5   -1.000000   -0.804004    0.123652      --        0.100441      --          --        9.810314    5.338150 

 
The rays that constitute a fan are ordinary rays from the current field point (if WARM is off). The 
data show the fractional coordinate FY in object space, the fractional height of the ray on the 
reference surface (normalized to the aperture radius of the surface), the difference in ray slope 
between the ray and the reference ray (DYA and DXA), and the intersection coordinates (DY, DX, 
and DZ) of the ray with the image surface, relative to the intersection of the reference ray with the 
image surface (i.e., the ray displacement).  

The last two columns contain the optical path difference between the ray and the reference ray, 
and the Conrady D–d aberration, with respect to the current reference ray. The DMD term is 
computed by multiplying the geometrical path between each surface by the dispersion between 
wavelengths 2 and 3 of the intervening medium. This provides an indication of the chromatic 
aberration of the system for the ray in question, without requiring the actual tracing of rays in 
different colors. 

In the case of a ray failure, the value 1  1020 is printed in the data fields. 
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Ray intercept curves 
Ray intercept curves are graphical plots of ray fans. To interpret the curves correctly, it is 
important to understand exactly what is being plotted. In the above case, the data presents image-
space displacements as a function of object-space fractional coordinates. Obviously it is important 
that fractional aperture coordinates completely fill the aperture stop. The figure below shows the 
same data obtained above, in graphical format (a sagittal fan is also shown). 

 

OSLO contains several options for convenient display of ray-intercept curves. For example, you 
can select whether you want to plot y or x displacements vs. y or x fractional coordinates. If your 
system has meridional symmetry, only half of the sagittal curves will be shown (as above).  

The interpretation of ray intercept curves is described in Chapter 3, as well as throughout the 
standard optical design literature. However, there are some specific points that you should 
consider when working with ray-intercept curves in OSLO.  

For large aperture systems used at finite conjugates, the ray intercept curves will be different for 
aplanatic and paraxial ray aiming, but since the beams extend over the same limiting aperture, the 
differences will generally be small. On the other hand, ray intercept curves may be clearly 
different for wide angle systems, depending on the setting of WARM, since the aperture will be 
different for the two cases.  

Ray-intercept curves will clearly differ depending on whether aperture checking is enabled. OSLO 
provides an operating condition (apck) that enables or disables checked apertures, to allow the 
designer to see whether apertures have been properly assigned to surfaces. The figure above shows 
ray-intercept curves for the demotrip lens with apck off, while the figure below shows the curves 
with apck on. 
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Systems that contain cylindrical lenses or other anamorphic elements need special consideration 
when setting up ray-intercept curves, because of the mapping of pupil coordinates. As described 
above, ordinary ray-intercept curves constitute a plot of image-space ray displacements vs. 
fractional pupil coordinates. In OSLO, object space coordinates are isomorphic, so that distances 
are measured in the same units in the x and y directions. 

When a circular beam passes through an anamorphic element, one meridian becomes compressed 
relative to the other, so the output beam becomes elliptical. In such a case, the real distance 
corresponding to FY = ±1 is different from the real distance corresponding to FX = ±1. This can 
be confusing when interpreting ray-intercept curves. 

OSLO provides an alternative to using fractional coordinates on the abscissa of ray-intercept 
curves, namely what are called H-tanU curves. H-tanU curves are produced using the htnu 
operating condition in the general operating conditions spreadsheet. If the operating condition is 
set to on, ray-intercept curves produced using the commands in the Calculate menu will be H-
tanU curves. For H-tanU curves, the ray displacement on the image surface is plotted as a function 
of the tangent of the image-space ray slope. The figures below show a comparison of ordinary ray 
intercept curves (top) and H-tanU curves (bottom) for the anamorph.len system included in the 
OSLO public library. The curves show that the system is at the xz focus, and that the beam is 
compressed in the yz plane by a factor of two, relative to the xz plane. 
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With H-tanU curves, a perfect image point always plots as a straight line, with a slope equal to the 
distance from the reference plane to the point (See, for example, Kingslake(14) or Smith(15)). In 
addition to plotting H-tan U curves, OSLO will plot the OPD as a function of the sine of the angle 
between the pupil ray and the reference ray. The ray’s exit pupil position is related to sin U, so this 
plot is indicative of the relative size of the exit pupil in x and y.  

The default scale when htnu is on is the largest value of tan U or sin U for the traced fans of rays. 
This value may not correspond to an edge of the paraxial pupil boundary. Note that the limits for 
tan U (and sin U) are not, in general, symmetric for an off-axis object point, even for an 
unvignetted system. For these reasons, interpretation of vignetting information from an H-tan U 
curve requires some care. You may enter a scale for the abscissa of the plots, if desired. 

Optical path difference 
Optical path difference (OPD) is used to measure wavefront aberration. A wavefront is the locus 
of points that are equal optical lengths from a point source, so a wavefront can be constructed from 
ray trace data. Optical path difference is the distance between an actual and an ideal wavefront 
propagated through the system under study. An ideal wavefront, in the present context, has a 
spherical shape, so the distance is between an actual (aberrated) wavefront and a reference 
spherical wavefront. An aberrated wavefront changes shape as it propagates, so the optical path 
difference depends on the radius of the reference sphere. For small aberrations, this is a small 
effect, but for large aberrations, it is easily calculated and observed experimentally. 

The calculation of OPD can be described with reference to the figure below. The optical path 
difference compares the time of flight of light along a ray to that along the reference ray. In the 
figure, let a reference point on the image surface be given by I, which may be the point where the 
reference ray intersects the image, or more generally the point that minimizes the rms OPD. 
Consider a reference sphere centered on the point I, with a radius equal to EI = RI = r, the distance 
along the reference ray between its intersection with the exit pupil E, and the image point I, as 
shown. If an aberrated ordinary ray travels from the object to point P in the same time that the 
reference ray travels from the object to E (so that P lies on the actual wavefront from the object 
point), the optical path difference is defined to be the distance PR (times the refractive index) 
between the actual wavefront and the reference sphere, measured along the ray, as shown. A 
general operating condition (opdw) controls whether OPD is displayed in wavelengths (on) or 
current units (off). 
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14 R. Kingslake, Lens Design Fundamentals, Academic Press, 1978, pp. 143-144. 
15 W. J. Smith, Modern Optical Engineering, Second Edition, McGraw-Hill, 1990, pp. 79-84. 
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The line segment QST shows the effects of the radius of the reference sphere on the optical path 
difference. As the radius of the reference sphere is increased, the distance ST decreases and 
disappears when the radius of the reference sphere is infinite. The question naturally arises as to 
the proper value for the reference sphere radius. In OSLO, the default value is the distance of the 
exit pupil from the image surface; for diffraction calculations, this amounts to the assumption that 
diffraction occurs at the exit pupil.  

There is an operating condition (wrsp) that can be used to set the reference sphere radius to 
infinity or to the distance between the next to last surface and the last surface, in addition to the 
default value described above. It is sometimes necessary to set the reference sphere radius to 
infinity, if the aberration of the lens is extremely large, or if the exit pupil is close to the image 
plane. Then, a condition can arise where a ray fails to intersect the reference sphere, so the OPD 
cannot be calculated. OSLO will then issue the message “Reference sphere is inside caustic”. 

The above figure shows that the point I where the reference ray intersects the image surface is not 
necessarily the optimum reference point for minimizing the optical path difference. A quick 
inspection shows that the OPD would be less if the reference sphere were tilted from its present 
position. In the spot diagram routines, where several rays are traced, the OPD is normally 
referenced to the point on the image surface that minimizes the variance of the OPD. When only a 
single ray is traced, there is insufficient information to make such an adjustment. However, the 
reference ray can be displaced in the pupil, which will usually change the OPD. 

The optical path difference for an afocal system is a special case, owing to the fact that rays cannot 
be traced to the image surface. OSLO calculates the OPD in an afocal system as shown in the 
figure below. The reference wavefront is a plane that passes through the center of the exit pupil, 
and the OPD is the optical path length along the ray, minus the optical path length along the 
reference ray, as shown. 

Exit Pupil

Reference Ray

Ray

Reference
Wavefront

 

Non-sequential ray tracing 
For a lens entered in the conventional manner, the surfaces are entered in the order in which light 
traverses the system. Each surface is traversed once by each ray and every ray traverses the 
surfaces in the same order. However, there are optical systems for which this type of ray tracing 
scheme is not adequate. 

A simple example is the cube corner retro-reflector, which consists of three reflecting surfaces 
arranged as the corner of a cube. All rays incident within the aperture of the cube corner reflect 
once off each of the three reflecting surfaces and exit the cube corner parallel to their incident 
direction. The order in which any particular ray visits each surface depends upon its incident 
direction and relative aperture position. A system such as this must be treated as a non-sequential 
surface group, i.e., a group of surfaces whose positions in space are fixed but for which a 
prescribed ray trace sequence can not be defined. 

Groups 
In OSLO, a non-sequential surface group is treated as a sub-group of surfaces that is associated 
with a selected surface in the normal (sequential) portion of the lens. This surface is called the 
entry port for the non-sequential group. Surfaces in the non-sequential group itself are numbered 
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in ascending order, although this order does not necessarily relate to the order in which rays strike 
the surfaces. The last surface in the group is called is called the exit port for the group. 

When any ray reaches the entry port, a special ray tracing procedure is invoked that attempts to 
find a path through the non-sequential group to the exit port surface. Surfaces within the group are 
traversed in whatever sequence is necessary to produce a real path to the exit port, i.e., the path 
length from each surface to the next surface through the group is required to be positive. Total 
internal reflection is allowed and the same surface may be visited multiple times. 

To define a non-sequential surface group, you should insert as many surfaces as you need 
(including the entry and exit ports), then select the surfaces and group them using the Non-
sequential group command on the Edit menu. If you prefer to work in command mode, use the 
lmo nss and lme commands to define a non-sequential group. 

The position and orientation of each surface within a non-sequential group is specified with 
respect to the local coordinate system of the entry port surface. The thickness of a group surface is 
not used, with the exception of the thickness of the exit port, which is the distance to the next 
sequential surface. The position of a group surface is specified by the three decentration 
coordinates (dcx, dcy, and dcz) and the orientation is specified by the three tilt angles (tla, tlb, 
and tlc). These items can be specified in the coordinates spreadsheet, which is accessed by 
activating the Special options button for the desired surfaces. 

For non-sequential surface groups, a global coordinate (gc) command may only be used on the 
entry surface, since the remaining surfaces in the group are always positioned and oriented with 
respect to the entry port surface.  

The position and orientation of each surface following the entry surface in a non-sequential group 
is required to be specified globally with respect to the entry surface. When a non-sequential group 
is created, either by executing the group command or by selecting the group item from the Edit 
menu in the Update Surface Data spreadsheet, tilt angles and decentered coordinates with respect 
to the entry surface are also calculated automatically for each surface following the entry surface.  

Similarly, surface positions and orientations are converted back to a local representation when a 
non-sequential group is ungrouped. Note, however, that when a non-sequential group is 
ungrouped, the resulting lens will not necessarily make optical sense.  

The surfaces in a non-sequential group are specified similarly to those in a sequential system. All 
of the surface types defined in OSLO are allowed, although the nature of non-sequential ray 
tracing may impede or prevent convergence of iterative ray trace algorithms under certain 
circumstances. Each surface is defined in the coordinate system described above, with the same 
sign conventions used for sequential surfaces. 

Apertures 
Apertures have a somewhat different meaning within non-sequential groups. If an aperture radius 
is specified for a group surface, it is assumed to apply to that part of the surface for which (1 + cc) 
cv z < 1, where cc is the conic constant and cv is the curvature of the surface. Only that part of the 
surface for which the preceding condition is true is assumed to be present. Therefore, the surface is 
“open.” A spherical surface, for example, will be treated as a hemisphere. If no aperture radius is 
specified for a spherical or elliptical group surface (or an x-toric surface with a spherical or 
elliptical xz cross section), the entire area of the closed surface is assumed to be present. Since 
paraxial rays are not traced through a non-sequential group, there are no solved apertures, so non-
zero aperture radii must be entered explicitly for each surface.  

If an aperture is specified for a group surface, a ray that falls outside the aperture is free to “pass 
by” the surface if aperture checking is off for that surface. If aperture checking is on, the region 
exterior to the surface is regarded as an infinite baffle, and a ray that reaches the surface via a real 
path will be stopped. Special apertures can be used on non-sequential surfaces, and have their 
normal effect. 

The glass specification for a surface specifies the medium into which a ray is refracted or 
reflected, i.e., the medium into which the ray goes after it traverses the surface. In sequential ray 
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tracing, this information is sufficient to trace the rays. For surfaces in a non-sequential group, 
however, the sequence is not necessarily known in advance. Moreover, rays may hit a surface 
from either side. The surfaces are sitting in space and may be traversed in whatever order yields 
the shortest real path from surface to surface.  

Actions 
In a sequential system, rays intersect surfaces in a prescribed order, and reflect or refract according 
to the model set up by the designer. In a non-sequential system, there is usually a set of conditions 
that occur with greater probability than others. In a light pipe, we normally expect rays to strike 
the walls from the inside. This would be called the normal action of the wall surface. The 
refractive index to associate with a surface should be the one on the side following a normal 
action, the same as for a sequential surface. The normal action is defined by the user, and should 
describe the usual case. A special action can be defined to handle the alternate case. 

For example, suppose that in a non-sequential group, surfaces 3 and 4 bound a BK7 glass lens in 
air. Suppose also that the normal action is that light enters surface 3, passes through the glass, and 
emerges from surface 4. The BK7 glass should be associated with surface 3, and AIR should be 
associated with surface 4. If rays were to be reflected by some other surface and enter the lens 
from the surface 4 side, it would be necessary to set up a special action for this case, as described 
below. However, it is not necessary to set up a special action for a case that never occurs. 

In describing special actions, the two sides of a surface are called the positive side and the negative 
side. This nomenclature comes from considering the surface near the vertex. The positive side 
contains the +z axis, as shown below. A special action of to positive affects rays traveling towards 
the positive side. A special action of to negative affects rays traveling towards the negative side. 
Note that the normal action of a surface might be either to positive, or to negative, according to the 
particular setup. 

negative side positive side

z

y

z

y

negative side positive side

positive surface normals

 

The convention of the positive and negative side of a surface is also used to describe surface 
normals, as shown in the above figure. A positive surface normal points towards the positive side 
of a surface. Thus the surface normal points inwards for a positive surface, and outwards for a 
negative surface. 

In the special actions spreadsheet, you can specify both a special action and a condition under 
which the action is to be taken. One action may be specified for ordinary rays and one action may 
be specified for the reference ray traced from a new object point. When no action is specified, or 
the condition specified for the action does not apply, the normal glass specification for the surface 
determines the action. If a special action is specified for ordinary rays but not for reference rays, 
the action specified for ordinary rays will apply to reference rays as well. The action and condition 
are chosen by clicking the appropriate cell in the spreadsheet and selecting the desired item from 
the pop-up list. 

The possible special actions are: 

 Pickup from group surface surface_number 

 Reflect 

 Obstruct 
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 Pass undeviated 

 No action 
 

The possible conditions are: 

 To negative 

 To positive 

 First n hits 

 Subsequent hits 
 

The pickup from group surface action means that the ray is to be refracted into the medium 
defined by the glass entry on the specified group surface. For example, in the example above, if 
the ray is reflected and arrives again at group surface 4 traveling from positive to negative, it 
should refract from air into the glass BK7. Since AIR is specified for group surface 4, it is 
necessary to define a special action for group surface 4 for this case. The action would be pickup 
from group surface 3 and the condition would be to negative. 

The special action obstruct might be used on the small secondary mirror of a 2 mirror system in 
which rays passing outside the aperture of the secondary mirror hit the primary mirror and reflect 
back to the secondary mirror. Rays that hit the secondary mirror from the rear should be 
obstructed. Thus, a special action obstruct would be specified for the secondary mirror under the 
condition to positive, and the normal glass specification REFLECT would then apply for rays 
arriving at the secondary from positive to negative. It would not be desirable for the reference ray 
to be obstructed, however, so the action pass undeviated might be specified for reference rays 
under the condition to positive. 

The conditions first n hits and subsequent hits might be useful in modeling special situations. First 
n hits means that the specified action is to be taken the first n times a ray visits the surface. 
Subsequent hits means that the action is to be taken on all subsequent times the surface is visited. 

It is possible to assign an ID number to a surface in a non-sequential group. The ID number is only 
used for lens drawings and is available for the user to designate which surfaces are to be drawn as 
elements, i.e., with connected edges. Since the entry sequence of the surfaces within a group is not 
important, there is no way to know, a priori, that, surfaces 3 and 4, say, are the front and back 
surfaces of a singlet. If possible, the lens drawing routines will draw all surfaces with the same 
(non-zero) element number as surfaces in a single element. 

Array ray tracing 
Lens arrays are aggregations of identical optical assemblies that differ only in their position. The 
assemblies may be regarded as occupying channels defined by array parameters which specify the 
location and orientation of each channel. Lens arrays are similar to non-sequential groups, in that 
the actual surfaces traversed by a ray are not known at the outset.  

In OSLO, an array is defined with respect to a specified surface within the lens system called the 
channel surface. This surface encompasses all of the channels in the array. Channels are centered 
at specified (x, y) positions on this surface and may be shifted by varying amounts in the z 
direction. 

The overall extent of a lens array is determined by the aperture of the channel surface. There are 
no special restrictions on the surfaces that comprise the optical assembly replicated at each 
channel location. The assembly may contain non-sequential groups, tilted and decentered surfaces, 
light pipes, grin rods, etc.  

OSLO supports two types of lens arrays: regular arrays and tabular arrays. For regular arrays, 
channel centers are distributed in a uniform grid over the channel surface. For tabular arrays, 
channel centers are individually specified.  
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An ary command entered at a surface within the main lens system defines that surface to be the 
channel surface for an array, and indicates the type of array to be constructed. The optical 
assembly to be placed at each channel center is defined by the sequence of surfaces following the 
channel surface up to and including the end-of-array surface, which is identified by entering the 
ear command. If an array is created within the Surface Data spreadsheet (by activating the Special 
button and selecting either Regular Lens Array or Tabular Lens Array from the Surface Control 
pull-right menu) you will be prompted for the array type and the ear (end-of-array) surface.  

The thickness entered at the ear surface specifies the distance from the array’s channel surface to 
the surface following the end of the array – i.e., an automatic rco (return coordinates) to the 
channel surface is created at the ear surface. This avoids the need for a special end-of array 
surface encompassing all channels. If the surface following the ear surface has a gc (global 
coordinate) specification, the thickness at the ear surface is, of course, unnecessary.  

Regular arrays 
The command ary (reg, x_spacing, y_spacing, y_offset) defines a regular array. For this type of 
array, the channel centers are located at (x, y) coordinates  

 x = i*x_spacing,    where i = 0, ±1, ±2, ..... 
 y = j*y_spacing + offset,   where j = 0, ±1, ±2, ..., 
and   

offset = y_offset if i is odd, or 0 if i is even. 

The z coordinate of a channel center is the sag of the channel surface at the (x, y) coordinates of 
the channel center.  

If a zero value is specified for x_spacing, all channel centers will lie along the y axis and y_offset 
will be ignored. Similarly, if y_spacing is zero all channel centers will lie along the x axis and 
y_offset will be ignored.  

Channels are aligned so that the z-axis of the channel coincides with the normal to the channel 
surface at the channel center. The y-axis of the channel is oriented so that it is parallel to the yz 
plane of the local coordinate system of the channel surface.  

Tabular arrays 
The command ary (tbl, number_of_channels) initializes a tabular array and reserves memory for 
the specified number_of_channels. The center of each channel may then be specified by entering 
ach (array channel) commands:  

ach (channel_number, x_center, y_center, z_center, channel_tla, channel_tlb, channel_tlc) 

channel_number is an identifying number in the range 1 to number_of_channels. x_center, 
y_center, and z_center specify the coordinates of the channel center. The z_center value is added 
to the sag of the channel surface at the point (x_center, y_center). Thus if z_center = 0, the channel 
center will lie on the channel surface. The remaining arguments specify the a, b, and c tilt angles 
that are used to orient the channel relative to the local coordinate system of the channel surface. 
For tabular arrays, the normal to the channel surface is not used in orienting channels.  

Tabular channels may be effectively deleted by entering the command ach (off, channel_number). 
The memory allocated for the channel is still retained, however, and channels are not renumbered. 
Thus the channel may be redefined by a subsequent ach command.  

In the Tabular Lens Array data spreadsheet, the channel_number field may be activated to toggle 
channels on and off. Channel center coordinates and channel tilt angles are preserved when this is 
done so that this data need not be re-entered when an off channel is turned back on.  

A lens array may be deleted by executing the ard command at the channel surface of the array. All 
array surfaces are retained as normal lens surfaces.  

Ray tracing through lens arrays 
Channel selection 
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When a ray has been traced to the channel surface of an array (and refracted or otherwise bent as 
determined by the properties of the surface) a channel is selected prior to continuing the trace. 
Channel selection is based solely on (x, y) coordinates. The channel whose center is closest to the 
point of intersection of the ray with the channel surface is the one selected. The z coordinate of the 
selected channel is obtained by finding the sag of the channel surface at the channel center and, if 
the channel is tabular, adding the specified z_center of the channel.  

Once the coordinates of the channel center have been determined, a new coordinate system is 
established. The new coordinate system has its origin at the channel center and has its axes 
oriented as described above. The ray point is then transformed into this new coordinate system and 
ray tracing continues. When the ray has been traced to the ear (end of array) surface and refracted 
(or otherwise bent), a return is made to the original coordinates of the channel surface before the 
thickness on the ear surface is applied. Ray tracing then continues normally.  

Channel clipping 

The aperture (or any special apertures or obstructions) at the channel surface is used to clip the 
array channels. If the selected channel center is not obstructed and falls within the aperture (or any 
special apertures) ray tracing continues through the array. Otherwise, a ray failure occurs. Thus the 
extent of the array is determined by the channel surface aperture specification. This channel 
clipping occurs whether or not aperture checking has been requested at the channel surface. Note 
that it is possible for a ray to fall outside the channel surface aperture but still continue through the 
array, since the clipping criterion is only that the selected channel center falls within the aperture. 
However, if aperture checking has been requested at the channel surface, normal aperture 
checking is performed prior to channel selection and rays may be rejected prior to channel 
selection.  
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Random ray tracing 
The normal method for tracing rays in OSLO involves setting an object point, and then tracing all 
rays from that object point until it is changed to a new one. This is a convenient way to work with 
most image-forming systems, but for systems that involve many field points, it becomes 
inefficient.  

An example is the simulation of an extended source, which must be divided into a grid of pixels, 
each of which is characterized by an intensity and wavelength distribution. Unlike points, which 
have no width, pixels have a small but non-negligible size, determined by the accuracy 
requirements for the evaluation model. 

To handle ray tracing from extended sources, it is often convenient to employ random ray tracing, 
in which the field and aperture coordinates of a ray are random variables. OSLO provides a special 
command called trace_ray_generic (trg) in which all of the field, aperture, and wavelength data 
needed to trace a ray are given as arguments. Generic rays are ordinary single rays that bypass the 
data for the current wavelength, field point and reference ray. The trace_ray_generic command is 
not restricted to stochastic ray tracing, of course, but is useful whenever it is desirable to trace rays 
from other than the current field point. 

OSLO provides three random number generators, rand( ), grand( ), and lrand( ), which provide 
random numbers with uniform, Gaussian, and Lambertian probability distributions. The Gaussian 
generator produces random numbers with a zero mean and unit variance. The Lambertian 
generator uses a probability density function equal to  

 

 (6.17) 

 

which is useful in simulating the properties of an incoherent source. 

 

The figure shown below shows a simple example of the use of generic rays to simulate the 
imaging of a single pixel in OSLO. 

 

An SCP command used to produce the above figure is shown below. After initializing some input 
data, the command loops over wavelengths and wavelength weights, tracing rays from random 
field points through random aperture points to simulate light from an incoherent pixel. A more 
extensive command, which can be tailored to particular user requirements, is the *xsource SCP 
command that is supplied with OSLO. 
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*randray 
// Displays image of a pixel centered at a given object point 
// in an extended source, using stochastic ray tracing. 
r = 500; // minimum number of rays/pixel/wavelength 
s = .5; // fractional y height of center of pixel 
t = .5; // fractional x height of center of pixel 
u = .1; // pixel half-width, fractional coordinates 
stp outp off; 
//************************ Get paraxial image height 
sbr(0,1); 
paraxial_trace(); 
h = d1; // paraxial image radius 
//************************ Setup window 
graphwin_reset; 
viewport(0, 1, 0, 1); 
window(iso, -1.0, 1.0, -1.0, 1.0); 
//************************ Loop over wavelengths 
 
 
for (n = 0; n < numw; n++) 
{ 
 pen(n + 2); 
 k = 0; 
 //********************* Loop over wvl wgts (assumed integers) 
 for (i = 0; i < r*ww[n+1]; i++) 
 { 
  sbr(0, 1, 1e20); 
  //***************** Get random ray inside beam radius 
  do 
  { 
   y = 1 - 2*rand(0); 
   x = 1 - 2*rand(0); 
  } while (y*y + x*x > 1.0); 
  //***************** Trace a random ray 
  trace_ray_generic(std, loc, s + u*(1 - 2*rand(0)), 
   t + u*(1 - 2*rand(0)), 0.0, y, x, n + 1, ims, 0); 
  if (b1 != 1e20) 
  { 
   ya[k] = (a1/h - s)/(2*u); 
   xa[k++] = (b1/h - t)/(2*u); 
  }  
  //***************** End of random ray block 
 } 
 if (k)  
  polysymbol(xa, ya, k, 0, 0); 
} 
stp outp on; 
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Eikonal ray tracing 
OSLO has two ways to simulate theoretical lenses that have specified properties: user defined 
surfaces and eikonal surfaces(16). User defined surfaces invoke a subroutine that connects the ray 
parameters before the surface (the point of intersection with a reference plane and two direction 
cosines) with the ray parameters after the surface. This is not as simple as it sounds. It is necessary 
to make sure that the transformation used is physically realizable. It is, for example, quite possible 
to create a user defined surface that simulates a lens that forms a perfect image for all 
magnifications. Unfortunately such a lens would be incompatible with Fermat’s principle, and 
therefore not realizable. The subroutine that connects the ray in the object space with the ray in the 
image space must satisfy a number of constraints that are not always easy to deal with. 

These difficulties fade away when a lens is described by an eikonal function. To do this, choose 
reference planes (x, y) and (x, y) perpendicular to the axis in object space and image space. Then 
the point eikonal S(x, y, x, y) is defined as the optical path along a ray from the point P(x, y) in 
the object side reference plane to the point P(x, y) in the image side reference plane. 
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                        from P to P´

 

Differentiation of the point eikonal by its four variables yields the ray directions:  

 

 

 (6.18) 

 

 

These formulas can be derived from Fermat’s principle, which is therefore automatically satisfied. 
On the other hand we now have a practical problem if we want to follow a ray through the system 
in that the first two of the above equations must be solved for x and y. Usually the structure of the 
eikonal is rather complicated, so that an analytic solution of these equations is out of the question. 
Fortunately, OSLO has numerical techniques for solving these equations built in, so that from the 
user’s point of view this difficulty does not exist. 

Eikonal functions are always defined between two reference planes perpendicular to the axis, one 
in object space and one in image space. In OSLO eikonals are represented by a single plane 
surface, which plays the dual role of object side reference plane and image side reference plane. 
OSLO specifies an incident ray by the coordinates x and y of its intersection point with this surface 
and its direction cosines K and L. The eikonal routines use these data to generate x, y, K, and L 

 
16 The eikonal ray tracing algorithms in OSLO and the material in this section were contributed 
by A. Walther, Worcester Polytechnic Institute. 
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for the ray in image space. To be able to continue with the regular OSLO ray trace the program 
refers these four image side variables to the same plane lens surface used for the input data. Note 
that the eikonal routines are restricted to real ray tracing only; paraxial calculations may therefore 
give erroneous results. 

Let P and P be the points of intersection of a ray with the reference planes in object space and 
image space, and let Q and Q be the intersection points of perpendiculars dropped on the ray from 
the origins in the object space and the image space reference planes. Then the four eikonals in 
common use are the values of the following optical paths:  

 point eikonal:   S(x, y, x, y) = PP 

 point-angle eikonal:  V(x, y, K, L) = PQ 

 angle-point eikonal:  V(K, L, x, y) = QP 

 angle eikonal:   W(K, L, K, L) = QQ 

The properties of these eikonals upon differentiation can be summarized as follows: 

 

 

 (6.19) 

 

 

So if, for example, V is differentiated by L the result is –ny. 

Eikonal for a spherical surface 
To see how the eikonal ray trace works in practice, take any lens you are familiar with and replace 
one of its spherical surfaces by an equivalent eikonal function. The angle eikonal from vertex to 
vertex for a single spherical surface with radius r, separating media with refractive indices n and 
n, is given by  

 

   (6.20) 

 

where 





K n K nK

L n L nL

M n M nM

   
   
     

 (6.21)   

A CCL routine to calculate this eikonal is included in OSLO. To use it, first of all change any 
paraxial solves into direct specifications. Then choose a spherical surface in your lens, set its 
curvature equal to zero, and make it an eikonal surface. The program will ask you how many 
parameters the eikonal needs; your answer should be 1. Specify in the eikonal spreadsheet that the 
type of eikonal is ANGLE eikonal and that the name of the CCL procedure is SPHERIC. Then 
enter the radius of curvature of the surface as EI0. The lens can now be traced again, and the 
results should be the same as before. 

The calculation is a bit slower on account of the great generality of the eikonal ray trace, but this 
only begins to present a problem when spot diagrams with many points need to be calculated. 
Calculating aberration curves and optimization data is more than fast enough for most 
applications.  
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Perfect lens 
The point-angle eikonal of a perfect lens in air with magnification m and focal length f, using the 
perfect object plane and image plane as reference planes, is given by  

 
   (6.22) 
 
The function F(x2 + y2) is related to the spherical aberration of the pupil. For a lens with perfectly 
imaged principal points we have  

 

   (6.23) 

 

This eikonal can be used conveniently whenever a lens with a finite focal length is needed that is 
perfect at a finite magnification. When the object is at infinity this eikonal fails, because in that 
case the front reference plane cannot be placed in the object plane. The angle eikonal between the 
front principal plane and the back focal plane can be used instead: 

 
    (6.24) 
 
This eikonal represents a lens perfectly corrected for infinity, again with the additional property 
that the principal points are free from spherical aberration. OSLO implements a perfect lens as a 
predefined surface type, rather than explicitly as an eikonal, although the same theory is used. 

Variable conjugates 
As an example of optical design using eikonals, consider a lens with the following specifications: 

 focal length: 100 mm. 

 object height: 3 mm. 

 nominal magnification: –1. 

 nominal numerical aperture: 0.5. The stop is located in the front principal plane. 

The lens will be used for a range of object distances differing by ±3 mm from the nominal object 
distance. The lens has to image a 6  6 mm object field. A finite volume cannot be imaged 
perfectly, so the question arises how small the aberrations can be made. Fortunately the 
magnification in the center point is –1, so that Abbe’s sine rule and Herschel’s rule can both be 
satisfied. But the magnification varies by ±3 per cent, so the value of this advantage is 
questionable. 

To determine the inevitable aberrations we use a mock ray tracing process. We describe the lens 
by a point-angle eikonal taken between the nominal object plane and image plane. We use a series 
development that accounts for the paraxial, the third order, and the fifth order terms, but, because 
the object height is small, we delete all terms that are of power higher than two in x and y. 

We use the rotationally symmetric variables  
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The first two terms are the paraxial terms, accounting for the –1 magnification and the 100 mm 
focal length. The other terms are related to the third and fifth order aberrations. The CCL code for 
this eikonal is shown below.  

cmd eik0916a() 
{ 
double a, b, c, aux; 
 
a = Eik_x**2 + Eik_y**2; 
b = Eik_x*Eik_kp + Eik_y*Eik_lp; 
c = Eik_kp**2 + Eik_lp**2; 
aux = b + a/200.0 + (Eik_cof[0] + Eik_cof[1]*a + Eik_cof[2]*b + Eik_cof[3]*c)*c*c; 
Eik_path = aux + (Eik_cof[4]*a + Eik_cof[5]*b + Eik_cof[6]*(b*b))*c + 
Eik_cof[7]*b*b; 
} 
 
The lens data are entered as shown next. We use three configurations: the nominal system in 
configuration1 , and systems in which the object distance is 203 mm and 197 mm in 
configurations 2 and 3, with paraxial image distances of 197.1 mm and 203.1 mm. We set up 
surface 2 as a point-angle eikonal surface with our previously defined ccl function eik0916a. The 
aberration coefficients E0, … , E7 correspond to the eikonal constants EI0, … , EI7. Use the default 
central reference ray aiming under the general operating conditions, a single wavelength of 587.56 
nm, an object height of 3 mm, and an object numerical aperture of 0.5. 
 
*LENS DATA 
Eikonal lens design - conjugates 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ     0.0         200.000000      3.000000             AIR      
 
 AST     0.0        -200.000000    115.470054 AS          AIR      
 
  2      0.0        -200.000000      3.000000 S           AIR      
 
  3      0.0         200.000000    121.470054 S           AIR      
 
 IMS     0.0           0.0           3.000000 S                    
 
*CONFIGURATION DATA 
TYPE  SN   CFG  QUALF       VALUE 
TH     0    2     0    197.000000 
TH     3    2     0    203.100000 
TH     0    3     0    203.000000 
TH     3    3     0    197.100000 
 
 
*EIKONAL SURFACE DATA 
  2   Point-Angle   eik0916a   8 
       EI0     0.0       EI1     0.0       EI2     0.0       EI3     0.0      
       EI4     0.0       EI5     0.0       EI6     0.0       EI7     0.0      
 
  
 
We will now optimize the lens by using the OSLO Spot Size/Wavefront default error function 
with OPD operands, minimizing it by varying the eikonal constants EI0, … , EI7 as well as the 
image distances for the three configurations. We set up the error function being sure to select the 
RMS wavefront error choice and set the maximum configuration for operands to 3. We then 
define the Eikonal coeffients for configuration 0 (all configurations are the same) and the 
thickness of surface 3 for each separate configuration. After optimizing with damped-least squares 
the results are as follows:  
 
*VARIABLES 
 VB   SN  CF  TYP       MIN         MAX        DAMPING      INCR        VALUE 
V 1    2   0  EI0     0.0         0.0         1.000000  1.0000e-07    -0.105350 
V 2    2   0  EI1     0.0         0.0         1.000000  1.0000e-07    -0.001367 
V 3    2   0  EI2     0.0         0.0         1.000000  1.0000e-07     0.010881 
V 4    2   0  EI3     0.0         0.0         1.000000  1.0000e-07     0.252745 
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V 5    2   0  EI4     0.0         0.0         1.000000  1.0000e-07    -0.000334 
V 6    2   0  EI5     0.0         0.0         1.000000  1.0000e-07    -0.004831 
V 7    2   0  EI6     0.0         0.0         1.000000  1.0000e-07    -0.005966 
V 8    2   0  EI7     0.0         0.0         1.000000  1.0000e-07     0.000888 
V 9    3   1  TH      0.100000  1.0000e+04    1.000000    0.011547   199.969820 
V 10   3   2  TH      0.100000  1.0000e+04    1.000000    0.011547   203.075849 
V 11   3   3  TH      0.100000  1.0000e+04    1.000000    0.011547   197.074254 
 
*OPERANDS 
 OP  MODE    WGT      NAME          VALUE  %CNTRB DEFINITION 
O 33  M    0.125000 Orms1         0.516194   5.41 RMS(2)                      
O 54  M    0.500000 Orms2         0.216593   3.81 RMS(2)                      
O 75  M    0.125000 Orms3         0.692944   9.74 RMS(2)                      
O 108  M    0.125000 Orms4         0.425632   3.68 RMS(2)                      
O 129  M    0.500000 Orms5         0.448109  16.30 RMS(2)                      
O 150  M    0.125000 Orms6         0.809761  13.31 RMS(2)                      
O 183  M    0.125000 Orms7         0.660749   8.86 RMS(2)                      
O 204  M    0.500000 Orms8         0.489920  19.48 RMS(2)                      
O 225  M    0.125000 Orms9         0.978079  19.41 RMS(2)                      
MIN RMS ERROR:     0.523220 
 
The ray analysis using the zoom graphics feature shows the aberrations that cannot be corrected, 
no matter how complicated we make the lens. Extreme high index glasses, grin elements, 
diffractive optical elements, aspheres, freeforms, none of these will allow the lens to perform 
better than shown. Of course, the lens must still be designed as this was an exercise of mock 
raytracing. It is certainly of great help to know what aberrations to manage and when to stop 
working because the theoretical limit has been reached.  
 

 
 
For comparison, the ray analysis can be repeated by setting EI0, … , EI7 equal to zero. This 
corresponds to the case in which the center plane is imaged perfectly. The result is that the error 
function is a lot higher, so not insisting on perfection in the center plane makes the lens 
significantly better.  
 
For more information on eikonal ray tracing see, “A. Walther. The Ray and Wave Theroy of 
Lenses, Cambridge University Press, 1995.” 
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Diffractive optics 
In general, the term diffractive optics refers to those optical elements that utilize some 
fundamental structure periodicity along with the wave nature of light in order to change the 
direction of propagation of the light in a controlled way. There are different classes of diffractive 
optics, each with its own set of applications: classical ruled diffraction gratings, holographic 
optical elements, computer-generated holograms, binary optics, surface relief kinoforms. Although 
the details of the operation of these elements differ from type to type, the fundamentals of their 
operation contain many similarities. In this chapter, we will explore some of the basic principles of 
diffractive optics, with an emphasis on those areas related to the recent revival of interest in 
diffractive optics, namely the advanced manufacturing techniques (precision diamond machining, 
binary optics, laser writing systems) that allow for the production of very general diffractive 
optical surfaces. 

Most of the principles of operation for diffractive surfaces can be explained and understood by the 
consideration of a simple linear grating. Even though most diffractive surfaces do not have the 
constant periodicity of a grating, they do have an underlying periodicity of some sort and thus 
their behavior can be understood by analogy with the grating. Consider the grating illustrated in 
the figure below. It exhibits a structure with a fundamental period of L. At this point, it does not 
matter whether this structure is a pattern in amplitude transmission, phase transmission, or both; 
the important feature is that the structure repeats itself with a period of L. Confining our attention, 
for simplicity, to the case where the light is incident in a plane that is orthogonal to the plane of 
the grating, the propagation of light through the grating is described by the familiar grating 
equation: 

  n n
m

Ld i
vsin sin  

 
(6.27)   

where n and n are the refractive indices on the incident and diffracted sides of the grating, i is the 
angle of incidence, d is the angle of diffraction, v is the vacuum wavelength of the light, and m is 
an integer known as the diffraction order. (The form of the grating equation used for ray tracing in 
OSLO is given in the ray tracing chapter under the ray trace algorithms section that discusses 
diffractive optics.) 
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In contrast to the cases of refraction and reflection, the influence of the diffraction order m is seen 
to allow for multiple diffracted beams from a single incident beam. This can be considered a 
consequence of constructive interference; we would expect the diffracted light to constructively 
interfere at an observation point when the individual rays arrive with path length differences of 0, 
v, 2v, 3v, etc.  

Scalar diffraction analysis 
A complete analysis of diffraction gratings requires the use of vector diffraction theory 
(Maxwell’s equations). This is usually an extremely numerically intensive operation and it is 
sometimes difficult to draw general conclusions from the results of the analysis. Fortunately, many 
of the diffractive surfaces used in optical systems have periodicities that are many times the 
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wavelength. In this case, we can approximate the optical field as a scalar quantity, and make use of 
the tools of Fourier optics. Although this results in a great simplification of the analysis, we should 
always keep in mind that it is an approximation, and as such, the conclusions are only as valid as 
the initial assumptions made in using the theory. 

Diffraction grating 

For simplicity, we will consider a one-dimensional grating and restrict the analysis to the yz plane, 
with the grating positioned along the y-axis at z = 0. In diffraction theory, an object is described by 
its transmission function, which is the ratio of the optical field exiting the object to the incident 
field. The grating has a fundamental period of L; this means that the transmission function t(y) for 
the grating has the property t(y) = t(y + L). Because of this periodicity, it is instructive to use the 
Fourier series representation for t(y): 

 
   (6.28) 
 
where f0 = 1/L is the spatial frequency of the grating and the Fourier coefficient cm is given by 

 
   (6.29) 
 
If t(y) is a purely real and positive function, then the grating is referred to as an amplitude grating, 
while if t(y) is a unit-modulus complex function, the grating is a phase grating. In general, t(y) can 
have both amplitude and phase components, but since the grating is a passive element t(y)  
1.0. For most applications, it is important to maximize the transmission of the system, so phase 
elements are preferred.  

In the language of Fourier optics, in the z = 0 plane, a plane wave traveling at an angle i with 
respect to the z-axis has the form  
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The field transmitted by the grating Ut(y, z = 0) is given by the product of the incident field with 
the transmission function 

 

 

  (6.31) 

 

 

The last line of Eq. (6.301) can be interpreted as a series of plane waves, where the propagation 
angles of the plane waves are given by 
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(6.32)   

It is easy to see that Eq. (6.32) is just the grating equation. Thus the diffracted field consists of a 
set of plane waves, traveling at diffraction angles given by the grating equation, with amplitudes 
equal to the value of the Fourier coefficient cm. The diffraction efficiency m is the fraction of the 
incident energy that is diffracted into order m. This efficiency is given by the squared modulus of 
the Fourier coefficient: 
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(6.33)   

where the asterisk denotes the complex conjugate. Note that even though t(y) may have a 
discontinuity at the boundaries between periods, Eq (6.28) is an expansion in continuous basis 
functions, so that Eq. (6.31) is an expansion in continuous diffracted waves.  

Equation (6.31) illustrates one very important fundamental property: the grating frequency 
determines the direction of propagation of the diffracted orders while the transmission properties 
of an individual period [used to calculate cm via Eq. (6.29)] determine the distribution of energy 
among the various diffracted orders. All gratings of frequency f0 will diffract light at angles given 
by the grating equation, but the energy distribution among the orders will be a function of the 
single period transmission function. It is important to realize that this conclusion is valid 
regardless of whether scalar or vector diffraction theory is applied to the grating: the diffracted 
waves propagate at angles that are given by the grating equation. The use of a rigorous 
electromagnetic grating theory will result in a more accurate prediction of the diffraction 
efficiency of a grating but will not change the diffraction angles of the diffracted waves. 

As mentioned above, based on throughput considerations we are generally interested in phase 
gratings. The desired phase modulation may be introduced by a variation in refractive index across 
a constant thickness of material or, more commonly, by a surface-relief profile between two media 
of differing refractive indices. These surface relief diffractive structures, sometimes called 
kinoforms, have been subject of most of the recent research and development in diffractive optics. 
Consider the sawtooth phase function (y) illustrated below. 

y

(y)

L 2L-L-2L

2

 

Within each period, the phase function is linear, reaching a maximum value of 2. One can show 
that for this transmission function t(y) = exp[i(y)], the diffraction efficiency is 

 

  (6.34) 

 

The function sin(x)/(x) is often called the sinc(x) function. The sinc function is equal to unity if 
its argument is zero and is equal to zero for any other integer argument. Recall that m, the 
diffraction order, is an integer value. We see from Eq. (6.34) that if  = 1, i.e., if there is exactly 
2 of phase delay at the edge of each grating period, then 1 = 1.0 and all other m = 0. Thus, we 
would have a grating with a diffraction efficiency of 100%: all of the incident light is diffracted 
into the first diffraction order. It is this potential for very high diffraction efficiencies, coupled 
with modern manufacturing techniques, that has stimulated much of the recent interest in 
diffractive optics. 

As mentioned earlier, the phase function is usually implemented as a surface-relief pattern. For a 
thin structure, the optical path difference (OPD) introduced by the structure is (n  n)d(y), where 
d(y) is the height profile of the surface. Thus, the phase function  for a wavelength  is just (y) 
= (2/)[n()  n()]d(y). For this sawtooth pattern, the only parameter to be chosen is the 
maximum thickness dmax. This value is chosen such that exactly 2 of phase delay is introduced 
for a specified wavelength, usually called the design wavelength and denoted by 0. If this phase is 
to have a maximum value of 2, this means that the maximum thickness dmax is 



Diffractive optics 173 

 
  (6.35) 
 
It is worthwhile to point out that for typical refractive materials used for visible light and in air, 
n  n is about 0.5, so dmax is about two wavelengths.  

For wavelengths other than the design wavelength, the maximum phase delay is max = 
(2/)[n()  n()]dmax. Using Eq. (6.35), we find that the wavelength detuning parameter  is 
given by 

 
  (6.36) 
 
Usually, the effect of the material dispersion components of Eq. (6.36) is dwarfed by the 
wavelength terms, and () can be approximated by 0/. With this approximation, the diffraction 
efficiency as a function of wavelength and diffraction order takes the form 

 
  (6.37) 
 
The diffraction efficiency as calculated from Eq. (6.37) is illustrated in the figure below for the 
orders m = 0, m = 1, and m = 2. 
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It is often useful to know the average diffraction efficiency m over the spectral band of interest 

(from min to max): 

 
  (6.38) 
 

We can find an approximate expression for m by using a power series expansion of Eq. (6.37) 

and integrating term by term. For the usual case of m = 1, the result is 

 
  (6.39) 
 
If the spectral band is symmetric about 0, with a width , so that min = 0 – /2 and max = 0 
+ /2, then Eq. (6.39) simplifies to 

 
  (6.40) 
 
Photolithographic techniques are often used to produce a stair-step approximation to the ideal 
sawtooth profile, as illustrated in the figure below for the case of four discrete phase levels. This 
process is known as binary optics, since each photolithographic mask and etch step increases the 
number of phase levels by a factor of two. 
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If the linear phase is approximated by P equally incremented constant phase levels (P = 4 in the 
above figure), the diffraction efficiency is given by 

 

  (6.41) 

 

In the limit as P  , the binary optics profile approaches the continuous linear profile, and Eq. 
(6.41) reduces to Eq. (6.34). For the important case of m = 1 and  = 1 (i.e.,  = 0), Eq. (6.41) 
reduces to  

 
  (6.42) 
 
If N photolithography steps are performed, the resulting diffractive surface has P = 2N phase 
levels. So, for example, if N = 4, then P = 24 = 16 and Eq. (6.42) predicts a peak efficiency of 
98.7%. In practical situations, P is often large enough so that P 2 sin2[(/P)( – m)] can be 
approximated by P 2 [(/P)(  m)]2 = [(  m)]2. For large enough P, then, Eq. (6.42) is 
approximated by 

 
  (6.43) 
 
Equation (6.43) can be considered as the product of the “binary optics term” sinc2(m/P) with the 
ideal sawtooth phase efficiency sinc2(  m).  

Extended scalar theory 
The analysis in the previous section made the assumption that the optical field could be 
approximated as a scalar quantity and the diffracting structure could be modeled as a thin screen 
that could be analyzed by a simple transmission function. These approximations are only valid 
when the ratio of wavelength-to-period (/L) is small. When this ratio is not small, an accurate 
analysis requires the use of vector diffraction theory. This is a well-developed area of research and 
there are several theories that may be used for accurate computations of diffraction efficiency for 
gratings of arbitrary /L ratios. Generally, these computations are extremely numerically intensive 
and time consuming.  

For the diffractive optics used in imaging systems, we usually find /L ratios that are neither very 
small (in which case we could use the scalar theory developed in the previous section) nor very 
large (requiring the use of vector diffraction theory). This suggests that it would be useful to find a 
“middle ground” theory, i.e., something more accurate than the simple scalar theory but not as 
time consuming as vector theory. One approach to this problem is the “extended scalar theory” 
developed by Swanson(17). The extended scalar theory attempts to avoid the assumption that the 
diffracting structure is infinitely thin. 

 
17 G. J. Swanson, “Binary Optics Technology: Theoretical Limits on the Diffraction Efficiency of 
Multilevel Diffractive Optical Elements,” Massachusetts Institute of Technology, Lincoln 
Laboratory, Technical Report 914, 1 March 1991. 
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The extended scalar theory uses ray tracing to approximate the field exiting the structure and then 
applying scalar diffraction theory. Consider tracing rays through the surface profile illustrated 
below. For this situation, ray tracing considerations would indicate that the finite thickness of the 
structure leads to “shadowing” effects. The light distribution exiting the grating does not fill the 
aperture. We would expect this underfilled aperture to have a lower diffraction efficiency than a 
filled aperture.  

L
L

n

n

 

Given a grating period L and an angle of incidence i, we can find the rays that are transmitted by 
each period of the sawtooth surface profile. (We assume that the incident wave can be 
approximated as locally planar.) By keeping track of the optical path of the two extreme rays, we 
can find the effective maximum phase difference  across a grating period. Also, we can find the 
position L where the transition from light to no light occurs. Given these values, the transmission 
function for the fundamental period of the grating becomes 

 

  (6.44) 

 

Using this transmission function in Eq. (6.29), we find that the diffraction efficiency is given by 

 
  (6.45) 
 
In the limit of zero thickness, L/L = 1, and Eq. (6.45) reduces to the scalar result of Eq. (6.34). 
The primary effect of the finite thickness is the reduction of the diffraction efficiency by the 
(L/L)2 factor. The quantity L/L is the ratio of the area filled with light to the total area and is 
called the duty cycle.  

A key feature of the extended scalar theory is that the efficiency is still given by an analytic 
expression, not the result of a numerical calculation. Almost all of the quantities needed to 
evaluate Eq. (6.45) are available from the ray trace; the only exception is the depth of the sawtooth 
surface profile. In OSLO, you may enter the depth directly, or use what Swanson terms the 
“optimum depth.” The optimum depth is found by requiring the propagation direction for 
normally incident light to be the same regardless of whether Snell’s law or the grating equation is 
used. The optimum depth dopt for the design wavelength 0 and diffraction order m (usually 1) is 

 

  (6.46) 

 

Note that the optimum depth is a function of the period L; the smaller the period, the larger the 
influence of the finite thickness of the structure on the path lengths of rays traced through the 
surface relief profile. In the limit of very small wavelength-to-period ratios (0/L  0), the 
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optimum depth simplifies to the scalar value, Eq. (6.35). In OSLO, if you enter a value of zero for 
the depth of the surface relief profile, the optimum depth as computed by Eq. (6.46) will be used.  

It should be stressed that this extended scalar theory is still only an approximation to the real 
physics. It has the advantage of correctly modeling the observed physics that the simple scalar 
theory does not, i.e., a decrease in diffraction efficiency as the wavelength-to-period ratio 
increases. Swanson shows that there is good agreement between the extended scalar theory and the 
exact vector theory for wavelength-to-period ratios as large as 0.5. This includes the majority of 
diffractive optics that are used as lenses and/or aspheric correctors. For larger values of /L, one 
must use a vector theory, particularly for the accurate modeling of polarization-dependent 
properties. The purpose of the extended scalar theory is to provide a reasonable estimate of 
diffraction theory so that the effects of non-unity efficiency may be modeled and potential trouble 
spots identified. It is not meant to replace rigorous electromagnetic grating theory.  

The diffraction theory presented above suggests that we can separate the design of a diffractive 
optical element into two parts: i) the specification of the grating spacing and ii) the design of the 
structure of each grating period. The grating spacing determines the direction of propagation of the 
diffracted light for each order of interest. The structure of the grating period determines the 
diffraction efficiency, i.e., how much energy is diffracted into each order. The geometrical optics 
parameters are completely governed by the grating spacing; thus, this is usually the primary 
function of interest during the design phase of a project. Given a desired distribution of grating 
periods, it is then necessary to compute the diffraction efficiencies, which are always a function of 
the type of diffractive element (amplitude transmission, phase transmission, etc.) and 
manufacturing process (diamond turning, binary optics, holography, etc.). Any diffracting surface 
relief structure can be considered to be a collection of locally constant-period gratings, so the 
diffraction efficiency calculations presented above may be applied to an arbitrary surface-relief 
diffracting structure, as long as the phase function is locally “blazed” in the manner of the 
sawtooth grating.  

Aberrations of diffractive elements 
We now consider the aberrations introduced by diffractive elements in an optical system. 
Throughout this section we will be concerned with rotationally symmetric phase surfaces and their 
use in both monochromatic and spectrally broadband systems. We will assume that the design 
diffraction order is the first (m = 1), as is usually the case in practice. Thus, in an effort to avoid 
notational clutter, the order m will not be explicitly shown in the analysis. The phase function we 
will be using is the DFR type in OSLO: 

 
  (6.47) 
 
Note that this phase function is a continuous function of r, indicating that the diffracted waves are 
also continuous. This is justified by the discussion following Eq. (6.33. When implemented as a 
kinoform, the surface of the diffractive lens defined by Eq. (6.47) is discontinuous; the 
discontinuities (diffracting zone boundaries) occurring when (r) = j2, where j is an integer. The 
DF0 term is just a constant phase offset and has no effect on the imaging performance; we will 
assume that DF0 = 0. The paraxial properties of the lens are completely described by the DF1 
term. Paraxially, the transmission function of a diffractive lens is 

 

  (6.48) 

 

Standard Fourier optics theory says that the transmission function for a lens of focal length f (and 
power  = 1/f) is 
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 (6.49) 
 
Comparison of Eqs. (6.48) and (6.49) reveals two important facts. First, at the design wavelength 
0, the paraxial power 0 is equal to 2 DF1. In other words, given a design focal length f, the r2 
coefficient should be 1/(2f). Also, the paraxial power as a function of wavelength is 

 

  (6.50) 
 
Using Eq. (6.50), we can compute an Abbe value diff, defined over the wavelength range from 
short to long: 




 diff
short long



0

 

(6.51)   

Equation (6.51) reveals several interesting features of diffractive lenses. First note that the value of 
diff depends only on the wavelengths and is independent of any material-type parameters. All 
diffractive lenses have the same dispersion (over the same wavelength range); there are no 
“crown” or “flint” diffractive optics. Also, since long is greater than short, diff is always negative. 
This means that the dispersion is in the opposite sense from conventional refractive materials. For 
glasses, the refractive index is higher for blue light than for red light, so the lens has more power 
in the blue. On the other hand, from Eq. (6.50) we see that a diffractive lens has more power in the 
red (longer wavelength). This can also be seen from the grating equation, which implies that red 
light is “bent” more than blue. Finally, the absolute value of diff is much smaller than the Abbe 
value for conventional refractive materials. Since the Abbe value is a measure of inverse 
dispersion, a small value of  means more chromatic dispersion. This should not be surprising, 
given the wide use of gratings as dispersive elements in devices like spectrometers. To illustrate 
these points, consider the usual visible spectrum defined by the d, F, and C lines. Using these 
wavelengths, the value of diff is –3.45. 

Despite their dispersive properties, much of the recent work in system design with diffractive 
optics has, in fact, been in spectrally broadband systems, where diffractive lenses are used in 
conjunction with refractive and/or reflective elements. As a side note, an all-diffractive achromatic 
system can be made, but it has some peculiar properties. The most unattractive feature of such a 
system is that the achromatic image formed by an all-diffractive system must be virtual, although a 
conventional achromat may be used to form a final real image. Since diffractive lenses are very 
thin structures, by putting a diffractive surface on one side, a refractive singlet can be made into an 
aspherized achromat with only a tiny change in weight or bulk. Diffractive lenses have been 
proposed for use in both achromatic systems and systems in which a large amount of chromatic 
aberration is desired. 
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Chapter 7 Image evaluation 
 

The goal of most optical design projects is to assemble an optical system that performs a certain 
task to a specified degree of accuracy. Usually, the goal is to form an image, i.e., a distribution of 
light that “resembles” some object. A necessary part of this process is determining how closely 
this goal has been achieved. Alternatively, you may have assembled two (or more) different 
systems and be forced to answer the question: which is better, system A or system B (or C, etc.). 
Obviously, we need some way to quantitatively assess the optical performance of a lens. 

It is unrealistic to be forced to formulate a different figure of merit for every conceivable object of 
which one might wish to form an image. Fortunately, we can think of an arbitrary object as a 
collection of simple objects: points, lines, edges, etc. The image evaluation techniques discussed 
in this chapter are all based on looking at the image of one of these “primitive” objects. These 
objects are simple enough to allow us to analyze their imagery in great detail and also provide 
insight into the imaging of more complex objects. 

Geometrical vs. diffraction evaluation 
In general, we consider light as a vector wave phenomenon, which implies looking for solutions to 
Maxwell’s equations. This is not necessary for most optical design problems. If we ignore the 
vector nature of the field, we reduce the problem to a scalar wave problem, which implies looking 
for solutions to the Helmholtz equation, i.e., the scalar field u(x, y, z) that satisfies 

   2 2, , , , 0u x y z k u x y z    (7.1)   

where k = 2/ and  is the wavelength. If we further ignore the wave-like nature of light, we 
reduce the problem to a ray phenomenon, whose behavior is described by Fermat’s principle, 
which states that the optical path length along a physically possible ray between two points is a 
stationary value. In this chapter, we will generally consider the propagation of light to be 
accurately described by rays, but we will utilize many principles of scalar wave theory. 

When we perform some image evaluation based solely on the basis of light rays, we call this a 
geometrical evaluation. Another geometrical quantity is the geometric wavefront, i.e., a locus of 
constant optical path from a single point. Keep in mind that even though we are considering a 
wave, this wavefront is constructed according the laws of geometrical (ray) optics. We will often 
use results from scalar wave theory with the assumption that the incident field is well 
approximated by this geometrical wavefront. In this case, we are performing a diffraction 
evaluation. Diffraction effects impose the limits on the performance of an optical system. 
Geometrically, it is possible that all of the rays from an object point may converge to a single 
image point, but wave theory shows that the image will be of a finite size, called the diffraction 
limit. For systems with small amounts of aberration, diffraction cannot be ignored. 

Spot diagrams and wavefronts 
A collection of ray data resulting from tracing a large number of rays from a single object point 
through the aperture of the lens is called a spot diagram. The name is a consequence of the 
appearance of the resulting plot when the ray distributions in the image plane are displayed as 
“spots” in a graph, as in the figure below. In OSLO, this ray distribution is called a spot diagram 
even though it is used for much more than just plotting the “spots”. For example, since the 
wavefront is the surface that is orthogonal to the rays at a constant optical path from the source 
point, we can keep track of the optical path lengths of the rays and construct the wavefront exiting 
the lens. It is important to note that the spot diagram does not necessarily indicate the distribution 
of irradiance in the image, as the plot does not show any weighting of the rays. Only in the case 
when the pupil is uniformly illuminated, and the rays are uniformly distributed in the pupil, is the 
ray intersection density in the spot diagram proportional to the geometric irradiance. 
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In OSLO, the rays that are traced for a spot diagram and wavefront are distributed in a square grid 
in the entrance pupil. The parameters controlling this grid are set in the Setup spreadsheet accessed 
using the Setup button in the lens spreadsheet. The number of rays that will be traced is 
determined by the number of aperture divisions (abbreviated APDIV in OSLO) across the 
entrance pupil. The grid pattern for APDIV = 16.0 is shown below.  

 

In OSLO, spot diagram rays are aimed such that the above grid corresponds to equal division of 
the pupil in direction cosine space. This results in an evenly spaced grid in the paraxial entrance 
pupil (which is a plane) only in the limiting case of an infinitely distant object. Aiming the rays in 
this way results in a more uniform ray distribution in the exit pupil, particularly for systems that 
have a large numerical aperture in object space. This so-called aplanatic ray aiming is motivated 
by the Abbe sine condition, which states that for an infinitely distant object, it is the sine, rather 
than the tangent, of the exiting slope angle that is proportional to the ray height in the pupil. 

Since the exit pupil is an image of the entrance pupil, we would expect that if the ray distribution 
in the entrance pupil is in the above grid pattern, there should be a similar grid pattern in the exit 
pupil. But just as the real image is, in general, an aberrated version of the object, the real exit pupil 
is an aberrated version of the entrance pupil. Thus, the ray distribution in the exit pupil may be 
somewhat distorted from the regular grid illustrated above. For most systems and applications, the 
effects of these pupil aberrations are negligible. OSLO Premium provides the option of tracing 
image space spot diagrams, for which the rays are traced, iteratively if necessary, such that they 
form an equally spaced grid in image space direction cosines (i.e., equally incremented on the 
reference sphere). Image-space spot diagrams can be used for increased accuracy, particularly with 
calculations that assume equally spaced input data (e.g., Zernike wavefront analysis). However, 
since this is an iterative process, image space spot diagrams require more computation time. 

You can think of the grid cells as sampling the continuous wavefront that actually propagates 
through the lens. As with any calculation in which a fundamentally continuous function is 
approximated by a finite number of samples, the accuracy of any resultant quantity depends on 
whether the sampling is sufficient. Unfortunately, there is no universal way to determine the 
necessary number of aperture divisions for an arbitrary system. To ensure accuracy it is always a 
good idea to repeat a calculation with an increased number of divisions until the resulting 
calculation does not change substantially (i.e. the numerical process has converged). A simple, but 
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illustrative, example of the effect of APDIV on the accuracy of the resulting calculations is given 
by the above figure. The real pupil is a circle, but the pupil boundary used for computation is the 
outer boundary of the grid. As the number of aperture divisions increases, the difference between 
the circle and the grid boundary becomes smaller. 

When a spot diagram is traced, OSLO saves more information than just the ray coordinates on the 
image surface, which are necessary to plot the spot diagram itself. For example, by saving the 
differences in the x and y direction tangents of the rays (measured relative to the reference ray), it 
is possible to compute spot sizes on focal shifted image surfaces without retracing the rays. Also, 
by saving the coordinates of each ray’s intersection with the reference sphere, the optical path 
difference (and, hence, the change in the wavefront) introduced by a change of focus can be 
accurately computed, again without retracing the rays. Saving this data with the spot diagram leads 
to an increased efficiency when computing quantities such as through-focus MTF and focal shifts 
for minimum spot sizes or wavefront error. 

Usually, it is assumed that the light entering the system is of uniform intensity. This is not the case 
if the system is to be used with a laser. In this case, it is appropriate to use a beam with a Gaussian 
intensity distribution. In OSLO, this can be done in the Setup spreadsheet by clicking the Gaussian 
apodization button, and entering the x and y beam sizes. These are the 1/e2 radii, measured at 
surface 1. It is important to remember that the overall size of the ray bundle is determined by the 
entrance beam radius; the Gaussian spot sizes just provide an amplitude weighting of the rays. 
You should make the entrance beam radius at least twice the value of the larger of the x and y 
Gaussian spot sizes if you want to simulate an untruncated Gaussian beam.  

Spot size analysis 
The general concept of spot diagram analysis involves tracing enough rays so that the data for any 
particular ray can be treated statistically. Each ray is considered to carry a weight proportional to 
the area of its cell in the aperture of the system and also proportional to the value of the Gaussian 
apodization function, if any, at the center of the cell. In the study of random variables, a much 
used concept is that of moments, or average values. For example, if a variable x has a probability 
density function of p(x), the first moment, or centroid, of x is 

( )x xp x dx




   
(7.2)   

and the second moment is 

2 2 ( )x x p x dx




   
(7.3)   

The variance, or second central moment, is defined by 

 2 22 2( )x x p x dx x x




      
(7.4)   

The square root of the variance, , is the standard deviation and is used to measure the spread of 
values taken on by x. We can use these concepts from statistics to form measures of the ray 
distributions in the spot diagram. If we have n rays in the spot diagram, each with a weight wi and 
transverse aberration (DXi, DYi), measured relative to the reference ray, then the position of the 
centroid, relative to the point of intersection of the reference ray with the image surface is 

1 1

1 1n n

i i i i
i i

x w DX y w DY
W W 

    
(7.5)   
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Similarly, the variances are determined by 
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The root-mean-square (RMS) spot sizes in x and y are the square roots of the above quantities. 
Finally, the radial RMS spot size r is 

2 2
r x y      (7.8)   

The above computations are carried out by OSLO when you request a spot diagram. OSLO also 
keeps track of the directions on the rays in the spot diagram so that the spot sizes may be 
computed on a focal shifted image surface, and also so that optimum (in the sense of minimum 
RMS) focus positions may be found. Also note that by measuring spot sizes relative to the 
centroid, rather than the reference ray location, any distortion in the image is effectively 
“subtracted out” from the calculation. For example, the above analysis performed on the spot 
diagram displayed above, yields the output 

*SPOT SIZES  
   GEO RMS Y   GEO RMS X   GEO RMS R  DIFFR LIMIT     CENTY       CENTX 
    0.002907    0.007909    0.008426    0.001296  6.5773e-05      -- 
 

The standard deviations x, y, and r in the above equations are labeled as GEO RMS X, GEO 
RMS Y, and GEO RMS R in the OSLO output. The positions of the centroid relative to the 
reference ray x and y are labeled CENTX and CENTY. Since this is a rotationally 
symmetric lens and we have chosen an object point on the y-axis, CENTX is identically zero by 
symmetry, as in the figure below. The DIFFR LIMIT is the radius of the equivalent Airy disk for 
the system. This value can be compared to the geometric spot sizes as an indication of how close 
(or far) the performance is to the diffraction limit. If the geometric spot size is much larger than 
the diffraction limit, we would expect that the performance of the lens will be limited by the 
geometric aberrations. 
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Wavefront analysis 
We can also apply the statistical ideas developed in the previous section to the geometric 
wavefront that is constructed from the rays in the spot diagram. For a geometrically perfect point 
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image, the corresponding wavefront is a sphere, centered on that point. The optical path difference 
(OPD) or wavefront aberration is the departure of the actual wavefront from this reference sphere. 

One subtlety in considering the wavefront rather than the geometric spot distribution is that there 
is some amount of freedom in choosing the center and radius of the reference sphere. Since an 
aspheric wavefront changes shape as it propagates, the amount of OPD depends on the location 
and, hence, the radius, of the reference sphere. For most systems, the OPD is relatively insensitive 
to where the wavefront aberration is measured, but for some systems (particularly those with a 
large amount of pupil aberration) the location of the reference sphere is a critical parameter. By 
default, OSLO locates the reference spherical wavefront in the real exit pupil of the system, 
although you are free to specify another location, as a General Operating Condition. The exit pupil 
is located at the image space intersection of the reference ray with a ray that is differentially 
displaced in the field from the reference ray. 

Also, we are usually free to choose the position of the center of the reference sphere, constrained 
to the image surface. By default, OSLO chooses the reference sphere center location such that the 
RMS wavefront aberration (i.e., the standard deviation of the OPD) is minimized, as shown in the 
figure below. For reasonably well corrected systems, the point that minimizes the RMS wavefront 
error coincides with the peak of the diffraction point image. This point is sometimes called the 
diffraction focus. Most diffraction based calculations in OSLO use this best-fit reference sphere by 
default. This choice of reference sphere center gives a true indication of the wavefront’s departure 
from sphericity but not necessarily of the fidelity of the image point to its desired location. Thus, 
distortion must usually be considered separately from the RMS wavefront aberration. 
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From the same spot diagram rays traced to generate the spot diagram displayed earlier in this 
Chapter, a wavefront analysis yields 

*WAVEFRONT RS 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    RSY         RSX         RSZ 
    4.267764    1.047296    0.018790   -0.000430      --          -- 
 
Note that we are usually not concerned with the average value of the OPD, since a constant OPD 
error (sometimes termed piston error) has no direct effect on image formation in incoherent light. 
RSY, RSX, and RSZ are the positions of the center of the reference sphere, relative to the 
reference ray intersection with the image surface. For this example, the object point is on the y-
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axis, so RSX is zero, as expected by symmetry considerations. RSZ is also zero, since we are 
evaluating the wavefront based on the nominal location of the image surface. 

For some evaluations, particularly interferometric testing, it is useful to represent the wavefront in 
the form of polynomials. The most common polynomials used for this purpose are the Zernike 
polynomials. These polynomials form an orthogonal basis set in the polar coordinates  and  over 
the interior of the unit circle. They have the properties that the average value of each polynomial 
(other than the constant term) is zero over the unit circle and each term minimizes the RMS 
wavefront error to the order of that term. Thus, the RMS wavefront error can not be decreased by 
the addition of lower order Zernike polynomial terms. It should be noted that the orthogonality 
condition for the Zernike polynomials is only maintained if the domain considered is the entire 
interior of the unit circle. Zernike fits performed over non-circular data sets will usually not give 
an accurate representation of the actual wavefront. On the positive side, knowing the Zernike 
coefficients allows for a very compact description (only n numbers, the coefficients) of a 
potentially complex shape wavefront. If we denote the ith Zernike polynomial by Zi(, ), then the 
total wavefront W(, ) is given by 
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(7.9)   

where ci are the coefficients of the expansion. As mentioned earlier in this chapter, it is 
recommended that image space spot diagrams be used for Zernike analysis (OSLO Premium 
only). The orthonormalization procedure that is performed as part of the Zernike analysis yield 
more accurate results if the input data points are equally spaced. More information on Zernike 
polynomials may be found in Chapter 3. 

Point spread functions 
The diffraction image of a point object is called the point spread function or, in the language of 
linear systems, the impulse response. Fortunately, we can calculate the point spread function from 
a knowledge of the geometric wavefront, which is available from the spot diagram rays.  

The amplitude distribution in the exit pupil A(x, y) and wavefront aberration W(x, y) can be 
combined to form the complex pupil function P(x, y): 

     , , exp ,P x y A x y ikW x y     (7.10)   

where k = 2/, and  is the wavelength. The pupil function is defined such that P(x, y)  0 
outside the pupil. Within the Kirchhoff approximation, the diffracted amplitude U(x, y) is given 
by  

     exp
, ,

A

ikRi
U x y P x y dA

R


  

   
(7.11)   

where A is the area of the pupil and R is the distance from the pupil sphere point (x, y) to the 
observation point (x, y). The coordinate system is illustrated below.  
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For most of cases of interest, Eq. (7.11) is well approximated by 
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(7.12)   

where R is the radius of the reference sphere, (x, y) is a quadratic phase factor, and MR is the z-
direction cosine of the reference ray. A detailed derivation of Eq. (7.12) may be found in Hopkins 
and Yzuel(18). Since P(x, y) is zero outside A, the limits on the integrals in the above equation 
have been written as – to  in order to show more explicitly the form of the integral as a Fourier 
transform. (The double integral in Eq. (7.12) is easily recognized as a 2-dimensional Fourier 
transform with frequency variables x = x/R and y = y/R.) In most cases, imaging systems are 
used with incoherent illumination and we are only interested in the irradiance [squared modulus of 
U(x, y)] in the point image. Thus, the usual definition of the point spread function is in terms of 
irradiance, i.e., 

    2
, ,PSF x y U x y     (7.13)   

The Fourier transform relationship between the pupil function and the complex amplitude of the 
PSF allows us to make use of the powerful tools of Fourier and linear systems theory. The prime 
example of this is the widespread use of transfer functions, which are described later in this 
chapter.  

There are two primary techniques for the numerical computation of the integral in Eq. (7.12): 
direct integration and the Fast Fourier Transform (FFT). There are advantages and disadvantages 
associated with both of these methods. Direct integration allows for the computation of the PSF 
anywhere in image space, but only one point at a time. The FFT is generally a much faster way to 
compute Fourier kernel integrals than point-by-point methods, but the increased speed comes at 
the expense of flexibility in choosing the sampling points in the image plane. The nature of the 
FFT algorithm fixes the sampling interval in the image plane once the pupil sampling (i.e., the 
number of rays traced across the pupil diameter) and the number of points in the FFT (N) are 
chosen. Also, since the FFT computes the entire N  N transform in a single operation, this is an 
inefficient way to compute the PSF value at a single point, as is necessary, for example, when 

 
18 H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of 
aberrations,” Optica Acta 17, 157-182 (1970). 
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computing the Strehl ratio. On the other hand, for applications such as displaying a perspective 
plot of the PSF or computing an energy distribution, it is necessary that the PSF be known over a 
grid of points in the image plane and the loss of sampling freedom is often offset by the decrease 
in computation time. OSLO uses both of these methods, depending on the application.  

When using an FFT, it is important to understand how the sampling in the pupil and the image are 
related. (For simplicity and clarity, we will restrict the discussion here to one dimension. Similar 
arguments apply for the second dimension.) As stated above, the integral in Eq. (7.12) is a Fourier 
transform, where the spatial frequency variable is y = y/R. Let N be the number of points (in 
one-dimension) in the array used for the FFT calculation. (The FFT algorithm requires that N be a 
power of 2.) Then, the relationship between the sampling intervals in the spatial and spatial 
frequency domains is given by 

1
y N y

 


 
(7.14)   

Thus, given a sampling interval in the pupil of y, the sampling interval in the image is 
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(7.15)   

If we have traced M rays (where M < N) across a pupil of diameter D, then y = D/M, so 
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(7.16)   

where 0 is the vacuum wavelength and NA is the numerical aperture (NA = n (D/2)/R). We can 
consider M/N as the “fill factor” of the input array. Equation (7.16) indicates the tradeoff between 
pupil and image sampling and also how the sampling interval in the image is fixed, once M and N 
are chosen. Also, note that the length of one side of the square image patch represented by the FFT 
grid is  

0Patch size
2

N y M
NA

    
(7.17)   

which is only a function of M. It may appear that values of M close to N are preferable, so that 
most of pupil array is filled with data, rather than padded with zeros. Since, however, we are 
dealing with the discrete representation of a continuous function, we need to be aware of the 
possibilities of aliasing. The Whittaker-Shannon sampling theorem states that aliasing is 
eliminated if the sampling rate is at least twice the highest frequency component in the function, 
max. Thus, to avoid aliasing, 

1

2
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max

 
 (7.18)  

In the transfer function section later in this chapter, it is shown that the cutoff frequency for the 
OTF (which is the Fourier transform of the PSF) is 0 = 2 NA/0. Thus, the maximum value of y 
that satisfies Eq. (7.18) is 0/(4 NA) and the value of M0 that corresponds to this y is such that 
(0 M0)/(2 NA N) = 0/(4 NA) or M0 = N/2. Values of M much larger than M0 lead to the increased 
possibility of aliasing (and decreased resolution in the image plane grid) while values of M much 
smaller than M0 may result in an inaccurate representation of the wavefront, due to undersampling. 
Generally a value of M close to N/2 results in acceptable sampling intervals and efficiency. 

For a diffraction-limited system, the wavefront aberration is zero, so the pupil function is just the 
amplitude of the spherical wavefront in the exit pupil. If the pupil is uniformly illuminated, then 
the PSF is just the squared modulus of the Fourier transform of the shape of the exit pupil. For 
example, for the common case of a circular pupil of radius a, the point spread function is 
rotationally symmetric (i.e., it is a function only of r = (x2 + y2)1/2) and can be written as 



186 Point spread functions 

 

    2

12J b
PSF r

b

 
   

 
 

(7.19)   

where J1 is the Bessel function of the first kind of order 1 and 
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(7.20)   

In the above equation,  is the wavelength in image space, 0 is the vacuum wavelength, and NA is 
the numerical aperture (NA = n sin U = n a/R). Equation (7.19) is referred to as the Airy pattern. 
J1(x) has its first zero at x = 1.22, so the radius of the Airy disk is the value of r such that b = 
1.22 , or 

00.61
Airyr

NA

   
(7.21)   

The above radius is reported as the DIFFR LIMIT as part of the spot size analysis. 

We can use the perfect lens surface in OSLO to illustrate the form of the perfect point spread 
function described by Eq. (7.19). If we set up a perfect lens with a numerical aperture of 0.2, the 
computed diffraction limit should be close to  rAiry = 0.61*0.00058756 mm/0.2 = 0.001792 mm. 
The geometric spot sizes are zero, since the lens is geometrically perfect. 

*SPOT SIZES  
   GEO RMS Y   GEO RMS X   GEO RMS R  DIFFR LIMIT     CENTY       CENTX 
      --          --          --        0.001792      --          -- 
 

 

A widely used figure of merit for well-corrected systems is the Strehl ratio (or Strehl definition). 
This is the ratio of the peak value of the PSF to the peak of the PSF for an equivalent perfect 
(unaberrated) system. (For small wavefront aberrations, the Strehl ratio can be shown to be 
directly related to the variance of the wavefront.) This normalization is used by OSLO; thus the 
PSF values reported by OSLO are relative to the diffraction-limited peak value. Note that other 
normalizations are possible and sometimes used. For example, it is convenient to normalize the 
total energy in the PSF to 1 when discussing energy distributions (see below). 
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Line spread functions and knife edge distributions 
It is sometimes more instructive to consider the image of an infinitely long line, rather than a 
point. Since we can consider a line to be a collection of points, the line spread function (LSF), in x 
say, is the summation of an infinite number of points oriented in the y-direction: 

   ,LSF x PSF x y dy




      
(7.22)   

If we consider scanning an infinitely long, straight “knife edge” across the line spread function, 
and plot the fractional energy uncovered by the knife edge as we scan from minus infinity to plus 
infinity, we obtain the image of an infinite edge or the knife edge distribution (KED): 

   
x
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(7.23)   

We can calculate line spread functions and knife edge distributions geometrically by using the spot 
diagram in place of the irradiance point spread function. 

Fiber coupling 
One application of the point spread function is the computation of fiber coupling efficiency. This 
calculation involves an optical system that is designed to collect light from some source (a laser, 
another fiber, etc.) and couple it into a receiving fiber. The structures of optical fibers support 
guided modes of propagation, whose energy is mainly confined to a region near the axis of the 
fiber.  

Given an amplitude diffraction pattern (amplitude of the point spread function) U(x, y) and a 
fiber mode pattern (x, y), the coupling efficiency  is defined as the normalized overlap integral 
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(7.24)   

where the asterisk denotes the complex conjugate. The power coupling efficiency T is given by 

2*T      (7.25)   

T is the fraction of the power in the incident field that is coupled into the mode of the fiber defined 
by (x, y). Since the numerical evaluation of Eq. (7.24) requires that the diffracted amplitude be 
known over a grid of points (x, y) in the image plane, OSLO uses FFT diffraction calculations to 
compute U(x, y). Note that it follows from Schwarz’s inequality that 0  T  1 and that T = 1 if 
and only if (x, y) = KU(x, y), where K is a complex constant. This makes intuitive sense, as we 
would expect to couple all of the incident light into the fiber only if the field and the mode 
overlapped completely. 

The form of the mode pattern (x, y) depends upon the structure of the fiber, of which the most 
common types are gradient index and step index. Most single-mode, gradient-index fibers have a 
fundamental mode that is well described by a Gaussian function of the form 
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(7.26)   

Thus, the Gaussian mode is completely specified by the radius r0 at which the mode amplitude 
drops to 1/e of its axial value.  

A step-index fiber consists of a central core of homogeneous material surrounded by a cladding 
material of slightly lower refractive index. This type of fiber requires three parameters for its 
specification: the refractive index of the core material ncore, the refractive index of the cladding 
material ncladding, and the radius of the cylindrical core a. Generally, this type of fiber supports 
many propagating modes, but we are usually interested in using the fundamental mode. For the 
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usual case of a weakly guiding fiber, i.e., (ncore  ncladding)/ncladding << 1, the fundamental mode is 
given by  
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(7.27)   

where r = (x2 + y2)1/2 and u and w are constants determined by the fiber construction parameters. 
J0 is the Bessel function of order 0, and K0 is the modified Hankel function of order 0. The 
parameters u and w are a function of the “normalized frequency” v: 
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(7.28)   

The explicit forms for u and w for the fundamental mode are 
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(7.29)   

and 

2 2w v u   (7.30)   

The derivation of this mode structure can be found in, for example, Gloge(19). If the desired fiber 
mode is neither Gaussian nor this fundamental step-index mode, OSLO Premium allows for the 
specification of an arbitrary mode structure via the use of a CCL command. 

For a general discussion of the calculation of fiber coupling efficiency, the interested reader is 
referred to Wagner and Tomlinson(20).  

Energy distribution 
The spread functions defined in the previous section give a complete description of the 
distribution of irradiance in the image of a point, line, or edge. In some cases, it is more useful to 
know how much of the total energy in the point image is contained within a circle or square of a 
given size. For example, we may define the radius of the circle that contains, say, 80% of the total 
energy as the “spot size.” Or, we may be using a detector array with square pixels and we need to 
ensure that a certain fraction of the energy is contained within the size of one pixel so that we can 
accurately determine the position of the spot on the array. These types of calculations require the 
computation of energy distributions. As usual, we can base the calculation on either a geometric 
(using the spot diagram) or diffraction (using the point spread function) basis. 

We can consider the point spread function to be a function of two image plane coordinates: 
Cartesian coordinates x and y or polar coordinates r and . For simplicity, we will assume that 
a normalization has been chosen such that the total energy in the PSF is 1.0, i.e., 
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(7.31)   

When computing integrals numerically, which is, of course, what a computer does, there are some 
subtleties raised when calculating the normalization factor of the above equation. Since the pupil 

 
19 D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252-2259 (1971). 
20 R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber 
components,” Appl. Opt. 21, 2671-2688 (1982). 
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for any real system must be a finite size, the Fourier transform relationship [Eq. (7.12)] implies 
that the PSF extends over the entire (infinitely large) image surface. For example, the perfect point 
spread function of Eq. (7.19) tends to zero as r tends to infinity, but there is no finite value of r 
outside of which the PSF is zero. Practically speaking, of course, the PSF can be considered to be 
negligibly small for large enough values of r. When computing Eq. (7.31) numerically, OSLO 
assumes that the finite integration patch on the image surface contains all of the energy in the PSF, 
i.e., the PSF is zero outside this patch. Conservation of energy implies that the total energy in the 
PSF must equal the total energy in the pupil function. These considerations make the FFT 
technique more attractive than direct integration when computing PSFs for energy distributions. 
Parseval’s theorem for the discrete Fourier transform ensures that energy is conserved when using 
the FFT. The value of Eq. (7.31) computed by direct integration is much more sensitive to image 
surface sampling interval and image patch size. Thus, OSLO uses the FFT algorithm when 
computing diffraction energy distributions. 

Then, the radial energy distribution (RED) or encircled energy for a circle of radius a is given by 
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(7.32)   

and the ensquared energy (SQE) for a square of side length s is 
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Obviously the form of either energy distribution depends on the choice of origin. In OSLO, the 
distributions are centered at the centroid of the PSF (diffraction) or spot diagram (geometric). 

We will compare the radial energy distributions for perfect point spread functions for uniform and 
Gaussian pupils, using the same perfect lens as in the point spread function example above. 

For the perfect point spread function given by Eq. (7.19), Lord Rayleigh derived an analytic form 
for the encircled energy: 
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(7.34)   

From this formula, we can compute that approximately 84% of the total energy is contained in the 
Airy disk and 91% of the total energy is within a radius equal to the second dark ring of the Airy 
pattern.  

We want to plot the radial energy distribution and compare it to Eq. (7.34). The third zero of 
J1(x) occurs at x = 3.238 or r = 1.619 0/NA = 1.619*0.00058756 mm/0.2 = 0.0048 mm. This 
suggests that a maximum radius of 5 m would include the most interesting parts of the curve. In 
the radial energy distribution plot, the places where the curve is flat correspond to the dark rings in 
the pattern, since there is no energy at that radius. From the plot we see that these flat portions of 
the curve occur at the expected radii of 0.0018 mm, 0.0033 mm, and 0.0048 mm. 
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Now we will compute the energy distribution for a Gaussian apodized pupil. We will set up the 
beam so that the NA of the 1/e2 irradiance point is 0.2. In the Setup spreadsheet, we turn on the use 
of the Gaussian apodized pupil, and enter 20 for the entrance Gaussian spot sizes in x and y. We 
can now plot the radial energy distribution and compare it to the same plot for the uniformly 
illuminated pupil.  

 

In order to avoid truncating the incoming beam, so we need to increase the entrance beam radius. 
If we make the EBR twice as large as the 1/e2 radius, this should result in a negligible input 
truncation. Changing the entrance beam radius to 40 mm produces the following result. 
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Since the Gaussian PSF does not have the lobes of the Airy pattern, the Gaussian encircled energy 
is always increasing (i.e., no “flat” spots). In fact, it is easy to show that for an irradiance 
distribution of the form PSF(r) = 2 exp[2(r/w)2]/(w2), where w is a constant, the encircled 
energy is given by RED(a) = 1 – exp[2(a/w)2]. 

Transfer functions 
Closely related to the point spread function is its Fourier transform, the optical transfer function 
(OTF). The OTF is a measure of the accuracy with which different frequency components in the 
object are reproduced in the image. There is a vast literature on transfer function theory; we are 
only able to provide a brief outline here. Keep in mind that. strictly speaking, transfer function 
concepts are only applicable to incoherent illumination. Different techniques must be used for 
systems operating in fully coherent or partially coherent illumination. 

As stated above the OTF is the (normalized) Fourier transform of the PSF and, as such, is a 
function of the spatial frequencies x and y.  
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(7.35)   

The normalization is such that OTF(0, 0) = 1. Because of the additional Fourier transform 
relationship between the complex pupil function and the PSF [See Eq. (7.12) above], the OTF can 
also be expressed as the autocorrelation of the pupil function. This is, in fact, the way that the OTF 
is computed in OSLO. The OTF includes the effects both of geometric aberrations and diffraction. 
If we consider the diffraction-limited PSF given by Eq. (7.19), we can compute the corresponding 
OTF by taking the Fourier transform. We find that the OTF is identically zero for spatial 
frequencies larger than a certain value, the cutoff frequency 0 given by 

0
0

2 NA
 


 

(7.36)   

Just as diffraction limits us from forming image points smaller than a certain size, it also sets an 
upper limit on the maximum spatial frequency that can be present in an image. 
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It is obvious from the above definition that the OTF is a complex function. The modulus of the 
OTF is called the modulation transfer function (MTF) and the phase of the OTF is the phase 
transfer function (PTF). The MTF is the ratio of the modulation in the image to the modulation in 
the object. The PTF is a measure of the shift of that spatial frequency component from its ideal 
position. Referring to the figure below, which is a schematic illustration of a sinusoidal irradiance 
object and its image, the modulation M is defined by 
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and the MTF and PTF are 
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The OTF is independent of the precise nature of the object. This is what makes transfer functions 
useful: they can be computed from the wavefront of the lens and used to calculate image quality, 
independent of the specific object. If we consider a general object irradiance distribution o(x, y) 
with Fourier spectrum O(x, y) then (assuming proper normalization for magnification) the 
Fourier spectrum of the image I(x, y) is given by the product 

     , , ,x y x y x yI OTF O        (7.40)   

Even though most objects are not sine wave targets, the OTF is still useful because Fourier 
analysis allows us to represent an arbitrary object as a superposition of various spatial frequency 
components. 

It is possible to calculate an OTF using only geometrical optics considerations. In this case, the 
PSF in Eq. (7.35) is replaced by the spot diagram. Obviously, this approximation should only be 
expected to give an accurate representation of the OTF when the aberrations are large (greater than 
a few wavelengths). It turns out that the convolution method for computing diffraction MTF 
eliminates the need for geometrical MTF calculations; the convolution method produces accurate 
answers, comparable to those obtained from geometrical calculations, even when the system has 
many waves of aberration. The figure below shows a superposition of two plots, one geometrical 
and one diffraction (based on the convolution MTF), for a system having approximately 20 waves 
of OPD. The results for both tangential and sagittal plots are within the expected accuracy range. 
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Since the MTF is the Fourier transform of the pupil function, it is also possible to compute the 
MTF using FFT techniques. However, in order to obtain sufficient accuracy with systems that are 
not diffraction limited, it is necessary to use very fine sampling, and the Fast Fourier Transform 
turns rapidly into a Slow Fourier Transform as the aberration increases. OSLO does provide a FFT 
calculation of MTF, because the fact that the entire transform is computed at once makes it easy to 
plot in two dimensions. However, the sampling limitations of FFT make this method 
unsatisfactory for general use. 

Partial coherence 
As part of the process of optical design, we consider the propagation of light from the object to the 
image. Usually, we are less concerned with the source of the incident light. It is clear, however, 
that a complete analysis of the imaging properties of a lens must take the nature of the incident 
illumination into consideration. Take, as an example, the difference between images formed in 
sunlight and those formed with laser illumination. The laser-illuminated images have a grainy 
texture (speckle) that is not found in the natural light images. In this chapter, we will examine the 
imaging process for a class of systems sometimes called projectors, i.e., optical systems that both 
illuminate an object and form an image of it.  

Coherence functions 
When including the effects of illumination in optical imagery, we are led into the field of optical 
coherence, which is the analysis of light propagation from a statistical point of view. The fact that 
a careful analysis requires the use of statistics should not be a surprise to anyone familiar with 
quantum mechanics. For example, most thermal light sources operate by exciting a group of atoms 
or molecules, which then emit light by spontaneous emission. This spontaneous emission, which 
occurs during a transition from the excited state to a lower energy state, occurs randomly and 
independently from each atom or molecule. The resulting light from this source consists of the 
sum of all of these independent contributions. Fortunately, we shall only need a few concepts from 
classical coherence theory to study partially coherent imagery. Coherence theory is a very deep 
and well-developed branch of optics; we shall only be able to give a brief introduction here. The 
interested reader is referred to the literature for more detailed information.  

It is common to consider interference a manifestation of coherence; the visibility of the 
interference fringes in Young’s double-slit experiment is directly related to the coherence of the 
incident light. A naive explanation may be that coherent light interferes and incoherent light does 

Tangential 

Sagittal 
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not. This view is, however, inadequate. As first demonstrated by Verdet in the 1860’s, one can 
observe interference fringes using a source we commonly think of as incoherent, namely the sun.  

Since we are dealing with fundamentally random processes, it is convenient to work with 
correlation functions or averages. In particular, we will use second-order correlations, since these 
are directly related to the observable quantity of irradiance. Let U(x; ) denote the complex 
amplitude of a particular monochromatic (of frequency ) component of the optical field at the 
point x. (The vector x denotes the point (x, y, z).) The amplitude U is a random variable. The 
cross-spectral density function W is the ensemble-averaged correlation function of U at the point 
x1 with the complex conjugate of U at another point x2. Denoting the ensemble average by angle 
brackets and the complex conjugate by an asterisk, we can write the cross-spectral density as 

     *
1 2 1 2, ; ; ;W U U v  x x x x   (7.41)  

(It is assumed that the random process associated with U is ergodic, so that time averages and 
ensemble averages are equal.) 

It is often convenient to work with a normalized correlation coefficient, called, in this case, the 
complex degree of spectral coherence 12(). 
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 (7.42)  

It can be shown that 

 120 1      (7.43)  

If the magnitude of the complex degree of spectral coherence is unity (i.e., perfect correlation), 
this indicates that the field is perfectly coherent between x1 and x2. On the other hand, a value of 
12() = 0 (i.e., no correlation at all) indicates complete incoherence. Values greater than 0 and 
less than 1 are indicative of partial coherence. Already we see that the familiar labels of coherent 
and incoherent are just the limiting cases of a continuum of possible values of the coherence of the 
light.  

In coherence theory, the observable quantity is usually called the intensity, although it more 
properly corresponds to the irradiance of radiometry theory. In the context of partial coherence 
theory, the intensity is the time-averaged square magnitude of the field. Due to the ergodicity of 
the process, the intensity I (or spectral intensity, since we are really dealing with the spectrum of 
the light) is defined as the trace of the cross-spectral density function 

      2

1 1 1 1; , ; ;I W U    x x x x   (7.44)  

Different monochromatic components of the field can not interfere since they are mutually 
incoherent. Thus the intensity of the total field Itotal is the sum of the intensities of the 
monochromatic components.  
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 (7.45)  

Van Cittert-Zernike theorem 
Except for laser-based systems, most optical systems operate with sources that can be considered 
to be a collection of independently radiating source points. As long as the optical system cannot 
resolve these independent source points, we can model the source as incoherent. (The sources are 
assumed to be independent, so there is no correlation from one source point to another.) Since this 
situation is so common, it is useful to examine the coherence properties of such a primary source. 

For simplicity, consider the case where both the source and observation regions are planes. Let the 
coordinates in the source plane (plane I) be (, ) and the coordinates in the observation plane 
(plane II) be (x, y). The two planes are separated by a distance z, as illustrated in the figure below. 
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Using the normal conditions of Fresnel diffraction for an incident coherent field UI(, ; ), the 
diffracted coherent field is given by 
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 (7.46)  

where k = 2/ = 2/c.  is the wavelength of the radiation and c is the speed of light. The limits 
on the integrals are infinite since UI  0 for points outside the source.  
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We can use Eq. (7.46) and the definition of the cross-spectral density [Eq. (7.41)] to write the 
cross-spectral density in the observation plane as 
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For the case we are interested in, i.e., an incoherent source, the cross-spectral density in plane I 
can be expressed as 

       I 1 1 2 2 I 1 1 1 2 1 2, ; , ; , ;W I                   (7.48)  

where  is a constant, II is the source intensity and (x) is the Dirac delta function. Substituting Eq. 
(7.48) into Eq. (7.47) yields 
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where 
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and 

1 2 1 2x x x y y y       (7.51)   

Equation (7.49) is one form of the Van Cittert-Zernike theorem. It states that the cross-spectral 
density is related to the Fourier transform of the intensity distribution of an incoherent source. 
Note the functional similarity between Eq. (7.49) and the familiar Fraunhofer diffraction formula; 
the quantities involved in the two cases are, however, quite different. The Van Cittert-Zernike 
theorem tells us that there is some non-zero correlation length on the (x, y) plane, even if the 
primary source is incoherent. Thus, we should expect to see interference fringes from Young’s 
experiment, even with an extended incoherent source (e.g., the sun), if the cross-spectral density, 
as given by Eq. (7.49) is large enough.  

The Fourier transform relationship between the cross-spectral density in plane II (which we call a 
secondary source) and the primary source intensity means that the “sizes” of these two functions 
are, roughly speaking, inversely related. For an infinitesimal incoherent source (a point source), 
the cross-spectral density is a constant. This makes sense, since a point source is perfectly 
coherent with itself, and we would expect the resulting interference fringes to have perfect 
visibility. As the incoherent source becomes larger, the “size” of the cross-spectral density 
decreases, approaching a delta function as II becomes infinitely large. Each point on the extended 
source produces interference fringes of perfect visibility, but each fringe pattern has a different 
phase, so the contrast of the resulting overall pattern is reduced.  

Partial coherence in a linear system 
The familiar treatment of modulation transfer functions and point spread functions derives from 
the analysis of optical systems within the framework of linear systems. The key descriptor of a 
linear system is called the impulse response, which describes the output of the system to an 
impulse (delta function) input. Let the input plane (plane I) of the optical system have coordinates 
(, ) and the output plane (plane II) have coordinates (x, y). The impulse response is a function of 
the output coordinates, the input coordinates, and the frequency , and will be denoted by h(x, y; , 
; ). This relationship is illustrated schematically in the figure below. 
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y

Impulse Response
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Input Plane
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Output Plane
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In optics, the impulse response is the complex amplitude of the point spread function. For the 
general linear system, the output spectral amplitude in plane II is related to the input spectral 
amplitude in plane I via 

     II I, ; , ; , ; , ;U x y U h x y d d           (7.52) 
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Using Eq. (7.52) and the definition of the cross-spectral density, we find that the cross spectral 
density in the output plane is 
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(7.53)   

If we denote the incident cross-spectral density by Winc and the amplitude transmittance of the 
object in plane I by t, WI is given as 

       *
I 1 1 2 2 1 1 2 2 inc 1 1 2 2, ; , ; , ; , ; , ; , ;W t t W                  (7.54)   

The spectral intensity in plane II, III, is computed from the resulting cross-spectral density in the 
usual way 

   II II, ; , ; , ;I x y W x y x y    (7.55)   

Starting from an incoherent source, Winc can be found by using the Van-Cittert-Zernike theorem. 
This results in Eq. (7.53) taking the form of a rather formidable looking six-dimensional integral. 
Fortunately, we can make some simplifications. We assume that the impulse response is space 
invariant (otherwise known as stationary or isoplanatic). This means that h is only a function of 
the coordinate differences x –  and  y – . Practically speaking, this means that the optical 
aberrations are effectively constant over the image region of interest (called the isoplanatic patch). 
Also, the illumination is chosen to eliminate space-variant phase factors, such as  in Eq. (7.49). 
Such illumination, the primary example of which is Köhler illumination, is sometimes called 
matched illumination. If all of these conditions are true, the image spectral intensity is given by 
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(7.56)   

Note that the right-hand-side of Eq. (7.56) is grouped such that the first two lines contain terms 
that are related to the projector (illumination and imaging optics), while the third line is the object-
dependent term. The integrals in Eq. (7.56) are convolution-like, and the imaging equations can 
also be expressed in the Fourier (spatial frequency) domain. The resulting expressions are still 
rather complicated, but suffice it to say that the transition to Fourier space results in a great 
increase in computational efficiency. For more of the mathematical details, the interested reader is 
referred to the pioneering work of Hopkins21 and the textbook by Goodman.22  

The general procedure then, for computing the spectral intensity is to start with an incoherent 
source, use the Van Cittert-Zernike theorem to compute the cross-spectral density incident upon 
the object, use Eq. (7.54) to form the input cross-spectral density to the imaging system, use Eq. 
(7.53) (or, usually, its Fourier domain equivalent) to find the output cross-spectral density, and, 
finally, use Eq. (7.55) to find the spectral intensity, i.e., the output irradiance distribution. 

It is instructive to look at two limiting cases of the general result of Eq. (7.53). For the case of 
completely coherent incident illumination, Winc has the form 

       *
inc 1 1 2 2 12 inc 1 1 inc 2 2, ; , ; , ; , ;W U U               (7.57)   

where 12 is a complex quantity. The cross-spectral density integral then separates into integrals 
over (1, 1) and (2, 2). The resulting spectral intensity is 

         
2

II 12 inc, ; , ; , ; , ;I x y t U h x y d d                 
(7.58)   

 
21. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. Roy. Soc., A217, 408-432 
(1953). 
22. J. W. Goodman, Statistical Optics, Wiley, 1985. 
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The convolution in Eq. (7.58) can be evaluated, using Fourier theory, as the Fourier inverse of the 
product of the transforms of the individual functions. The Fourier transform of h is called the 
coherent transfer function. Note that for coherent illumination, the system is linear in the optical 
field, not irradiance.  

At the other extreme, for the case of completely incoherent incident illumination, Winc has the form 

       inc 1 1 2 2 inc 1 1 1 2 1 2, ; , ; , ;W I                  (7.59)   

where  is a real constant and Iinc is the incident spectral intensity. In this case, the output spectral 
intensity is 

       2 2

II inc, ; , ; , ; , ;I x y t I h x y d d                (7.60)   

Once again, the resulting integral has the form of a convolution. Now the incident intensity is 
convolved with |h|2, the incoherent impulse response, i.e., the point spread function. The Fourier 
transform of |h|2 is the optical transfer function. Note that for incoherent illumination, the system is 
linear in spectral intensity. Keep in mind that the familiar concept of MTF is only applicable in 
this incoherent limit.  

For both coherent and incoherent limits, the required integral has the form of a convolution of an 
object term with an impulse response term. The appropriate impulse response, either h or |h|2, is 
independent of the object. Thus, one can properly speak of a transfer function (the Fourier 
transform of the impulse response) that multiplies the object spectrum to result in the image 
spectrum. For the case of partially coherent illumination, however, the image spectrum calculation 
does not take the form of a convolution with the object, so there is no equivalent transfer function. 
The image irradiance must be explicitly calculated for each object of interest.  
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Partially coherent imagery 
As mentioned in the previous section, we need to consider the propagation of light from an 
incoherent source to the final image. We will assume that the object is illuminated by matched 
illumination, so that the imagery is stationary. Illustrated schematically, the complete optical 
system is shown below. Common examples of systems of this type include microscopes and 
photolithography systems. 

Incoherent
Source Condenser Object

Entrance
Pupil

Imaging
Lens Image

 

In OSLO, only the imaging optical system is entered; the source and condenser are assumed to 
exist and their relevant properties are described by the partial coherence operating conditions. The 
coherence properties of the incident illumination are determined by the geometric image of the 
primary source in the entrance pupil of the imaging lens. This incoherent image is known as the 
effective source and can be related to the coherence of the illumination incident upon the object by 
the Van Cittert-Zernike theorem.  

The most important property of the effective source is its size, relative to the size of the entrance 
pupil of the imaging lens. Most systems for which coherence effects are important are systems that 
produce high quality images. Since the imagery is to be of uniform quality regardless of azimuth, 
an axis of rotational symmetry is usually desired. Thus, in OSLO, the effective source and 
imaging lens entrance pupil are assumed to be nominally circular. The key parameter for 
specifying the effective source is the ratio of the radius of the effective source to the radius of the 
entrance pupil of the imaging lens. This ratio is commonly denoted by . A value of  = 0 means 
that the effective source is a point, and the object is illuminated coherently. As  increases from 0, 
the illumination coherence decreases, becoming fully incoherent in the limit as   . For most 
objects, a value of   2 is indistinguishable from fully incoherent illumination. By default, OSLO 
assumes that the effective source is a uniform disk, but options are provided for annular effective 
sources and effective sources with Gaussian irradiance profiles. 

Because of the lack, in the general case, of a transfer function, OSLO needs to know the form of 
the ideal image of interest. This ideal image consists of a bar target, with a specified bar width, 
period, and number of bars. The default ideal image consists of alternately opaque and clear bars 
(i.e., unit modulation), but the modulation and background may be adjusted, if desired. Also, there 
may be a phase transmittance difference between the bars. 

Since it is assumed that the imaging is stationary, as much of the calculation as possible is 
performed in the Fourier domain. For efficiency, we make use of the Fast Fourier Transform 
(FFT) algorithm. Thus, the same sampling considerations that were discussed in Chapter 6, with 
regard to the calculation of the point spread function, are applicable to the partial coherence 
calculations. To avoid aliasing, the number of rays traced across the pupil diameter is always taken 
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to be half of the number of points in the image (i.e., the size of the FFT array). Thus, for the partial 
coherence calculations, the sampling interval in the image, y, is given by 
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(7.61)   

where 0 is the wavelength and NA is the numerical aperture. Also, the size of the one-dimensional 
image is 

0Image patch size
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(7.62)   

where N is the number of points in the image. For the partial coherence calculations, we see from 
Eq. (7.62) that the only way to increase the size of the image is to increase the number of points in 
the FFT array, which must, of course, be a power of two.
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Chapter 8 Optimization 
 

The term optimization in optical design refers to the improvement of the performance of an optical 
system by changing the values of a subset of the system’s constructional parameters (variables). 
Typically, the variables are quantities such as surface curvatures, element and air-space 
thicknesses, tilt angles, etc. The system’s performance is measured by a user-defined error 
function, which is the weighted sum of squares of operands, that represents an estimate of the 
difference in performance between a given optical system and a system that meets all the design 
requirements. 

The conventional approach to optimization is iterative, in which the user chooses initial values for 
the variables (a starting point) and an optimization algorithm is applied that repeatedly attempts to 
find new values for the variables that yield ever lower error function values. This approach to 
optimization, illustrated in the figure below, depends heavily upon the choice of the starting point: 
If a starting point is chosen from Region A or Region C, the program will proceed the 
corresponding local minimum at x = a or x = c, rather than the global minimum at x = b.  

If the starting point is chosen from Region B, however, the program will proceed to the global 
minimum at x = b. In optical design, the dimensionality (number of independent variables) is high 
and the number of local minima is typically large, making the choice of starting point crucial to 
the success of optimization. Starting points from which the optimizer can proceed to the global 
minimum (or a suitable local minimum) are typically determined by experience or by finding an 
existing design with properties similar to those desired. 

The prime source of difficulty in optimizing a given error function is that the minimum usually 
depends on balancing, rather than removing, the aberrations of the system. This process creates 
artificial minima caused by numerical effects in the optimization routines, and these are often 
indistinguishable from the artificial minima caused by aberration balancing. In a practical 
problem, this can be a source of considerable frustration to the optical designer. 

x

f x( )

a b c

Region A Region B Region C

 

There are many local optimization methods available; most of those employed in optical design 
are least-squares methods, meaning that they produce a solution that is as close as possible to the 
desired solution when a complete solution is not possible (ordinarily there are more operands than 
variables). All versions of OSLO include the standard optimization algorithm called damped least 
squares, and OSLO Premium includes several other methods that work around the stagnation 
sometimes experienced with this method. 
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Damped least squares 
The damped least squares (DLS) optimization used by OSLO is the most popular optimization 
algorithm in optical design software – a variant of DLS is included in nearly every optical design 
program. In DLS the error function (x) is expressed in the form of a weighted sum of squares: 
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 (8.1)   

where the vector x represents the set of optimization variables, 

1 2 3, , , , nx x x xx    (8.2)   

and the f’s are called operands. The individual operands are defined by  

 1 2i i if c c    (8.3)   

The c’s are called components. Each operand contains two components that are linked by a math 
operator, which may be addition, subtraction, multiplication, division, exponentiation, greater 
than, or less than. Usually the first component is a ray displacement, the second component is a 
target value, and the operator is subtraction, but the definition allows for more complex operands. 
The w’s are weights, which can be used to account for the relative importance of different 
operands. To simplify the discussion here, we will assume that the weights are all unity. 

OSLO by default reports error function values as root-mean-square (RMS) error, which is the 
square root of the error function. If all the operands are of the same type, the rms error function 
gives a convenient indication of the average size of an operand. 

The error function has its minimum value when all the operands are zero. It is useful to write (x) 
in vector notation as 

( ) T x f f   (8.4)   

where 

1 2 3, , , , mf f f ff    (8.5)   

Minimization of the error function is based on a piece-wise linear model of the operand 
dependencies on the variables. That is, the change in the ith operand due to a change in the jth 
variable is assumed to be given by  
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 (8.6)   

Of course, this is an idealized model. In a real situation, there may be nonlinearities that require 
second or higher-order derivatives of the operands in the above equation. In addition, there may be 
no solution to the real optimization problem that reduces the value of f1i to zero, because of these 
nonlinearities (i.e. because of physics). There is always, however, a least-squares solution for xj, 
at which the operand has its minimum allowed value. 

To describe the optimization of systems in which there are several operands and several variables, 
it is best to use matrix notation. If we understand the f’s to mean the changes in the operands 
relative to their minimum values, we obtain a set of equations for the change in x that minimizes 
the error function: 

  A x f   (8.7)   

where A is the derivative matrix of each of the operands with respect to each of the variables: 
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 (8.8)   

Ordinarily there are more equations than variables, so there is no direct solution. However, there is 
a least squares solution for which the error function has a minimum value.  

The least squares algorithm operates as follows: given an initial estimate x0 of the minimum (a 
starting point), iteratively determine new estimates of the minimum xk+1 = xk + xk by solving the 
following linear system, called the least-squares normal equations, for the change vector xk: 

T T
k k k k k  A A x A f   (8.9)   

where k is the iteration number. Of course, if the dependence of the operands on the variables is 
linear, iteration is not needed. The iteration is provided to account for the nonlinearities in real 
systems. 

The above scheme usually doesn’t work. For a nonlinear system, the change vector x typically 
diverges. The solution to this problem is to add a damping term  to the equations that prevents 
large values for x, which leads to the damped least squares normal equations 

 T T
k k k k k k    A A I x A f   (8.10)  

where I is the identity matrix. It is possible to derive the damped least squares equations 
mathematically, by including second-order derivatives in Eqs. (8.7), but for practical optical 
design, it isn’t worth the effort, because it is computationally expensive, and the nonlinearities are 
often higher than second-order. The important points to understand about the damped least squares 
equations are  

1. The damped least squares equations are formed by adding a term proportional to the change in 
the system variables to the iteration equations to reduce the magnitude of the change vector. 

2. The dimensionality of the equations is n  n, i.e. equal to the number of variables. The process 
of multiplying A by its transpose effectively sums over the number of operands (which is 
usually larger than the number of variables). 

3. The solution point for the damped least squares equations is the same as the solution point for 
the normal least squares equations. This is because at the solution point, the value of x is 
zero. 

The last point is significant in that it implies that there is considerable freedom in the way that 
damping is applied. There is no particular need to restrict the damping term to a scalar constant 
times the identity matrix. Each element along the diagonal can have any desired value, without 
changing the solution point. This leads to different forms of damping, in particular the 
multiplicative damping used in OSLO, in which the identity matrix I is replaced by another matrix 
D whose diagonal elements are the same as the diagonal elements of the ATA matrix: 
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 (8.11)  

OSLO also allows the damping factor j, to be different for different columns of the ATA matrix, 
so that so that the user has control over the damping of individual variables. 

The above derivation of the damped least squares equations has emphasized simple concepts, 
because in actual practice an experimental approach to optimization based on these concepts has 
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proved more successful than more elaborate theory based on mathematical elegance. It is up to the 
program, as directed by the designer, to develop an iterative technique for optimizing a system 
according to its particular requirements. The basic scheme for damped least squares iteration is 
shown in the figure below. This is the form of DLS that is invoked by the ite std command in 
OSLO. The damping factor is held fixed at the user-specified value and iteration is terminated 
when the specified number of iterations have been performed. 

 

Set k = 0
Choose starting point x0

Set up DLS normal equations
and solve for xk

Update current system
xk+1 = xk + xk

k = k + 1

Terminate?

START

END

 

Damping 
As mentioned above, the damping factor helps to stabilize the damped least squares algorithm by 
preventing the generation of large change vectors. Without damping ( = 0), if ATA is singular, no 
solution to the normal equations exists. Adding the damping term effectively adds a factor that is 
proportional to the square of the length of the change vector to the error function, thereby 
penalizing large steps. 

The problem now becomes the choice of the damping factor. If  is too small and ATA is nearly 
singular, the change vector will be very large and DLS will become unstable. On the other hand, if 
 is too large the change vectors tend to be tiny steps in the direction of steepest descent (i.e., 
along the gradient of ), and DLS becomes inefficient. Since proper choice of the damping factor 
is essential for stability and efficiency, OSLO contains an algorithm for automatically choosing 
the damping factor. This algorithm is invoked by the ite ful command, with each full iteration 
consisting of a search for the optimal value of the damping factor, as illustrated in the figure on the 
following page. 

At the start an iteration sequence, the damping is reset to the value specified as the starting value 
of damping factor (opds) operating condition, normally set to a small value ( 10-8). The 
algorithm increases the damping in large steps until it is above the optimum, then decreases it 
using the scaling factor for damping (opdm), which is indicated as  in the figure, until it finds the 
optimum. 
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It should be noted that this search for the optimal damping factor is relatively inexpensive since 
the derivative matrix need be computed only once, at the start of each full iteration; only the 
damping is varied within a single full iteration. Iteration is terminated when one of two conditions 
is satisfied: the specified number of full iterations have been performed or the relative change in 
error function is less than the “Percent improvement for continuing full iterations” (opst) 
operating condition value for two consecutive full iterations. 

START

Set  = initial damping, iter = 1

Set xstart = current variables
Compute initial error function start

Set k = 0
Compute derivative matrix

Solve DLS normal equations
Evaluate 

   > start
&&

 < 104

k++,  Increase  = 10
Solve DLS normal equations

Evaluate 

 start

k++,  decrease  = 
Solve DLS normal equations

Evaluate 

k < k-1

x = xk-1 ,   = k-1

x = xstart

END

iter++

termination
condition met?

yes

no

no

yes

yes

no

no

yes

 

Constraints 
Frequently it is necessary to maintain certain conditions as the lens changes during optimization. 
For example, a certain minimum back focal distance may be required, or the speed (f–number) of 
the lens may be required to remain constant. Such conditions can be maintained in three ways: 

Solves. Solves allow the exact maintenance of paraxial properties. For example, placing an axial 
ray angle solve with value –0.1 on the last surface of the lens maintains a constant f–number of 5, 
assuming that the object is at infinity. 

Penalty terms in the error function. By adding a term (operand) to the error function that is 
proportional to the deviation of a given quantity from its desired (or maximum or minimum) 
value, the optimizer is encouraged to maintain the desired conditions. For example, adding an 
operand “TH(7)>40.0” adds a penalty term to the error function if the thickness of surface 7 is less 
than 40.0. 

Constraint operands. OSLO allows the explicit specification of constraints to be applied to the 
optimization process independently of the error function. These constraints are applied through the 
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method of Lagrange multipliers, in which the damped least squares equations are solved subject to 
the condition that certain of the operands have exact values (in the linear approximation). 

Each of these methods has advantages and disadvantages. Solves are appropriate only when valid 
paraxial raytrace data are available at the surface containing the solve. Furthermore, solves can 
produce instability during optimization since the solved quantity may vary in a highly nonlinear 
fashion in response to changes in the variables. 

Penalty terms can be difficult to implement since their effectiveness depends highly upon their 
weighting. If the weight is too small, the penalty may be dominated by the remainder of the error 
function and the optimizer will not enforce the penalty strictly. If the weight is too large, the 
penalty may dominate the remainder of the error function and the result will be a system that 
satisfies the constraints but has poor performance otherwise. 

Constraint operands are useful when valid paraxial raytrace data are not available, when solves 
might be unstable, or when appropriate weights for penalties cannot be determined. However, the 
number of active (i.e. nonzero-valued) constraints may not exceed the number of variables. 
Furthermore, DLS works best when the constraints are satisfied before the error function is 
optimized; the behavior of DLS is less predictable if it is attempting simultaneously to satisfy the 
constraints and minimize the error function, particularly if the initial values of the constraints are 
far from their target values. 

Variables 
In the course of the design of an optical system, a subset of the system’s constructional parameters 
is allowed to change. These parameters are called variables. There are two classes of variables: 
independent variables, whose values are changed directly by the user or by the optimizer, and 
dependent variables, whose values change as indirect results of changes to other parameters. In 
OSLO, dependent variables are variables that change as the results of solves and pickups; the term 
“variable” is used henceforth to refer exclusively to independent variables. 

The set of variables is defined either by designating various quantities as variable in the Surface 
Data spreadsheet, or by adding entries to the Variables spreadsheet. The procedures for working 
with variables in OSLO are described in the Help system. There are, however, some specific 
issues about the way variables are handled in optimization that are discussed here. 

Boundary conditions 
In many optimization problems, it is necessary to specify bounds on the variables to prevent the 
generation of solutions that cannot be realized. For example, solutions may have lenses with 
negative edge thicknesses, more than one lens occupying the same physical space, etc. There are 
various ways to prevent the generation of such solutions, but before using them, you should realize 
that the overuse of boundary conditions can impede the optimization process. It is not unusual, 
during the course of optimizing a system, to generate intermediate solutions that are non-
realizable, which spontaneously convert to realizable systems as the optimization progresses. If 
you disallow these intermediate solutions by imposing boundary conditions, you may not reach 
the desired optimum. 

Boundary conditions can be imposed either in the definition of a variable, or by creating operands 
in the error function that serve to restrict the allowed values of the variable in question. In the 
variables spreadsheet, the columns labeled Minimum and Maximum are the lower and upper 
bounds, respectively, on the variable. If the value v of a variable is less than the lower bound vmin, 
a penalty term is added to the error function that is proportional to the boundary violation: 

  2

minpenalty v v opbw   (8.12)  

Similarly, a penalty is added to the error function if the value of v is greater than the upper bound 
vmax: 

  2

maxpenalty v v opbw   (8.13)  
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The quantity opbw in the above equations is the operating condition labeled “Weight of boundary 
condition violations” in the variables spreadsheet. Note that if the maximum bound is less than or 
equal to the minimum bound, no penalty term is added to the error function. 

In practice, thicknesses usually need more attention to boundary conditions than curvatures. 
Accordingly, default boundary conditions are applied to thicknesses when they are entered as 
variables. The values that are used can be set in the variables spreadsheet. The defaults are set up 
to define a wide range that essentially only prevents the generation of negative axial thicknesses, 
and need to be adjusted to fit particular design constraints. 

Edge-thickness boundary conditions must be entered as operands. A common way to do this 
(which is used in the default error functions generated in OSLO) is to determine the ray with the 
greatest ray height on each surface, and require that the distance along this ray from the preceding 
surface be positive. Although this condition does not take into account the fact that the ray 
trajectory is not usually parallel to the axis, for most cases the calculation is close enough. 

Boundary condition operands are formed using the greater than or less than operators, e.g., 
“TH(3)>0.5.” Such an operand evaluates to 0.0 if it is true, and to the difference between the 
components if it is false. More complex relationships can be set up using cross-reference 
components, as described on p. 8-215. One-sided operands are restricted to minimization rather 
than constraint mode. By doing this, the weights can be adjusted to allow a small penetration into 
the disallowed region. 

In ordinary DLS optimization, the best number of boundary conditions is zero. Boundary 
conditions are useful for defining a solution region, but generally impede the optimization process, 
and should be removed when they are not needed. If a variable persistently violates a boundary 
condition, it should be set to a fixed value at the edge of the allowed region. 

In ASA global optimization, where thousands of systems are evaluated without designer 
intervention, boundary conditions play a different role. Here, boundary conditions define the 
search region, and are essential to the operation of the algorithm. 

Derivative increments 
When formulating the normal equations, damped least squares must compute the derivatives of the 
operands. This is done by using a finite-difference approximation: 
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The default derivative increment (opdi) operating condition determines the step size xj that is 
used to compute the derivative. There is some question concerning the optimum size of xj. One 
argument considers that the increment should approximate the tangent to a nonlinear curve; 
another advocates that the increment should be based on the predicted magnitude of the solution 
vector. 

The default conditions used in OSLO are that the derivative increments are chosen according to 
the type of variable and the entrance beam radius. The derivative increments are normally fixed at 
the values provided when the variables are created, but if the default derivative increment is set to 
zero, the program will adaptively set the actual derivative increment during optimization, for any 
variable whose nominal derivative increment is zero. 

Usually, the results of optimization are not a strong function of the size of the derivative 
increments. An exception is the case where very high-order aspherics are used. In such a case, 
surface sag differences become proportional to the aperture raised to the nth power, and careful 
attention must be paid to the derivative increments of the aspheric coefficients. Often, it is a good 
idea to scale such systems to a focal length of about one during optimization to provide optimum 
balance between different order aspherics. Similar reasoning applies to diffractive surfaces 
described by high-order polynomial phase functions. 
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Variable damping 
As mentioned before [see Eq. (8.11)], it is not necessary to apply the same damping to each term 
on the diagonal of the ATA matrix. OSLO permits each variable to be damped individually. These 
damping factors on the individual variables allow more control over the behavior of the variables 
during optimization. Larger values of the damping for a given variable tend to prevent large 
changes in that variable during optimization.  

The optimum value for each damping factor must be found experimentally. Unfortunately, the 
amount of computational work required to do this routinely is too large to justify the effort. That 
is, there are significant approximations made in formulating the problem as a piece-wise linear 
model, and it may be more efficient to compute a new derivative matrix at an approximate 
solution point than to go to extreme lengths to obtain an exact solution to an approximate model. 

Operands 
OSLO uses the term operands to denote the terms in the error function, that is, the error function 
is the (weighted) sum of squares of the operands. Although operands are primarily used in 
optimization, they are also useful for various other purposes, ranging from tolerancing to special-
purpose evaluation. 

Operands are compiled from operand definitions entered as source code (i.e. text) into an internal 
representation that can be computed with maximum efficiency. Thus operands in OSLO are 
expressions rather than commands. Each operand consists of one or two components and is of the 
form 

  1 21f c c     (8.15)  

where  is one of the mathematical operators from the following table and c1 and c2 are the 
components. 

 

Operator Description

+ 
Addition: operand value = component 1 value + 
component 2 value 

– 
Subtraction: operand value = component 1 value – 
component 2 value 

* 
Multiplication: operand value = component 1 value  
component 2 value 

/ 
Division: operand value = component 1 value / 
component 2 value 

** 
Exponentiation: operand value = component 1 value 
** component 2 value  

< 
Less-than: operand value = component 1 value – 
component 2 value if component 1 value   
component 2 value; operand value = 0 otherwise 

> 
Greater-than: operand value = component 1 value – 
component 2 value if component 1 value   
component 2 value; operand value = 0 otherwise 

Component classes 
Using the two-component form shown above, it is possible to build operands that effectively 
consist of a greater number of components, since it is possible to define an operand component 
whose value is that of another operand. Each component is of one of the following classes: 

System components measure physical properties of the lens such as curvature, thickness, aspheric 
and GRIN coefficients, etc. Any quantity that can be specified as an optimization variable can also 
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be used as a system operand component. Additionally, surface sag, edge thickness, power, and 
axial length can be specified. 

Aberration and paraxial data components represent the values of third- and fifth-order 
aberration coefficients, seventh-order spherical aberration, paraxial chief- and axial-ray heights 
and slopes, and primary and secondary chromatic aberrations. Note that these components may be 
invalid for systems with certain types of special data. 

Ray components are the values derived from aiming exact rays from specified field points at 
specified pupil points and tracing the rays through the system. The values of the field points are 
contained in the field points set and the values of the pupil points are contained in the ray set, each 
of which is described below. 

Spot diagram components (in OSLO Premium) are the values of the MTF or RMS wavefront 
error, computed by tracing a spot diagram from specified field points. The field point values are 
taken from the field points set, and the grid size (aperture divisions) and wavelengths for the spot 
diagrams are taken from the spot diagram set. 

CCL and SCP components are values computed by CCL or SCP operand functions. These 
components allow the computation of quantities not easily specified by the built-in component 
types. 

External components (in OSLO Premium) are values computed in functions in dynamic-link 
libraries written in compiled, high-level languages such as C. These functions are much faster than 
the equivalent CCL or SCP functions, but require more effort to develop. 

Cross-reference components are the values of other operands in the operands set. These 
components allow the effective construction of operands with more than two components. 

Statistical components are the mean (average) or root-mean-square (RMS) values of one or more 
operands. They are typically used in computing RMS spot size or RMS wavefront error. 

Constant components are simply components with constant numeric values. 

The specific operand components in the various classes are enumerated in the Help system. 

Operand component syntax 
Each component contains one or more arguments, which are entered as integers separated by 
commas. When an operand definition is entered in OSLO, it is immediately compiled into an 
internal representation. The definition echoed on the display is a reconstructed version of the 
operand definition, which reflects how the entered operand was compiled by the program. The 
displayed version uses the most efficient syntax, which may not be the syntax that was used in 
entering the definition. 

The syntax of operand components varies according to the class of operand component. With the 
exceptions of cross-reference and constant components, each component can take one or more 
integer arguments that specify such quantities as ray number (index into the ray set), wavelength 
number (index into the wavelengths set), surface number, configuration number, etc. Many of 
these arguments have default values that need not be entered explicitly by the user; indeed, any 
default arguments at the end of the arguments list for a given component will not be displayed by 
OSLO even if the user enters them explicitly. The following table shows the various operand 
component arguments and their default values. 
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Argument Default 

Surface number 0 (indicates image surface) 

First surface number of 
surface range 

0 (indicates object surface) 

Last surface number of 
surface range 

0 (indicates image surface) 

Configuration number 1 

Wavelength number 1 

Field point number none 

Ray number none 

Spot diagram number none 

Spatial frequency none 

There are several conventions that apply to component arguments: 

 A surface number of zero represents the image surface, and negative surface numbers 
represent surface numbers relative to that of the image surface. For example, the component 
“CV(–2)” is the curvature of the surface that is two surfaces before the image; if surface 
number 7 is the image surface, this is the curvature of surface 5. This convention allows the 
insertion and deletion of surfaces without affecting the actual surface represented in the 
component. 

 Nonexistent wavelength numbers, field point numbers, ray numbers, and spot diagram 
numbers may not be entered. For example, if there are only two entries in the field points set, 
the component “Y(3, 1)”, which is the y-intercept in the image plane of the ray from field 
point number 3, ray number 1, may not be entered. 

 If a nonexistent configuration number is entered, the component value is zero. For example, if 
only one configuration is currently defined, the component “TH(5, 2)”, which is the thickness 
of surface 5 in configuration 2, will have zero value. If a second configuration is later defined, 
“TH(5, 2)” will represent the actual value of thickness 5 in configuration 2. 

The following sections describe the operand component classes and give examples of each 
component class. 

System operand components 
The focal length (EFL), transverse magnification (TMAG), angular magnification (AMAG), 
power (PWR), edge thickness (ETH), and axial length (LN), operand components have the syntax 
 
 <component>(first surface #, last surface #, configuration #) 

where surface # is the surface number, first surface # and last surface # are the numbers of the 
first and last surfaces of a range of surfaces, and configuration # is the configuration in which the 
component is measured. The remaining components only include a single surface: 

 <component>(surface #, configuration #) 

Example 1: Define a component that is the thickness of surface 5 in configuration 1. If you enter 
“TH(5, 1)” OSLO will display “TH(5)” since configuration 1 is the default. Since it is not 
necessary to enter default arguments, you may also simply enter “TH(5)”. 

Example 2: Define a component that is the thickness of surface 5 in configuration 2. If you enter 
“TH(5, 2)” OSLO will leave the definition unchanged since configuration 2 is not the default. 

Example 3: Define a component that is the axial length from surface 1 to the image surface in 
configuration 1. Since the last two arguments are equal to their defaults, this component may be 
entered as “LN(1, 0, 1)”, “LN(1, 0)”, or simply “LN(1)”. In any case, OSLO will display “LN(1)”. 
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Example 4: Define a component that is the axial length from surface 1 to the image surface in 
configuration 2. Since the last argument is not equal to its default, all three arguments must be 
entered explicitly: “LN(1, 0, 2)”. 

Aberration and paraxial data components 
With the exceptions of primary axial color (PAC), primary lateral color (PLC), secondary axial 
color (SAC), and secondary lateral color (SLC), the syntax of aberration and paraxial data 
components is 

 <component>(wavelength #, surface #, configuration #) 

PAC, PLC, SAC, and SLC components have the following syntax: 

 <component>(surface #, configuration #) 

where wavelength # is the wavelength number (index in the wavelengths set), surface # is the 
surface number, and configuration # is the configuration in which the component is measured. 

Example 1: Define a component to measure the third-order spherical aberration coefficient at the 
image surface (i.e. the third-order spherical aberration for the system as a whole) in wavelength 1 
and configuration 1. If you enter “SA3(0, 1, 1)” OSLO displays simply “SA3” since all three 
arguments have their default values. 

Example 2: Define a component to measure the total primary lateral color for the system (i.e. the 
primary lateral color at the image plane) in configuration 2. The only form in which this can be 
specified is “PLC(0, 2)” since the last argument is not the default. 

Ray operand components 

Each ray operand component is computed by tracing a ray in a specified wavelength from a 
specified field point (relative coordinates on the object surface), through a specified pupil point 
(relative coordinates on the entrance pupil), through the lens, and on to the image surface. The 
wavelength, object coordinates, and pupil coordinates are not specified directly in the operand 
component; rather, they exist as entries in the wavelengths, field points, and ray sets to which the 
operand components refer. This indirect representation enhances efficiency: Since information 
from a single ray is often used in multiple operand components, OSLO traces only as many rays as 
necessary. To create ray operands components, then, it is necessary to understand the field points 
set and the ray set (since the wavelengths set is used extensively outside optimization, it is not 
described here). 

The field points set defines the field points that will be used for optimization. These are not 
necessarily the same as those used to draw rays on lens drawings, which are specified as the lens 
drawing operating conditions. Each field has a number and 10 data items that are used in 
conjunction with all rays traced from that field point. The data items are as follows. 

FBY, FBX, and FBZ are the relative y-, x-, and z-coordinates, respectively, of the field point on 
the object surface. These are specified as fractional values relative to the object height. YRF and 
XRF are relative coordinates on the reference surface (normalized to the aperture radius of this 
surface) for reference rays traced from the field point. FY1, FY2, FX1, and FX2 are, respectively, 
lower- and upper-meridional and sagittal vignetting factors for the field point. These factors allow 
the pupil (or reference surface) coordinates of ray set rays to be adjusted to accommodate 
vignetting without changing the ray set. If FY and FX are the relative coordinates specified in the 
ray set (see below) for a given ray, the actual relative pupil or reference surface coordinates for 
rays traced from this field point are given by 

   rayset FY 1 FY2 FY1
traced FY FY1

2

       
 (8.16)  

   rayset FX 1 FX2 FX1
traced FX FX1

2

       
 (8.17)  

The defaults for FY1, FY2, FX1, and FX2 are –1.0, 1.0, –1.0, and 1.0, respectively, so that the 
traced FY and FX are the same as the ray set FY and FX. The effect of the vignetting factors is to 
transform a square grid of rays on the pupil into a rectangular grid or to transform a circular 
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pattern of rays into an elliptical pattern, thereby approximating the shape of the vignetted pupil for 
off-axis field points. Normally, it is also desirable to set YRF to (FY1 + FY2)/2 and to set XRF to 
(FX1 + FX2)/2 so that reference rays pass approximately through the center of the vignetted pupil. 

The last data item for a field point is its weight WGT, which is used only during automatic 
generation of error functions. 

The second table of data needed to define optimization rays is the ray set. Each ray in the ray set 
has a number and data items that specify a ray type, fractional aperture coordinates, and weight. 
The weight is not currently used in OSLO. The ray type is either ordinary or reference. Ordinary 
rays are traced through the specified point on the entrance pupil and then through the lens system. 
Reference rays are iterated so that they pass through the specified point on the reference surface. 
Ordinary rays are faster than reference rays, and should be used for most optimization tasks. FY 
and FX are the relative coordinates on the entrance pupil (for ordinary rays) or the reference 
surface (for reference rays) through which the ray passes. 

The type of a ray is an important factor in determining the types of components that can use it. The 
are essentially three classes of ray-based operand components: those that are computed for both 
ordinary and reference rays, those that are computed only for ordinary rays, and those that are 
computed only for reference rays.  

The components computed for all types of rays are X, Y, Z, RVK, RVL, RVM, NVK, NVL, 
NVM, XA, YA, PL, and OPL (the definition of these components is described in the Program 
Reference manual). These are data that involve only a single ray. The syntax for these components 
is 

  <component>(field #, ray #, wavelength #, surface #, configuration #) 

The other two types of ray components are only available in image space, and have the syntax 

  <component>(field #, ray #, surface #, configuration #) 

where field # is the field point number (index into the field points set), ray # is the ray number 
(index into the rayset), wavelength # is the wavelength number (index into the rayset), surface # is 
the surface number, and configuration # is the configuration number. 

It should be noted that the field point set and the ray set do not by themselves impose any 
computational burden on the program during optimization. Only rays that are referenced in 
operand definitions are actually traced, and if there are multiple references to a particular ray from 
different components, that ray is traced only once. 

The examples of ray components below are based on the following field point and ray sets. 

*RAYSET 
FPT       FBY/FY1       FBX/FY2       FBZ/FX1      FYRF/FX2      FXRF/WGT  CFG/GRP 
F 1       1.000000        --            --            --            --         - 
         -1.000000      1.000000     -1.000000      1.000000      1.000000     - 
F 2       0.700000        --            --            --            --         - 
         -1.000000      1.000000     -1.000000      1.000000      1.000000     - 
RAY         TYPE          FY            FX            WGT 
R 1       Ordinary     -1.000000        --          1.000000 
R 2       Ordinary     -0.500000     -0.500000      1.000000 
 
Example 1: Define an operand component that measures the optical path length from the entrance 
pupil to surface 5 of a ray from field point (FBY = 0.7, FBX = 0.0), pupil coordinates (FY = –0.5, 
FX = 0.5) wavelength 3, configuration 1. 

Field point 2 is defined as (FBY = 0.7, FBX = 0.0). Ray 2 is defined as (FY = –0.5, FX = 0.5). The 
OPL operand that will be defined will use field point 2, ray 1, wavelength 3, and surface 5. Since 
the operand is to use configuration 1 (the default), there is no need to specify the configuration. 
The definition is thus OPL(2, 2, 3, 5). 

Example 2: Create a one-sided operand that specifies that the path length from surface 3 to surface 
4 along a ray from field point (FBY = 1.0, FBX = 0.0) through pupil point (FY = –1.0, FX = 0.0) 
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be greater than 0.5 lens units. The PL operand uses field point 1, ray 1, wavelength 1, and surface 
4, so the definition is PL(1, 1, 1, 4)>0.5. 

Note that the wavelength number was specified explicitly despite the fact that it is the default, 
since the wavelength number argument is followed by the surface number argument, which does 
not have the default value here. The configuration number argument, however, need not be 
specified here because it has the default value (1) and is the last argument. 

Spot diagram operand components 

OSLO Premium allows the direct optimization of MTF through the use of spot diagram operands. 
The main purpose of these operand components is for the construction of specialized user-defined 
tolerancing error functions, or for differential optimization of MTF for a system that is close to 
meeting specifications. Their use in ordinary optimization is discouraged since MTF (and RMS 
wavefront error) are typically highly nonlinear functions of optimization variables, and damped 
least squares often performs poorly under such conditions. 

There are only three spot diagram operand components: sagittal MTF (MTX), tangential MTF 
(MTY), and RMS wavefront error (WVF). MTX and MTY components have the following 
syntax: 

  <component>(spot diagram #, spatial frequency, configuration #) 

WVF operand components have the syntax 

  WVF(spot diagram #, configuration #) 

where spot diagram # is an index into the spot diagram set (see below), spatial frequency is the 
spatial frequency at which MTF is computed (in cycles/mm), and configuration # is the 
configuration number in which the component is evaluated. 

As with ray operands, the information (field point, wavelengths, and aperture divisions) that 
determines the spot diagram to be traced is not specified directly in the component definition, but 
is specified in a separate data set called the spot diagram set. 

The Spot Diagram set contains five data items. FPT is the field point number, or index into the 
field points set. The spot diagram will be traced from this field point. APDIV is the number of 
aperture divisions across the pupil for the spot diagram ray grid. FIRST WVL is the index into the 
wavelengths set of the first of one or more wavelengths in which the spot diagram is to be traced. 
NBR WVLS is the number of wavelengths in which the spot diagram will be traced. The 
wavelengths traced will therefore be (FIRST WVL, FIRST WVL + 1, ... , FIRST WVL + NBR 
WVLS – 1). 

Normally, MTF (i.e. MTX or MTY) alone is not placed in the error function, but rather the 
deviation of the MTF from a target specification value, or the diffraction-limited MTF value. 

Example: Create an operand that measures (0.9 – polychromatic tangential MTF) for the field 
point (FBY = 1.0, FBX = 0.0) at a spatial frequency of 10 cycles/mm. 

Create the Spot Diagram set entry, referring to field point 1. Since this is to be a polychromatic 
spot diagram, the first wavelength is number 1, and the number of wavelengths is 3 (assuming that 
three wavelengths are defined): 

*SPOT DIAGRAM SET 
   SD     FPT      APDIV    FIRST WVL    NBR WVLS 
S   1      1     17.030000      1           3 
 
Finally, create the operand using spot diagram number 1 and a spatial frequency of 10 cycles/mm: 
0.9–MTY(1,10). 

CCL and SCP components 

CCL and SCP components allow the incorporation into the error function of terms that cannot be 
computed easily by the built-in operand components. Through CCL and SCP it is possible, for 
example, to retrieve numerical output of OSLO commands from the Spreadsheet Buffer. 

CCL and SCP components have the following syntax: 
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 OCM<array element #>(configuration #) 

where <array element #> is an integer index into the CCL/SCP global array variable Ocm and 
configuration # is the configuration number in which the component is to be evaluated. 

The procedure for setting up CCL/SCP components consists of three steps: 

1. Write a procedure in CCL or SCP (or use one of the supplied procedures) that computes the 
value(s) of the term(s) that are to be added to the error function. The value of each term should be 
assigned to one of the elements of the Ocm array, which is a built-in global CCL/SCP variable. 
Below is a sample CCL command from the file optim_callbaks.ccl that traces a spot diagram from 
each of three field points and assigns to the global variables Ocm[0], Ocm[1], and Ocm[2] the 
values of the RMS spot size at each field point. 

cmd oprds_spot_size(void) 
{ 
 set_preference(output_text, off); 
 trace_ref_ray(0.0); 
 ssbuf_reset(); 
 spot_diagram(mon, 10.0); 
 Ocm[0] = c4; 
 trace_ref_ray(0.7); 
 ssbuf_reset(); 
 spot_diagram(mon, 10.0); 
 Ocm[1] = c4; 
 trace_ref_ray(1.0); 
 ssbuf_reset(); 
 spot_diagram(mon, 10.0); 
 Ocm[2] = c4; 
 set_preference(output_text, on); 
} 
 
2. Set the value of the “Command for CCL/SCP operands” optimization operating condition to the 
name of the CCL or SCP command from Step 1. If an SCP command is used to compute the 
added components, the command name entered here should start with an asterisk (*). For the 
example above, the command name is oprds_spot_size. 

3. Add OCM<array element #> operand components corresponding to the elements of the Ocm 
array that are assigned values in the CCL or SCP command: for the above case, add ocm1, ocm2, 
and ocm3 to the operands.  

Whenever the error function is evaluated, the designated CCL or SCP command is invoked once 
for each lens configuration. The CCL or SCP function can check the value of the cfg global 
variable to determine the current configuration number (if necessary). The same Ocm array is used 
by all configurations, so CCL/SCP operand-component commands need to ensure that each 
configuration uses a distinct subset of the Ocm array. For example, suppose that the operands set 
contains two CCL operands, one of which is calculated in configuration 1 and the other in 
configuration 2. The operands set would then contain the following two entries: OCM0 and 
OCM1(2), and the CCL command to compute the operand components would contain code such 
as the following: 

   
 if (cfg == 1) 
  Ocm[0] = <value of config. 1 operand>; 
 else if (cfg == 2) 
  Ocm[1] = <value of config. 2 operand>; 
 
Normally, CCL/SCP operand-component commands that invoke OSLO commands that produce 
text output set the output_text preference to “Off” before invoking the OSLO commands and then 
restore the output_text preference to “On” (see the example on p. 8-214). Otherwise, a large 
amount of text output may appear during optimization as the CCL/SCP command is invoked 
repeatedly. 

External components 
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External operand components provide a means for incorporating into error functions the results of 
lengthy or computationally intensive calculations that are impractical in CCL or SCP. This facility 
is implemented in a manner similar to CCL/SCP components, except that the calculations are 
performed in a dynamic-link library (DLL) that is written in a high-level compiled language, such 
as C. The advantages of this approach are speed and flexibility; the disadvantages are the 
requirement of using a compiler separate from OSLO and the extra effort that is necessary to 
integrate the DLL with OSLO. 

Cross-reference components 

A cross-reference operand component is simply a component whose value is that of a previous 
operand. The syntax of cross-reference components is simply O<operand #>, where <operand #> 
is the index of a previous operand. 

Cross-reference operands provide a means for building complex operand definitions that cannot be 
formed with only two components. For example, suppose that you wish to create an operand 
whose value is the sum of the third-, fifth-, and seventh-order spherical aberrations. OSLO does 
not allow the definition of a three-component operand “SA3+SA5+SA7”, so the definition must 
be split into two parts: an “intermediate” operand with zero weight and definition “SA3+SA5”, 
and a “total spherical aberration” operand which is the intermediate operand, plus SA7: 

*OPERANDS 
 OP  MODE    WGT      NAME          VALUE  %CNTRB DEFINITION 
O 1   M    0.000000                 --        --  SA3+SA5                     
O 2   M    1.000000                 --        --  SA7+O1                      
MIN RMS ERROR:       --     
 
Operand 1 is given zero weight so that it is not incorporated directly into the error function value 
calculation. The component “O1” in operand 2 has the value of operand 1 (irrespective of the 
weight of operand 1). 

Statistical operands 

Statistical operands are used to compute averages and standard deviations or RMS values of 
groups of consecutive operands. There are two statistical operand components: AVE and RMS. 
The value of an AVE operand is the weighted mean of the values of the first components of all the 
subsequent operands, up to, but not including, the next RMS operand. The value of an RMS 
operand is the root-mean-square value of all the operands (including both components) between 
the preceding AVE operand and the RMS operand. If operand number a is an AVE operand and 
operand r is an RMS operand (r > a + 1), then the value of operand a is given by 
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and the value of operand r is given by 
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The statistical operands are often combined with cross-reference operands to compute standard 
deviations of groups of operands, as follows. If each of the operands between an AVE operand and 
the corresponding RMS operand is of the form “<component 1 of operand i>–Oa”, where Oa 
represents a cross-reference to the AVE operand, the value of the RMS operand is the standard 
deviation of the group of operands. In mathematical notation, this is expressed as 
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Example: Construct an error function to measure the RMS y-intercept in the image plane of three 
rays from field point (FBY = 1.0, FBX = 0.0). 

First, set up the ray set and the operands as follows: 

*RAYSET 
FPT       FBY/FY1       FBX/FY2       FBZ/FX1      FYRF/FX2      FXRF/WGT  CFG/GRP 
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F 1       1.000000        --            --            --            --         - 
         -1.000000      1.000000     -1.000000      1.000000      1.000000     - 
RAY         TYPE          FY            FX            WGT 
R 1       Ordinary     -0.500000        --          1.000000 
R 2       Ordinary        --            --          1.000000 
R 3       Ordinary      0.500000        --          1.000000 
 
*OPERANDS 
 OP  MODE    WGT      NAME     DEFINITION 
O 1   M      --                AVE                                            
O 2   M    1.000000            Y(1,1)-O1                                      
O 3   M    1.000000            Y(1,2)-O1                                      
O 4   M    1.000000            Y(1,3)-O1                                      
O 5   M      --                RMS             
                                
Notice that the AVE and RMS operands both have weights of zero. If they had nonzero weights, 
they would have been included directly in the error function; here, the error function measures the 
standard deviation of operands 2, 3 and 4 only. 

When operands are listed in the text output command using the operands (ope) command, AVE 
operands and operands between AVE and RMS operand pairs are hidden, and the weight and 
percent contribution displayed for the RMS operand is actually the sum of the weights and percent 
contributions of the operands between the AVE operand and the RMS operand. 

*OPERANDS 
 OP  MODE    WGT      NAME          VALUE  %CNTRB DEFINITION 
O 5   M    3.000000               0.037095 100.00 RMS                         
MIN RMS ERROR:     0.037095 
 
If the operands are listed with the operands all command, however, all operands are displayed 
and the RMS operand is displayed with zero weight: 

*OPERANDS 
 OP  MODE    WGT      NAME          VALUE  %CNTRB DEFINITION 
O 1   M      --                  18.278045    --  AVE                         
O 2   M    1.000000               0.050719  62.31 Y(1,1)-O1                   
O 3   M    1.000000              -0.013752   4.58 Y(1,2)-O1                   
O 4   M    1.000000              -0.036967  33.10 Y(1,3)-O1                   
O 5   M      --                   0.037095    --  RMS                         
MIN RMS ERROR:     0.037095 
 
Constant components 

Constant operand components are simply fixed numeric values, such as –27.6 and 1.772  10-3. 
The only restriction on constant components is that a negative constant cannot be used as the 
second component of an operand; for example, OSLO will not accept the operand definition 
“SA3>–0.075”. Usually, this restriction can be worked around by revising the operand definition: 
for example, “SA3>–0.075” can be rewritten as either “–SA3<0.075” or as “–0.075<SA3”, and 
the operand “DY(1, 1)*–20.0” can be rewritten as “–20.0*DY(1, 1)”. For cases in which the 
operand cannot simply be rearranged into a legal form, cross-reference operands can be used; for 
example, “CMA3**–0.5” can be rewritten as “CMA3**O1”, where operand 1 is defined as the 
constant value –0.5, with zero weight. 

Error function construction 
Measures of performance that might be included in the error function include the following: 

 optical performance (e.g., MTF, RMS wavefront error, RMS spot size) 

 physical realizability (e.g., no negative edge thicknesses) 

 cost (materials, fabrication, etc.) 

Typical error functions include terms to measure optical performance and physical realizability. 
Cost is usually controlled by limiting the types of materials used in constructing the lens system, 
limiting the number of elements in the system, limiting the use of unusual surface types, and so 
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on. Cost is also determined by the manufacturing tolerances in the system. In this discussion, only 
optical performance and physical realizability will be considered. 

The type of error function required for a particular design task of course depends on the type of 
system and the specifications to be met. In the early stages of a design, the best error function is 
often one built from paraxial ray data and aberration coefficients. The reasons for this are that (1) 
such an error function is very robust because it doesn’t require that rays can be traced through the 
system, and (2) for a successful final design it is essential that the pupil locations, apertures, and 
general aberration balance be controlled. Thus, provided that the symmetry properties of the 
system permit aberration analysis, it is often a good idea to carry out a preliminary design using 
aberration coefficients. 

For final designs, error functions built upon exact ray tracing are usually required to obtain 
satisfactory performance. For simple systems having only a few degrees of freedom, only a few 
rays are typically required to produce a finished design. For more complex systems, the RMS spot 
size and RMS OPD measures of image quality both estimate the ability of a lens system to image 
points in object space to points on the image surface with good accuracy, and form the basis of 
typical error functions. 

RMS spot size 
The RMS spot size is estimated by tracing a number of exact rays through the optical system from 
one or more field points and measuring the standard deviation of the positions at which the rays 
intersect the image surface. An ideal system will focus all rays from any given field point in the 
field of view to a single point on the image surface and will therefore have a zero spot size. Let 
X(h, , ) and Y(h, , ) represent the x- and y-intercepts on the image surface of a ray in 
wavelength  from fractional object coordinates h (h means the object position (hx, hy)) that passes 
through fractional entrance-pupil coordinates  ( means the pupil position (x, y)). In these 
terms, an expression for the estimated mean-square spot size, averaged over the field, is given by 
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Here, wijk is the (normalized) weight of the ray, and the coordinates of the centroid of the spot 
from field point h, are given by 
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To construct an error function that estimates the spot size, a scheme must be used to determine the 
sampling to be used (i.e. the number of field points and their positions in the field, the number of 
rays to be traced from each field point and their positions in the pupil, and the number of colors 
and their wavelength values) and the values of the weights. To this end, OSLO provides a set of 
methods based on Gaussian integration for automatically selecting the sample locations and 
weights and constructing an error function. This scheme is described in the “Automatic error 
function generation” section below. 

RMS OPD 
Another characteristic of optical systems that produce sharp point images is that the shape of the 
wavefront emerging from the system for a given field point is that of a sphere centered about the 
point where a reference ray from the field point intersects the image surface. The imaging quality 
of a system can then be measured by calculating the deviation from this reference sphere of the 
emerging wavefront (see p.196). 

The optical path difference, or OPD, for a single ray from a given field point is the distance along 
the ray from the reference sphere to the wavefront, times the refractive index in image space. To 
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measure the imaging performance of the system as a whole, we create an error function that 
measures RMS OPD, averaged over the field, as follows. Let d(h, , ) represent the OPD of a ray 
in wavelength  from fractional object coordinates h that passes through fractional entrance-pupil 
coordinates . An expression for the estimated mean-square OPD, averaged over the field, is then 
given by 
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Again, wijk is the (normalized) weight of the ray, and the average OPD of the rays from field point 
h is given by 
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As with the estimation of the mean-square spot size, a scheme must be used to determine 
appropriate field, wavelength, and pupil samples and the appropriate weights. The Gaussian 
integration schemes available for this purpose in OSLO are described on the next page. 

MTF 
The modulation transfer function, or MTF, is often the specified measure of performance for 
imaging systems. However, the MTF has drawbacks that limit its use in error functions. First, it is 
computationally expensive. Second, the MTF is often a highly nonlinear function of the 
optimization variables, making it ill-suited to least-squares optimization. The nonlinearity also 
makes accurate numerical estimation of the derivatives of the MTF difficult. For these reasons, 
error functions used in optimization generally measure performance using quantities that correlate 
well with the MTF, such as RMS spot size or RMS OPD. 

Notwithstanding the above, it is feasible to use MTF for differential optimization. In this case, a 
system is first optimized using a spot-size or OPD error function. Then a new error function based 
on MTF is used to incrementally change the MTF to meet target specifications. 

Automatic error function generation 
For routine optical design tasks, it is possible to generate an acceptable error function 
automatically, or at least with only general input parameters provided by the designer. OSLO 
contains two automatic error function generators, commonly known as the GENII error function 
generator and the OSLO error function generator because of their historical implementation. A 
knowledge of lens design is used in the construction of the GENII error function, which is why it 
is sometimes called an expert designer error function.  The OSLO error function, on the other 
hand, makes no use of lens design knowledge, and sets up a mathematical function to optimize the 
rms spots size or rms OPD. 

Genii error function 
The GENII error function, so-called because it was originally used in the GENII program, uses 
multiple items of data from each traced ray to build a compact error function that is well-suited to 
interactive design. It uses only 10 rays to derive a 31-term error function that makes use of the 
relationships between classical aberrations and exact ray data. The individual terms are normalized 
so that a value of 1.0 represents a normal tolerance for the term, making it easy to see the 
significant defects in a design and apply appropriate weighting, if necessary. The user only needs 
to specify the spatial frequency at which the system is to be optimized, which makes it easy to use. 

The GENII error function is designed to handle systems of moderate complexity, such as camera 
lenses and other systems having three to eight elements. It is not sufficiently comprehensive to 
handle very large systems, and is not efficient for handling singlets or doublets. The following 
description, extracted from the OSLO program documentation[1], describes its general 
construction. 
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The GENII error function uses terminology somewhat different from the rest of OSLO. The 
GENII error function  is constructed from targets and is defined by 
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where Aj is the actual value (the value for the existing lens) of the jth target and Dj is the desired 
value (the value for the program to work to) for the jth target. Tj is the tolerance of the jth target (for 
example, the acceptable amount that the jth target is permitted to deviate from its desired value in 
either direction). N is the number of targets. Aj – Dj is the amount that the jth target is in error and 
(Aj – Dj)/Tj is the error measured in tolerances, so (Aj – Dj)/Tj is the number of tolerances that the 
jth target deviates from its desired value. In other words, 1/Tj is a weighting factor on the error Aj – 
Dj. M is the weighted sum of the squared errors. The use of tolerances simplifies the interpretation 
of the error function by effectively establishing a common unit of measure for different types of 
operands. 

The default error function from GENII has a consistent set of targets and tolerances to control 
classical aberrations, i.e., it is assumed that the lens is rotationally symmetric. Color correction is 
performed using Conrady D–d operands and there is no control on secondary color. Since it is 
designed to balance aberrations in a focal plane shifted from the paraxial image plane, the image 
distance should be allowed to vary during optimization. If the lens is capable of being diffraction 
limited, this error function can usually drive it there. If the lens is not capable of being diffraction 
limited, a reasonable aberration balance can be achieved. If the lens is f/1.5 or faster, this error 
function may not work well because too few rays are traced. 

The rays used in the error function are selected on the assumption that there will be some 
vignetting. If there is no vignetting, the off-axis rays should be moved further out in the aperture. 
For some lenses, better correction may be achieved by moving the axial marginal ray in to 0.9 or 
0.95, rather than 1.0. 

The GENII error function creates a field points set with three entries (FBY = 0.0, 0.7, and 1.0) and 
a ray set with 8 rays. Ray 1 (a real chief ray) is used to compute field curvature and distortion 
operands. Ray 2 is used for the axial marginal ray. Rays 3, 4, and 5 are the aperture rays for the 0.7 
field point and rays 6, 7, and 8 are the aperture rays for the 1.0 field point. The aperture 
coordinates for these rays may need to be adjusted based on the desired vignetting.  

The GENII error function command in OSLO generates a set with 43 operands, of which only 31 
have non-zero weight. These 31 operands comprise the error function. The other operands (with 
zero weight) are used as intermediate steps in forming GENII-style target definitions. All 
tolerances are computed from the specified frequency (design_spatial_frequency) and the exit 
angle of the paraxial axial ray, which is held at its initial value. The basic tolerance from which the 
others are computed is the tolerance on the transverse ray error for the on-axis marginal ray. This 
tolerance, Dy, is set at .167 times the reciprocal of the design spatial frequency. The active 
operands are described in the table below. 

 



8-220 Automatic error function generation 

 

Description of Active Operands Field Tolerance 
Exit angle of paraxial axial ray, u    0.0001 
Focus shift penalty 3Dy
Marginal transverse ray error on-axis 0.0 Dy
Marginal OPD on-axis   u Dy/3
Marginal DMD for axial color   u Dy/3 
Percent distortion 1
Tangential field curvature (transverse measure) 3(0.7)Dy
Sagittal field curvature (transverse measure) 0.7 3(0.7)Dy
Primary aperture coma exact in field   3.2u Dy
Transverse ray error in upper aperture 4(0.7)Dy
OPD in upper aperture   u Dy/3 
DMD for lateral color in upper aperture   u Dy/3
Transverse ray error in lower aperture 4(0.7)Dy
OPD in lower aperture   u Dy/3
DMD for lateral color in lower aperture   u Dy/3
x component of transverse ray error for sagittal ray 0.7 4(0.7)Dy
y component of transverse ray error for sagittal ray Dy
OPD on sagittal ray   u Dy/3
Percent distortion 1
Tangential field curvature (transverse measure) 3Dy
Sagittal field curvature (transverse measure) Dy
Primary aperture coma exact in field   3.2u Dy
Transverse ray error in upper aperture 4Dy
OPD in upper aperture 1.0 u Dy/3
DMD for lateral color in upper aperture   u Dy/3
Transverse ray error in lower aperture 4Dy
OPD in lower aperture   u Dy/3
DMD for lateral color in lower aperture   u Dy/3
x component of transverse ray error for sagittal ray 4Dy
y component of transverse ray error for sagittal ray 
(coma) 

  Dy 

OPD on sagittal ray   u Dy/3 
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OSLO error function 
The OSLO error function takes a mathematical approach to computing the spot size or OPD of an 
optical system, averaged over the field of view and chromatic range of interest. One can imagine 
tracing a very large number of rays from a large number of field points, in a large number of 
wavelengths, to find the overall performance of the system. As the number of rays in the error 
function approaches infinity, the sum becomes an integral. Although feasible error functions 
obviously cannot contain an infinite number of rays, the integral formulation recasts the problem 
of determining the spot size into one of numerically evaluating an integral, which leads to efficient 
schemes for selecting the proper rays to include in the error function. 

Consider a rotationally symmetric system working at wavelength  that images objects at heights 
h. Consider points in the pupil of such a system to be specified in cylindrical coordinates (, ). 
Suppose that  and h are fractional coordinates. The height of a ray on the image surface of such a 
system will depend on all of these quantities: y = y(, , , h) and x = x(, , , h). The error 
function, defined as the mean-square spot size averaged over the pupil, field of view, and 
wavelength, can then be written as an integral.  

Let us consider here only the integration over aperture; the integration over field and wavelength 
will follow the same principles. At a single field point, the integral for the y-component of the spot 
size becomes 

   
2 1 2

0 0
, ,y h y h d d


              (8.27)  

The evaluation of this integral must, of course, be done numerically instead of analytically for 
practical systems. The task of choosing appropriate sampling points for the integral is equivalent 
to creating an appropriate ray set. Forbes pointed out that Gaussian quadrature methods are well 
suited to solving this type of problem. 

Gaussian quadrature, in addition to being an efficient way to do numerical integration, has a 
property that is intuitively helpful to optical designers: It gives an exact solution to the integral 

 1 3 2 1
1 3 2 10

n
na a a d
          (8.28)  

using n sampling points. This implies, for example, that if we have an on-axis optical system that 
is known to have negligible ninth order (or higher) spherical aberration, the rms spot size can be 
calculated exactly using just four rays! 

To evaluate Eq. (8.27) requires integrating over both  and . The angular part should be sampled 
at angles k = (k – ½)N , where N is the number of angular sampling points in the range (0…). 
For the radial part, the sampling points are selected using Gaussian integration. The aperture 
integral is then written as the summation 
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w y y
 

 

         
 (8.29)  

The required sampling points (j, k) are shown in the following table for the first few values of N 
and N. 
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N, N j, k j wj k 

1 1 0.7071 0.5000 90 

2 1 

2 

0.4597 

0.8881 

0.2500 

0.2500 

45 

135 

3 1 

2 

3 

0.3357 

0.7071 

0.9420 

0.1389 

0.2222 

0.1389 

30 

90 

150 

4 1 

2 

3 

4 

0.2635 

0.5745 

0.8185 

0.9647 

0.0870 

0.1630 

0.1630 

0.0870 

22.5 

67.5 

112.5 

157.5 

The figure below shows a typical ray pattern for Gaussian quadrature with three rings and three 
spokes. Note that rays need to be traced through only one-half of the aperture, because of the 
rotational symmetry of the system. Note also that all rays are skew rays; there are no rays along 
the y axis. 

 

The figure below shows typical accuracy of Gaussian quadrature, as compared to Cartesian (i.e. 
square grid) methods for evaluating the rms spot size. It should be noted, however, that it is 
necessary to have a circular entrance pupil to achieve this accuracy, and also the method is 
restricted to systems that have rotational symmetry. If these factors are missing, Cartesian methods 
compare more favorably to Gaussian quadrature. 
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For optical design purposes, the Gaussian quadrature method is not totally satisfactory, because it 
does not produce a sample point at the center of the aperture, where the reference ray is traced, nor 
at the edge of the aperture, where the marginal ray is traced. Two other quadrature schemes called 
Radau and Lobatto quadrature produce the desired sampling. The Radau scheme includes the ray 
at the center of the aperture, and the Lobatto scheme includes both the central and marginal rays. 

The automatic error function in OSLO gives the user the choice of a square grid or Gaussian, 
Radau, or Lobatto quadrature. Lobatto quadrature is the default, since it is most convenient for 
optical analysis. Integration is carried out over aperture, field, and wavelength. The program 
allows you to specify the number of rings and spokes, as well as to choose either rms spot size or 
rms wavefront error. An option is provided to align one of the spokes with the y axis, so that 
meridional rays are traced. 

In addition to the options for setting up ray patterns, the automatic error function generator allows 
a choice of color correction methods between tracing rays in each of the defined wavelengths, or 
using a simplified methods based on Conrady D–d operands. Separate operands can be generated 
to control distortion and edge thickness, which are of course not included in the Gaussian 
integration scheme. 

In a system where the aperture is vignetted, the quadrature schemes must be modified to 
approximate the actual pupil by an ellipse defined by the vignetting factors included in the field 
point set. The circular pupil is mapped on the vignetted ellipse to determine the final ray 
coordinates used in the error function computation. 

The automatic error function generated by OSLO can be classified as a high-accuracy, medium 
efficiency error function. For typical systems, it is much more accurate than error functions based 
on a square grid of rays. On the other hand, compared to custom error functions that have been 
used in the past for optimization, it uses too many rays. If the highest efficiency optimization is 
desired, it is usually possible for a skilled designer to create an error function that surpasses the 
OSLO default. It is interesting to note, however, that few designers choose this option anymore, 
probably because the high speed of contemporary computers makes it unnecessary. 

Multiconfiguration optimization 
A multiconfiguration system is one in which a portion of the lens data changes from one 
configuration to the next. The zoom lens is the most common multiconfiguration system, but there 
are several other types, including lens attachments, systems in which the ray paths vary from one 
configuration to the next, and even systems that are apparently single configurations, but which 
are optimized simultaneously under different operating conditions. Multiconfiguration 
optimization refers to the process of optimizing a system so that its performance in any one 
configuration is not optimum, but the performance of the ensemble of configurations is optimum. 

OSLO has a special data structure for storing multiconfiguration data in a binary format that can 
be switched extremely rapidly. The base configuration is referenced as configuration 1. There is 
no upper limit on the configuration number. If a configuration is referenced that has no defined 
configuration data, the data for the system is the same as the base configuration. 

Ordinary configuration data (radii, thickness, apertures, and glasses, as well as basic paraxial 
operating conditions) can be entered directly on the surface data spreadsheet by setting the current 
configuration field to the desired configuration. Special configuration data is entered using the 
configuration data spreadsheet. 

At any given time, the system is in its current configuration, which can be set by the user, or 
automatically by the program. Lens setup is always performed in the base configuration, and 
solves are normally only carried out in this configuration (this can be overridden by an operating 
condition). Certain actions, e.g. opening the surface data spreadsheet or computing the operands, 
cause the program to automatically reset to the base configuration. 

Variables can be specified in any configuration, and can also be specified to be in configuration 0, 
meaning that they are variable, but have the same value in all configurations (these are sometimes 
called global variables). 
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Operands in a multiconfiguration system must reference the configuration in which they are to be 
evaluated; there are no global operands. If the configuration number for an operand is not 
specified, it is understood to apply to the base configuration. 

Optimization of multiconfiguration systems proceeds similarly to optimization of single 
configuration systems, the only difference being that the program cycles through all the defined 
configurations when computing the error function and setting up the derivative matrix. 

Global optimization 
The most widely employed optimization scheme consists of the selection of a starting point by the 
designer, followed by the application of the DLS method to locate a nearby optimum. If the local 
optimum thus found is not of sufficient quality, a new starting point is chosen and the process is 
repeated until a satisfactory local minimum is found. The success of such a scheme is dependent 
upon the choice of the starting point, and the resulting designs are typically similar in form to the 
starting point. 

The goal in the optimization stage of design is to determine the configuration of the lens system 
for which the merit function is smallest over the region of interest defined by the constraints–that 
is, to locate the global minimum of the merit function. OSLO Premium contains two optimization 
methods useful for this task: Global Explorer (GE) and Adaptive Simulated Annealing (ASA). 
Strictly speaking, GE should be called a multiple solution generator, while ASA is a true global 
optimization method. The difference between the two is that GE carries out successive local 
optimizations, keeping track of several solutions. The outcome depends on the starting point, and 
the solutions will be the same if the method is run several times. ASA, on the other hand, produces 
(ultimately) only a single solution which is the best estimate of the global optimum in the 
specified search region, subject to the time constraint imposed on the optimization. 

One conceptually simple global optimization scheme is the grid search: the merit function  is 
evaluated at points on a regular grid aligned to the coordinate axes, and the sample with the lowest 
value of  is taken as an estimate of the global minimum. Such a simple scheme, however, rapidly 
becomes unworkably inefficient with increasing dimensionality. Consider a problem in which five 
samples are required in each coordinate direction to locate the global minimum to the desired 
accuracy and in which the merit function requires 1 s to evaluate. Thus, the time needed to 
perform a grid search in N dimensions is 5N s: for N = 10, the search is completed in less than ten 
seconds, but for N = 15, more than eight hours is needed, and in just 20 dimensions, over three 
years is required. Clearly, even with such sparse sampling and with such unrealistically favorable 
estimates of evaluation speed, a grid search is impractical; the sampling of the region of interest in 
the configuration space must be more selective. 

Global Explorer 
The solution obtained from damped least squares is no more than a local minimum that happens to 
be near the starting design. Once the design is trapped there, it is impossible to get out of that 
place, because damping factor becomes too large around the local minimum and this prevents the 
design from jumping out of the trap. This is one of the most serious defects of the DLS method. 

The Global Explorer method developed by Isshiki defines an escape function (or penalty function) 
that forces the DLS algorithm out of a local minimum. The method is illustrated in the following a 
flow chart and also by the following description of steps.  



Global optimization 8-225 

 

 

1. When the design falls into a local minimum, the program automatically sets up an escape 
function there, in which initial values are given for H and W.  

2. Optimization is performed for the merit function including the escape function.  

3. After removing the escape function, optimization is done again, the solution thus 
obtained is another local minimum of the merit function.  

4. If the newly found solution is not identical with any of the already found ones, the escape 
was regarded as a success, and that solution is saved in the file.  

5. When the escape is not successful, two escape parameters H and W are changed by a 
predetermined rule, and the process (2) to (4) is repeated until the new and independent 
solution is found.  

In the step (4), there must be a criterion to judge whether the escape was successfully made or not. 
In Global Explorer, the distance of two solutions is defined as 

' 2( )jp j j
j

D w x x   
 (8.30)  

where x and x are positions of the local minima in the parameter space. If Dp is larger than a 
threshold value Dt, these two solutions are regarded as independent. If this relation does not hold 
between a newly found solution and each of the already filed solutions, the escape is judged as a 
failure. 
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The following figure illustrates a model of merit function  having a design parameter xj. When 
the design falls into a local minimum at xjL, an escape function fE is set up there which is to be 
added to the error function. The escape function is defined by 

 2

2

1
exp

2E j j jL
j

f H w x x
W

     
  

  
 (8.31)  

where  

xjL: Local minimum from which the design is to escape. 

wj: Weights for design parameters. 

H and W: Escape parameters as shown in figure below. 

 

The shape of merit function  around its local minimum changes with the escape function (see 
figure); is raised by an amount of fE

2 when an escape function is added to the error function. This 
enables the design to escape from the trap. Repeating this process, you can automatically find a 
predetermined number of local minima. In the next section, the program named ‘Global Explorer’ 
is explained in detail. 

From the above graph, it may look very difficult to select appropriate values for the two 
parameters H and W. However, in practical cases where the number of parameters is large enough, 
this problem is not so delicate; a rather crude choice of these two values would be acceptable in 
most cases. In the above figure, the number of parameters is only one, i. e. the picture shows a 
model in one dimensional parameter space. A model in two dimensional space is shown below. 
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Adaptive Simulated Annealing (ASA) 
Since the performance of global optimizers is essentially independent of the particular starting 
point, they are especially effective in situations in which suitable starting points are difficult to 
determine. One attractive global optimization scheme is the simulated annealing algorithm. 
Simulated annealing belongs to a class of global optimizers that are called controlled random 
search methods because the merit-function space is sampled randomly according to a scheme in 
which the values of several parameters determine the distribution of the random samples. 
Although these so-called Monte Carlo methods might at first seem as promising as throwing darts 
while blindfolded, it turns out that they are much more efficient than grid search. Monte Carlo 
methods are routinely used for solving multidimensional integrals, for example. 

The simulated annealing algorithm derives its name from the fact that its behavior is controlled 
principally by a parameter T, called “temperature,” that is analogous to the temperature in the 
thermal annealing process. We call simulated annealing a “true” global optimization algorithm 
because each run attempts to search the entire region of interest for the global minimum rather 
than performing multiple downhill optimization runs in which the selection of the various starting 
points is automated. 

Choose and initial value for T
and a random base point x

Update T
Generate a random step s

Max{1, exp[(x - x + s)/T]}
greater than Rand(0,1)?

Replace x with x + s

Termination
condition met?

END

 

In simulated annealing, the optimization process is not required to proceed uniformly downhill, 
but is allowed to make occasional uphill moves. The typical increase in  that is acceptable in an 
uphill move is determined by the value of T. At the start of the annealing process, T has a 
relatively large value compared to the standard deviation of the merit function over the region of 
interest, and the random walk effectively traverses all of this region. As the random walk 
progresses, T is lowered, the allowed increases in  are then typically smaller, and the walk is 
effectively constrained to ever lower valleys. If T is reduced sufficiently slowly, the random walk 
can escape the higher valleys during its earlier stages, and it can be expected to terminate at the 
global minimum. If T is lowered more quickly, however, the random walk is more likely to 
become trapped in one of the higher valleys. This follows the analogy with the thermal annealing 
process: if a hot solid is cooled slowly, its final state is likely to be one of lower potential energy 
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(usually, a more ordered arrangement of atoms); if it is cooled more quickly, the final state is 
likely to be one of higher potential energy. 

There exist numerous variants of simulated annealing, each of which represents an attempt to 
address the following concerns: 

 How is the initial value of T chosen, and how is T lowered? 

 How are the steps generated? 

Most variants of simulated annealing require the user to answer these questions by providing the 
values of a set of parameters that control the course of optimization; for example, for the 
temperature, the user may be required to specify an initial value, a factor between 0 and 1 by 
which T is multiplied periodically, and a parameter used to control the length of this period. The 
parameters for tuning the step generation process are even more important. Determining 
appropriate values for all of these parameters is often accomplished through trial and error, which 
is prohibitively expensive for all but the simplest problems. Furthermore, many variants of 
annealing do not possess the desirable properties of invariance under linear transformations of the 
coordinates or of the merit function. 

For these reasons, we have developed adaptive controls for all of the parameters in simulated 
annealing. The performance of the resulting algorithm, which we call Adaptive Simulated 
Annealing (or just ASA), is invariant under linear transformations of both the merit function and, 
more importantly, of the coordinates in the configuration space. ASA requires the specification of 
only a single parameter: the annealing rate written as , which determines the average rate at 
which T is lowered. Given a value for this parameter, all else is automatically tuned to the 
particular problem at hand. Reducing the value of  slows the cooling (hence increases the run 
time) and makes the search for the global minimum more thorough. 

The effectiveness of any adaptive mechanism is crucially dependent upon the automatic control of 
the statistics of the random step generator. First, a fundamental requirement of simulated 
annealing is that the step distribution must be symmetric. That is, a step s is just as likely as the 
step –s. We have chosen to use a Gaussian distribution for the steps. In two dimensions, a general 
Gaussian distribution resembles an elliptical cloud that becomes less dense away from its center. 
The proportions, orientation, and size of the ellipse are the key parameters in this case. It is clear, 
that, as the value of T is lowered, the region being explored in the configuration space is reduced. 
It therefore seems reasonable to expect that the optimal Gaussian for the steps should also be 
modified as the annealing process advances. If the step size is too large for the current value of T, 
almost all of the attempted moves are rejected and the process stagnates. On the other hand, if the 
steps are too small, the walk may cover only a fraction of the configuration space that should be 
explored at the current temperature for optimal efficiency. It also appears reasonable to expect that 
the relative shape and orientation of the Gaussian cloud will need to be adjusted continually in 
order to maintain optimal efficiency. We have proposed a simple procedure that automatically 
adjusts the scale, shape, and orientation of the n-dimensional Gaussian at each stage during 
annealing. 

The basic idea for step control in ASA is based on what is called the central limit theorem. This 
theorem states that, if you average a collection of independent random numbers, the result is a 
random number with a distribution that is roughly a (one-dimensional) Gaussian. This holds 
regardless of the distributions of each of the individual random numbers and it also follows that 
the variance (i.e., the mean-square spread) in the resulting random number is just the average of 
the variances of the individual random numbers. As a result, it turns out that a Gaussian 
multidimensional step generator can be realized by taking linear combinations of a collection of 
random vectors. 

In ASA, the idea is to keep a record of the last m steps that have been accepted and to generate 
new steps by taking random linear combinations of these steps and scaling the result by an 
appropriate (dynamically adjusted) expansion factor. In this way, the statistics of the generated 
steps are directly coupled to both the behavior of the merit function and the current value of T. 
This scheme turns out to be not only effective but simple: without expensive matrix operations, 
the algorithm automatically adjusts to the multidimensional terrain in a way that is invariant under 
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arbitrary linear transformations that scale and stretch the space in a manner that warps rectangular 
prisms to rotated, elongated parallelepipeds. Within the context of lens design, this invariance is of 
utmost importance since there is no natural measure of distance in the configuration space. (Recall 
that the coordinates are normally a mixture of refractive indices, thicknesses, curvatures, aspheric 
coefficients, etc., and there is no intuitive way to define the distance between two points in such a 
space.) 

Another important aspect of the guided random walk is the means for dealing with steps that take 
the system outside the region of interest. That is, if one or more constraints are violated by the 
proposed system, the step cannot be accepted. Efficiency is enhanced if, instead of simply 
rejecting such a system and requesting a new random step, the point at which the current step first 
crosses a constraint boundary is found and the step is then reflected off this constraint back into 
the region of interest. Without this reflection process, the regions near constraints turn out to be 
undersampled and this can adversely affect the overall efficiency. 

For optimal efficiency it is important that the details of this process of reflection take a form that 
ensures invariance under linear transformations of the coordinates. Since our intuition is based in a 
space where there is a natural measure of distance, it seems unambiguous to state that a step 
should be reflected in a given plane as if it were a mirror. This is not so, however. The difficulty 
can be appreciated by observing that the idea of a normal to a plane surface is not invariant under 
linear transformations. To see this, consider two perpendicular lines on a page and imagine a scale 
transformation that stretches the plane along a direction that is not parallel to either of the lines. As 
a result, the lines will no longer be perpendicular. It follows that, to complete the specification of 
the reflection process, it is necessary to introduce a particular measure of distance – i.e., a “metric” 
– to the coordinate space. 

In ASA, there is a natural metric defined by the elliptical Gaussian cloud of the step distribution: 
the distance between two points can be measured in terms of the number of steps (of mean size in 
that direction) required to move from one point to the other. Notice that, due to the coupling to the 
step distribution, the form of this metric evolves during the annealing process. Now, if the space is 
redrawn by reference to this metric (which amounts to a linear transformation) the elliptical 
Gaussian cloud takes the form of a sphere and this gives the natural representation in which to 
bounce off constraints as if they were mirrors. With this, the essential pieces of the crucial step-
generation component of ASA are completely determined. 

The details of the temperature control aspects of ASA are more sophisticated, but it is intuitive 
that, for a given merit function, there will be particular ranges for the value of T during which a 
relative reduction in the rate of decrease of T will lead to better overall efficiency. This aspect of 
the adaptiveness in ASA is controlled by monitoring certain statistics of the recent stages of the 
search. The process is terminated when the typical relative change in the current merit function 
value falls below a certain level. On any given problem, ASA should be run as many times as is 
workable and the designs that emerge can then be reoptimized and fine-tuned by using the iterate 
full or iterate standard commands.
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Chapter 9 Tolerancing  
 

An optical design is not ready for manufacturing until tolerance limits have been designated for 
each construction parameter of the optical system. These construction parameters are all of the 
data that are used to specify the system: radii of curvature, element thicknesses, air spaces, 
refractive indices, etc. Tolerance schemes range from computing sensitivity information, to 
statistical analysis techniques, to simply specifying limits that have been successful in the past or 
have been prescribed by another source. The methods used vary from designer to designer and 
from design to design. In this chapter, we will look at tolerance analysis from the point of view of 
characterizing system performance. 

Default tolerances 
If you display the current tolerance values for any lens, you will see that OSLO has assigned 
default tolerances to certain construction items. These tolerance values are taken from the ISO 
10110 standard. The standard specifies tolerances that will be assumed if specific values are not 
indicated on a drawing. If you do not enter any overriding tolerance data, OSLO will assign these 
default tolerances to your lens. You are free, of course, to change some or all of these tolerance 
assignments. The assigned default tolerances are a function of the aperture of the surface, as 
shown in the table below. Note that for the two larger aperture classes, the surface form 
(designated 3/ and given in fringes) tolerances are given for a test diameter that is smaller than the 
aperture of the surface. OSLO will compute the appropriate change in the surfaces based on 
fringes measured over the test diameter, not the aperture diameter, if the default tolerance is used 
in these cases. 

Depending on your particular optical performance requirements, it is more or less likely that you 
will find these default tolerances to be appropriate for the optical system that you are evaluating. 
The defaults do, however, provide convenient starting points for examining the relative 
sensitivities of the various construction parameters of the lens. As is the case with any parameter 
that is assigned by default, it is up to you to make sure that the default value is acceptable for your 
particular circumstances. 

 Maximum dimension of part (mm) 

Property Up to 10 Over 10 
Up to 30 

Over 30 
Up to 100 

Over 100 
Up to 300 

Edge length, diameter (mm)  0.2  0.5  1.0  1.5 

Thickness (mm)  0.1  0.2  0.4  0.8 

Angle deviation of prisms and plate  30  30  30  30 

Width of protective chamfer (mm) 0.1 – 0.3 0.2 – 0.5 0.3 – 0.8 0.5 – 1.6 

Stress birefringence (nm/cm) 0/20 0/20   

Bubbles and inclusions 1/3x0.16 1/5x0.25 1/5x0.4 1/5x0.63 

Inhomogeneity and striae 2/1;1 2/1;1   

Surface form tolerances 3/5(1) 3/10(2) 3/10(2) 

30 mm diameter 

3/10(2) 

60 mm diameter

Centering tolerances 4/30 4/20 4/10 4/10 

Surface imperfection tolerances 5/3x0.16 5/5x0.25 5/5x0.4 5/5x0.63 
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Statistics background 
In the usual course of design and analysis, we are interested in what the construction data for our 
system should be. The radius of the third surface is 78.25 mm; the axial thickness of the second 
element is 3.5 mm, etc. When we get around to building our optical system however, we must deal 
with the fact that we cannot make our parts with the precision that these numbers might imply. In 
a batch of lenses, we’ll find that the radius of the third surface is 78.21 in one case, 78.38 in 
another, and 79.1 in a third. The obvious question is: how close to the nominal value of 78.25 do 
we have to be in order to still satisfy our performance requirements? We will try to answer this 
question statistically, i.e., the radius of any given surface 3 is random. This may seem a hopeless 
proposition, but we will also assume that we know something about the statistical distribution of 
radius 3. This will allow us to make a statistical prediction about the resulting systems. Our goal is 
to determine the expected range of performance for our collection of assembled systems. The 
statistics of the construction parameters may be a result of knowledge about the underlying 
fabrication process or known from building many such systems and measuring the parameters. 
The terminology used in this section follows the development in Goodman(23). 

Let X be a random variable. In our case, X may be a radius of curvature, a refractive index, etc. 
The probability distribution function F(x) is defined by the probability that the random variable X 
is less than or equal to the specific value x, i.e., 

 ( ) ProbF x X x    (9.1)   

where Prob{z} means that z occurs. The probability is the fraction of the time that a particular 
outcome is expected, relative to all possible outcomes. Since X must have some value, F() = 0 
and F() = 1. Also, F(x) must be non-decreasing for increasing x; for example, the probability that 
X is less than 10 can not be less than the probability that X is less than 15.  

A very useful quantity derived from the probability distribution is the probability density function 
p(x) defined by  

   d
p x F x

dx
  

 (9.2)   

Using the definition of the derivative, we can show that p(x)dx is the probability that X lies in the 
range x  X  x + dx. From the properties of the probability distribution F(x), it follows that p(x) 
has the properties 

  0p x    (9.3)   

  1p x dx




  
 (9.4)   

   Prob
b

a

a X b p x dx     
 (9.5)   

A prime example of the usefulness of the probability density function is the computation of 
statistical averages (also called expected values). Consider a function g(x). If x represents a 
random variable, then g(x) is also a random variable. The statistical average of g(x) (which we 
shall denote by angle brackets g(x)) is defined by 

     g x g x p x dx




   
 (9.6)   

The statistical averages that we shall make the most use of are the moments, which are found by 
using g(x) = xn. Generally, we are primarily interested in the first moment (also known as the 
mean, expected, or average value) 

 
23 J. W. Goodman, Statistical Optics, Wiley, 1985, Chap. 2. 
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 (9.7)   

and the second moment (or mean-square value) 

 2 2x x p x dx




    
 (9.8)   

We are often interested in the variation of the variable around its mean value. In this case, we can 
use the central moments, which are found by using g(x) = (x x)n. The most widely used central 
moment is the second, which is called the variance and is denoted by 2: 

 22 ( )x x p x dx




    
 (9.9)   

It is often easier to calculate the variance using the first and second moments via 

22 2x x     (9.10) 

The square root of the variance, , is the standard deviation.  is often used as a measure of the 
“size” of X or the spread of values taken on by X. We will use the standard deviation to 
characterize the range of the deviation in performance of our assembled systems from the nominal 
(design) value. Although, for simplicity, we have only considered a single random variable X, all 
of the concepts described above have extensions to two or more random variables.  

Effect of tolerances on system performance 
For our problem of assessing optical system performance, we will have to consider the effects of 
many random variables. For example, in tolerancing a simple Cooke triplet, we must (at least) 
consider 6 curvatures, 6 surface irregularities, 3 element thicknesses, 2 air spaces, 3 refractive 
indices, and 3 element centerings. Let the number of construction parameters to be considered be 
denoted by n.  We are always interested in the deviations of the construction parameters from their 
nominal values; so let xi denote the (random) deviation of construction parameter i from its 
nominal value. The tolerance limit is the maximum allowed perturbation and is denoted by xi. 
(The tolerance limit is the value in the tolerance data spreadsheet.) We will select some measure of 
system performance, denoted by S, whose sensitivity to changes in the construction parameters we 
wish to study. S may be a simple first-order quantity, like focal length, or a performance measure 
such as spot size or MTF. We are really interested in the change in S (i.e., S) from its nominal 
value S0, i.e., S = S  S0. The question of whether the nominal performance S0 is appropriate or 
adequate is usually a problem of optimization, not tolerancing. In general, S will be some 
function f of the construction parameter deviations 

 1 2, , , nS f x x x     (9.11)  

Since xi is a deviation from a nominal value, if xi = 0 for all i, S = 0. We are generally interested 
in small values of the construction parameter perturbations xi. Let us assume that the contribution 
of parameter i to S can be expressed as a linear function of the perturbation, i.e., the first term in 
the Taylor expansion of f, so Si = ixi. Then the total change in performance is just the sum of 
these linear contributions 
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The first and second moments of S are  
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and 
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From Eqs. (9.20), (9.13) and (9.14), we can compute the variance of S as  
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We now make the assumption of statistical independence for xi and xj, i.e., knowledge about xi 
does not influence the probabilities associated with xj. This a reasonable assumption in our case, 
since it is unlikely that, for example, the radius of surface 3 affects the thickness of surface 6. 
Assuming independence, then, xi and xj are uncorrelated and xixj  xi xj. Thus, Eq. (9.15) 
reduces to  
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 (9.16)  

where  

22 2

ix i ix x     (9.17)  

is the variance of construction parameter i. We see from Eqs. (9.13) and (9.16) that the mean and 
variance of S are simply weighted sums of the means and variances of the construction 
parameters.  

We can simplify Eq. (9.16) for the common case where the variance can be expressed as a simple 
function of the tolerance limit xi. Consider the case where 

ix i ix      (9.18)  

where i is a constant. Now, 
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where Si is the change in performance when the construction parameter is equal to its tolerance 
limit xi, i.e., Si = ixi. If all of the construction parameters have the same type of probability 
distribution, then i is the same for each parameter (call it ) and the standard deviation of the 
performance change is 

 2
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n

S i
i

S


     
 (9.20)  

Equation (9.20) provides the basis for converting tolerance values into an expected range of 
system performance: given a set of tolerance limits xi, we compute the change in performance for 
each perturbation, Si. Then, we use an appropriate value of  to compute the standard deviation 
of system performance  S  using Eq. (9.20).  

Three commonly used probability density functions for xi are shown in the figure below. When the 
fabrication errors occur only at the ends of the tolerance range centered on the design value, we 
have an end point distribution. When the errors are equally likely to occur anywhere within the 
tolerance range centered about the design value, the probability density function is a uniform 
distribution. If the fabrication process tends to concentrate errors near the center of the tolerance 
range, we can model the distribution as a Gaussian (or normal) distribution, truncated at the 2 
level. All of these distributions are symmetric about the design value, so xi = 0, and the average 
change in performance is also 0 (see Eq. (9.13)). 
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We can easily compute the variances of the three distributions pictured above and hence the 
corresponding values of .  

Distribution  

End point 1.0 

Uniform 0.58 

Gaussian 0.44 

From the above table, we see that the often used RSS rule (square Root of the Sum of the Squares; 
use  = 1 in Eq. (9.20)) for tolerance budgeting results from implicitly assuming an end point 
distribution function, along with the other assumptions we have made (linear relationship between 
perturbation and performance change; statistical independence). It would appear rather unlikely 
that real manufacturing processes result in end point distributions of manufacturing errors. Since 
the value of  is smaller for the more realistic choices of probability density functions (uniform, 
Gaussian), the RSS rule results in a pessimistic estimate of the performance change standard 
deviation. It should be noted, however, that this is not necessarily a bad thing. Also note that, 
regardless of , the squaring operation in Eq. (9.20) means that the larger tolerance effects will 
dominate in the computation of the standard deviation. 

We can use Eq. (9.20) to compute the standard deviation in system performance, but this does not 
tell us about the form of the distribution in performance of the resulting systems. We need to know 
this form in order to make predictions about the probability of “success”, where success occurs 
when a fabricated system has a performance change within specified limits. Fortunately, we can 
make use of another concept from statistics: the central limit theorem. This theorem states that for 
a set of independent random variables x1, x2, ... , xn, with arbitrary probability density functions, 
the probability density for the random variable z = xi approaches a Gaussian density as n  . 
For our purposes, this means that we should expect that our resultant optical systems should have 
a nearly Gaussian distribution in system performance. Among the many mathematically “nice” 
features of Gaussian random variables is the fact that the distribution is completely specified by 
knowledge of the mean  and standard deviation : 
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All of the probability density functions that we are considering have zero mean value, so S = 0. 
Thus, from Eq. (9.21), we would expect that the probability density function for S is 
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From Eqs. (9.5) and (9.22), we can compute the probability that the system performance is in the 
range  Smax as 
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where erf(x) is the error function 
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Given a standard deviation in performance change  S  and a maximum acceptable performance 

change Smax, we can use Eq. (9.23) to calculate the probability of success. For example, 
approximately 95% of the resulting systems will have a performance change in the range  2 S . 
A desired level of probable success is obtained by distributing the construction parameter 
tolerances such that the resulting performance changes yield the required standard deviation. The 
table below gives the probability of success, computed from Eq. (9.23), for several values of the 
ratio of acceptable performance change Smax to standard deviation  S . 

  S Smax /  Probability of success 

0.67 0.50 

0.8 0.58 

1.0 0.68 

1.5 0.87 

2.0 0.95 

2.5 0.99 

This statistical analysis in computing the probability that optical system performance will meet or 
exceed a designated performance level can be calculated from performance changes computed in a 
sensitivity analysis or targeted in an inverse sensitivity computation. Sensitivity analysis starts 
from either predefined (i.e., input by the designer) or default (e.g., from ISO 10110) tolerance 
limits assigned to each construction parameter. Data for a sensitivity table (or change table) is 
generated by perturbing each construction parameter of the design and computing the resulting 
change in system performance (i.e., Si). Inverse sensitivity analysis starts from a predefined or 
default change in system performance that is permitted for each construction parameter. The 
analysis then determines the tolerance limit for each construction parameter that will cause the 
permitted performance change. 

One method of establishing tolerances is to distribute the tolerances to produce performance 
changes that balance the contributions to the tolerance budget. This prevents the standard 
deviation, hence the probability of success, from being dominated by a single item. We can use 
Eq. (9.20) to develop a starting point. Let us assume that we have established a target value of the 
standard deviation of system performance change  S . Further assume that we have n 
construction parameters and that each parameter has the same probability density function. If each 
construction parameter is to contribute equally to the overall performance standard deviation, then 
Si is the same for each i. Designate this target value of Si by Star. In this case, Eq. (9.20) takes 
the form 
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 (9.25)  

Thus, the allowed performance change for each construction parameter is found from Eq. (9.25) to 
be 

S
tarS

n
 


 

 (9.26)  



User-defined tolerancing 9-237 

 

This suggests that one way to begin the creation of a tolerance budget is to start with a prescribed 
probable success rate and maximum allowed performance change and use Eq. (9.23) to compute 
the allowed standard deviation in system performance change. Then, Eq. (9.26) can be used to 
compute the targeted performance change for each construction parameter. An inverse sensitivity 
analysis with this requested performance change for each parameter yields the allowed tolerances.  

The discussion in this section has concentrated on presenting the analysis of tolerance effects from 
a statistical point of view. It should be stressed, however, that a complete automation of the 
tolerancing process is probably an unrealistic goal. Coupling the fact that there is rarely an optical 
system that can unambiguously be called the “right answer” to an optical design problem with the 
inherent variations in manufacturing processes and techniques, there are many aspects of a 
complete tolerancing analysis that require the skill and experience of the designer.  

User-defined tolerancing 
The user-defined tolerancing routines perform the tolerance calculations using the current 
optimization error function. The motivation for this approach is to provide general flexibility in 
specifying the performance criterion: anything that can be computed as an operand can be used as 
a tolerance criterion. With the flexibility provided by the built-in operand types along with CCL 
and SCP operands, the user-defined tolerancing provides the capability to “tolerance on anything.” 
Another advantage of using the optimization error function is the ready implementation of 
compensation schemes for reducing the effects of the perturbations. The optimization, in this case, 
is done in an effort to restore the nominal system performance. 

The error function that is used for the tolerance analysis may be the one that was used in the 
design of the lens or it may be one that has been developed specifically for tolerance evaluation. 
This flexibility in defining the tolerance criterion places a responsibility on the designer to specify 
optimization conditions that either directly describe a system specification or provide a mapping 
from one to the other. Compensators are designated by the current optimization variables. During 
the tolerancing process, the compensators will be varied in an attempt to make the change in the 
error function caused by the tolerance perturbation as small as possible. 

Change table tolerancing 
A change table is a tabulation of the changes in optical aberrations and system quantities that are 
produced by perturbing the construction parameters of the lens. The changes are calculated by 
simply perturbing each parameter by the tolerance value and recomputing all of the items 
contained in the change table. An advantage of the change table tolerancing is that there is no need 
to set up an error function, as is required for the user-defined tolerancing. The same change table 
items are computed for each lens, so it is easy to compare tolerance sensitivities across different 
lenses. Breaking down the system performance changes by aberration allows you to locate 
potential “trouble spots” during the tolerancing process.  

The aberrations in the change table are reported in tolerance units. The unit for the particular 
aberration depends upon whether the aberration is measured as a transverse (T) quantity, a 
longitudinal (L) quantity, or a wavefront (W) quantity. In the default case, these units correspond 
to the quarter-wave or Strehl tolerance limit of 0.8. Thus, by default, the performance changes are 
reported in “times-diffraction-limit” values. You can, of course, scale the tolerance units by any 
desired value if this is more convenient. For example, to work with the wavelength (rather than 
quarter-wavelength) as the basic aberration unit, scale the tolerance units by 0.25.  

MTF/RMS wavefront tolerancing 
All tolerancing calculations involve computing the change in some performance measure for a 
small perturbation of each construction parameter of interest. It is not hard to see that this requires 
the evaluation of many different optical systems. For example, it was mentioned earlier in this 
chapter that the tolerance analysis of a simple Cooke triplet requires the consideration of (at least) 
23 construction parameters. If we combine this fact with a performance measure that requires a 
relatively computationally intensive evaluation (tracing many rays and/or a complex evaluation), 
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we find that it may require an objectionably long period of time to perform a tolerance analysis. 
Hopkins and Tiziani, in a study of lens centering errors, introduced a method of quickly 
computing differential optical path changes for a perturbed optical system, without reevaluating 
the entire system. The advantage of this method is that the effects of the tolerance perturbations 
can be calculated from data that is obtained by ray tracing only the nominal system. This method 
is many times faster than methods that require that all necessary rays be retraced for each 
perturbed system in order to compute tolerance operands. This speed and efficiency make it 
practical to compute tolerance effects using a numerically intensive computation such as MTF.  

The change in optical path introduced by a perturbed surface is illustrated in the figure below. The 
construction line QG is perpendicular to the nominal ray at G and passes through the intersection 
of the perturbed ray with the perturbed surface at Q. Hopkins and Tiziani used Fermat’s principle 
to conclude that, to a first approximation, the optical path length from Q to the final wavefront and 
the optical path length from G to the final wavefront are the same. Thus, the change in optical path 
W due to the perturbation is  

W nPQ n PG     (9.27)  

where n and n are the refractive indices on the incident and refracted sides of the surface. Ray 
trace data from evaluation of the nominal system provides most of the data necessary to evaluate 
the perturbed system. Only the physical distance PQ needs to be computed for the ray at the 
perturbed surface, since Eq. (9.27) may be written as 

  W n n       r g i g i g   (9.28)  

where r is the displacement of the surface, g is the surface normal vector, i is the incident ray 
vector and i is the refracted ray vector. The vectors g, i, and i are available from the ray trace of 
the nominal system and r can be computed for each type of surface perturbation of interest. 

Nominal surface
Perturbed surface

n n´

Incident ray
Nominal refracted ray

Perturbed refracted ray
P Q

G

 

It should be pointed out that the savings in time comes both at the expense of storing the original 
ray trace data at each surface and at the expense of the approximation of the perturbed wavefront. 
Also, not all tolerance criteria involve the computation of optical path or wavefront errors (e.g., 
focal length, magnification, etc.), in which case Hopkins and Tiziani’s method is not applicable. 
The interested reader is referred to the original paper by Hopkins and Tiziani24 and to the 
extensive development of tolerancing methods using this technique by Rimmer25 for more details 
on the computation of the wavefront differential terms.  

Using the analytic wavefront differential calculation, it is possible to compute tolerance operands 
for MTF and RMS wavefront error. In both of these cases, the change in system performance is 
expanded in a general quadratic equation in the construction parameters. This is in contrast to the 

 
24 H. H. Hopkins and H. J. Tiziani, “A theoretical and experimental study of lens centring errors 
and their influence on optical image quality,” Brit. J. Appl. Phys. 17, 33-54 (1966). 
25 M. P. Rimmer, “Analysis of perturbed lens systems,” Appl. Opt. 9, 533-537 (1970); “A 
tolerancing procedure based on modulation transfer function (MTF)” in Computer-Aided Optical 
Design, Proc. SPIE Vol. 147, pp. 66-70 (1978).  
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linear functionality used earlier in this chapter. The change in system performance can be 
expressed as 
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We can compute the mean and variance of S using a procedure similar to that used earlier in this 
chapter when S was assumed to be a linear function of xi. The resulting expressions are, as might 
be expected, rather complicated. However, if we assume that the probability density functions 
associated with all xi are symmetric and have zero mean value, the mean and variance of S have 
the (comparatively) simple forms 
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and 
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Examination of the A and B coefficients reveals how the relative magnitudes of Ai and Bi affect the 
statistics of S. When the nominal lens is well-corrected with respect to S for xi, S0 is (or is close 
to) an extremum, so the Ai coefficient is much larger than Bi. We would expect then, from Eqs. 
(9.30) and (9.31), that the main effect is a change in the average performance. On the other hand, 
if the nominal lens is not well-corrected, then the Bi term dominates the Ai term and the main 
effect is an increase in the standard deviation, i.e., a larger range in performance for the resulting 
systems. A complete discussion of this general quadratic transformation can be found in the paper 
by Koch.26  

Obviously the quadratic approximation of Eq. (9.29) is only valid for small performance changes. 
Fortunately, this is exactly the situation in which we are usually interested when performing a 
tolerance analysis. It is entirely possible, however, to specify tolerance limits that result in Ai and 
Bi coefficients that predict non-realizable performance changes, e.g., MTF values less than zero or 
greater than unity. This means that the quadratic approximation is not valid in this regime and the 
MTF or RMS wavefront can not be computed with any accuracy using this technique. The usual 
implication of results of this type is that the current tolerance values are too large and the 
performance degradation is probably quite serious and unacceptable. You should consider 
reduction of the tolerance assignments and/or designating more compensators if you notice 
unphysical MTF or RMS wavefront predictions.  

 
26 D. G. Koch, “A statistical approach to lens tolerancing,” in Computer-Aided Optical Design, 
Proc. SPIE Vol. 147, pp. 71-82 (1978). 
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Monte-Carlo tolerancing 
Monte Carlo analysis uses random numbers to generate a sequence of perturbed lenses, where the 
maximum magnitude of the perturbations is determined by the current values of the tolerances. 
Each random realization of the lens is constructed by generating random numbers having a 
prescribed probability density function and then using these random numbers along with the 
tolerances to perturb the construction parameters of the system. An advantage of Monte Carlo 
analysis is that all of the construction parameters may be perturbed simultaneously. After all of the 
perturbations are applied, the compensators (if any) are varied in an attempt to restore the 
performance of the lens as close as possible to its nominal state of correction. Analysis of the 
performance of the resulting systems provides a statistical prediction of the distribution of the final 
fabricated lenses. Because of the stochastic nature of the process, depending upon the lens and its 
sensitivity to its construction parameters, the Monte Carlo analysis may converge slowly to the 
true value of the performance statistics. Also, since all of the parameters are varied 
simultaneously, it can be difficult to locate which parameters are the most sensitive. However, 
Monte Carlo analysis can be quite useful when used in conjunction with other tolerancing 
techniques. 

The setup procedure for a Monte Carlo analysis is identical to that for user-defined tolerancing: 
construction of an error function and designating compensators (variables). The current error 
function will be used as the performance measure, so it is important that the error function 
accurately reflects the system performance, even in its perturbed state. For example, if you are 
tolerancing decentrations and tilts, the error function should contain rays on both sides of the 
entrance pupil, and both positive and negative field points, even for a nominally rotationally 
symmetric lens. If the current error function appears to assume rotational symmetry, a warning 
message to that effect will be issued before the analysis is begun. 

Just as for user-defined tolerancing, the error function value will be the prime measure of the 
change in the lens performance. However, you can also perform a statistical analysis of any 
selected operands by giving them the name “tolop”. These operands may have zero weight if you 
don’t want them included in the error function.  

OSLO provides several controls for the computation of statistical tolerance data:  

Number of random systems to evaluate – This is the number of different random lenses that will 
be generated using the current tolerance values. As with all simulations, the more systems that are 
evaluated, the closer the resulting statistics should be to the “real world.” Of course, this accuracy 
means that the analysis takes a longer time to perform. After beginning the computations, you may 
interrupt the routine before all of the specified systems have been evaluated by pressing the 
ESCAPE key. 

Perturbation distributions – This option controls the distribution of the random perturbations 
applied to the lens. The default distributions are obtained from the tolerancing operating 
conditions. The other three options (uniform, Gaussian, end-point) will apply the specified 
distribution to all perturbations. 

Plot error function distribution – If you wish, you can plot both the cumulative probability 
(continuous curve) and a relative distribution histogram (vertical lines) for the error functions of 
the resulting ensemble of Monte Carlo systems. 

After all of the requested systems have been evaluated, a statistical summary of the error function, 
compensators, and all “tolop”-named operands is presented. The definitions of the statistical 
quantities may be found in any statistics reference; we use the notation and terminology of Press, 
et. al., to which the reader is referred for more detail. In the following, N denotes the number of 
systems evaluated, and xj denotes either the change in the error function or the change in an 
operand value.  

 

The mean change is given by 
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The standard deviation s, is the square root of the variance s^2, where 
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The average deviation (or mean absolute deviation is) 
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The skewness is a nondimensional version of the third central moment, and measures the shape 
and asymmetry of the distribution. A positive skewness means that the distribution has a “tail” 
extending toward positive values of xj from the mean. Conversely, a distribution with a negative 
skewness has a tail extending toward negative values of xj.  
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The kurtosis is a nondimensional version of the fourth central moment, and has a value of zero for 
a Gaussian (normal) distribution. A distribution with a positive kurtosis is more “peaked” than a 
Gaussian, while a negative kurtosis distribution is “flatter” than a Gaussian. 
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The “+/–” ranges displayed for the mean and standard deviation are, respectively, the standard 
deviation of the mean  

N

 
 
 

 
 (9.37)  

and the standard deviation of standard deviation  
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 (9.38)  
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Chapter 10 Examples 
 

Often the best way to learn how to do something in a new program is to see how a 
similar task was performed using the program. Accordingly, this chapter consists 
of a number of systems that make use of one or more of the features of OSLO. 
Some are included to serve as base designs that you can use to develop enhanced 
systems; others are included for their tutorial value. Most examples correspond to 
files in the public\len\demo directory in OSLO. Each contains a listing, drawing, 
and some comments on the system.  

For most examples, you should be able to get a good idea of the purpose by 
reading the description here and experimenting with the file using the toolbar 
icons and menus. If you have trouble understanding something, try tracing a few 
single rays through the system, or making a change to the system and seeing its 
effect. If you really want to see the details, you can open the file in the text editor. 

Using OSLO to maximum advantage requires an understanding of both optical 
design and how the program works. These examples concentrate on the middle 
ground. No specific attempt is made here to teach optical design, which is better 
presented in textbooks, nor how OSLO works, which is better taught in the help 
system. We assume that you know something about both, but everything about 
neither. The best use of OSLO is to fill in the gaps in your understanding. 



Standard lenses 10-243 

 

Standard lenses 

Perfect lens 

A perfect lens is one that forms a sharp undistorted image of an extended object 
on a plane surface. If the aperture of the lens is infinitesimal, the rays passing 
from the object to the image will follow the laws of paraxial optics. If the aperture 
of the lens is finite, however, this will not be the case. Abbe’s sine law states that 
for finite rays, the ratio of the sines of the object and image axial ray angles must 
be constant. This conflicts with the laws of paraxial optics, which state that the 
ratio of the tangents of the angles must be constant. 

OSLO uses true perfect lenses, i.e. ones that obey the laws of optics, to model 
idealized systems. As a result, OSLO results will be different from programs that 
use paraxial lenses to model idealized systems. The perfmag2.len file is included 
in the demo directory to illustrate some properties of perfect lenses that may seem 
curious to those who are not familiar with them. The lens is purposely chosen to 
be very fast (N.A. 0.8 on the short conjugate side), and to work at a magnification 
of -2x, so that the differences between a perfect lens and a paraxial lens are 
obvious. The drawing below shows a basic ray analysis of the lens at its nominal 
magnification. 

 

All the ray aberrations are essentially zero, according to the definition of a perfect 
lens (the residual wiggles are due to round-off errors). The drawing of the lens is 
unusual. In OSLO, a perfect lens is modeled as a single surface. If the lens is to 
obey the sine law, however, this means that the rays must emerge from the surface 
at a different height than they enter, which accounts for the strange drawing. The 
paraxial data for the perfect lens are shown below. 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:    200.000000    Image axial ray slope:    -0.666667 
   Object num. aperture:      0.800000    F-number:                  0.250000 
   Image num. aperture:       0.400000    Working F-number:          1.250000 
 FIELD 
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   Field angle:               4.763642    Object height:           -12.500000 
   Gaussian image height:    25.000000    Chief ray ims height:     25.000000 
 CONJUGATES 
   Object distance:         150.000000    Srf 1 to prin. pt. 1:        --     
   Gaussian image dist.:    300.000000    Srf 2 to prin. pt. 2:        --     
   Overall lens length:         --        Total track length:      450.000000 
   Paraxial magnification:   -2.000000    Srf 2 to image srf:      300.000000 
 OTHER DATA 
   Entrance pupil radius:   200.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:       200.000000    Srf 2 to exit pupil:         --     
   Lagrange invariant:      -16.666667    Petzval radius:          1.0000e+40 
   Effective focal length:  100.000000 

It is worth spending a little time to see how the values are calculated. First, the 
focal length of the lens is specified to be 100mm, the magnification is specified to 
be -2, the numerical aperture is specified as .8, and the object height is specified 
as -12.5mm; these are all given data. 

The focal length and magnification specifications imply that the object distance 
must be 150mm, and the image distance must be 300mm. The magnification and 
numerical aperture specifications imply that the numerical aperture on the image 
side must be .4. If the numerical aperture is .8, the axial  (marginal) ray in object 
space must make an angle arcsin(.8) = 53.130102 degrees with the optical axis, 
and must strike the lens at a height of 150*tan(53.130102) = 200mm, which is the 
entrance beam radius. The f-number, defined as the focal ratio f/D, must then be 
100/400 = .25. The working f-number, defined as 1/(2*NA), is then 1/(2*0.4) = 
1.25. The image axial ray slope (a paraxial quantity) is -200/300 = -.666667.  

Since the numerical aperture in image space is 0.4, the angle of a real ray 
emerging from the lens must be -arcsin(.4) = -23.578178 degrees. If this ray is to 
pass through the paraxial image point, it must emerge from the lens at a height 
300*tan(23.578178) = 130.930734mm. This is easily confirmed by tracing a real 
ray from an on-axis object point, as shown below. The difference in ray height 
between the input and output rays is thus caused by the fact that we are dealing 
with a real perfect lens, not a paraxial approximation. Since an actual ray could 
obviously not follow the displayed trajectory, the implication is that a real perfect 
lens cannot be infinitely thin. 
*SET OBJECT POINT 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --          --          --      300.000000  299.999993 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG        D 
  1     200.000000      --          --       53.130102      --          --     
  2     130.930734      --          --      -23.578178      --     -127.326835 
 
  3     5.6843e-14      --          --      -23.578178      --      327.326835 
 PUPIL      FY          FX                                              OPD 
          1.000000      --                                              --     

A perfect lens cannot be characterized solely by a focal length. It is necessary also 
to specify a magnification at which it is to be used. This is because a lens cannot 
form a perfect image at two magnifications (Herschel’s rule). The perfect lens 
used here can be used to demonstrate this by changing the magnification by 5% to 
-2.1. Then the object distance becomes 147.619048mm, and the image distance 
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310mm. The ray analysis shows that even with this small change in operating 
condition, there is a substantial overcorrected spherical aberration. 

 

 

The effects of using the perfect lens at the wrong magnification are sufficiently 
dramatic that they can easily be seen in the image of a rectangular grid (obtained 
using the *xsource command). 
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Catalog lens 

The output data from the ray trace routines in OSLO can best be explained by 
reference to an example. The example uses a singlet catalog lens to illustrate the 
meaning of ray output data. Explicit instructions are given so you can reconstruct 
the output using OSLO. You should, of course, get the same results as shown 
here. 

1. Enter the lens data. Click File >> New, enter the file name mglfs035.len, 
select Catalog lens, enter the magnification –0.5, then click Green check to 
dismiss the dialog box. 

2. The catalog database spreadsheet opens. Switch to the MG_POS catalog if 
it is not already the current catalog. Click the Part Name field, then enter 
the part number MGLFS035. Click the Green check button to close the 
spreadsheet. 

 

3. In the Lens id field of the surface data spreadsheet, change “No name” to 
“Ray trace example”. Click the Group radio button, which should change 
to Surfs. Click the Object numerical aperture field, then enter 0.1. Click 
the Object height field, then enter –4.0. Click the Save the current lens toolbar 
icon to save the lens data. Click Green check to close the spreadsheet. 

4. In the current graphics window, Click the Draw 2D plan view toolbar 
icon. The graphics window should appear as follows. 
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5. In the current text output window, click the Len button, then click the Pxc 
button. The text window should contain the following. 

*LENS DATA 
Ray Trace Example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --         14.903256      4.000000             AIR      
 
 AST     2.865000 F    3.131000 F    2.250000 AF          BK7 F *  
  2    -18.932000 F    5.709113 S    2.250000 F           AIR      
 
 IMS       --            --          2.000000 S                    
 
*PARAXIAL CONSTANTS 
   Effective focal length:    5.062846    Lateral magnification:    -0.500000 
   Numerical aperture:        0.200000    Gaussian image height:     2.000000 
   Working F-number:          2.500000    Petzval radius:           -7.303485 
   Lagrange invariant:       -0.4020156.  
 

6. To simplify the following steps, clear the contents of the text window by 
right-clicking in the window and selecting the bottom command, Clear 
window and SS buffer. Next, define an object point at the edge of the field of 
view and trace the chief ray from this point by clicking the Chf button in 
the text window. The text window should contain the following. 

*SET OBJECT POINT 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --        0.037489      --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
       1.981388      --       -1.061876   -0.542210   10.703427    8.085073 
 
*TRACE RAY - LOCAL COORDS - FBY  1.00, FBX  0.00, FBZ  0.00 
 SRF        Y           X           Z           YANG        XANG        D 
  1      -0.055755      --        0.000543   10.103536      --       -0.013834 
  2       0.500883      --       -0.006627   14.606424      --        3.173037 
 
  3       1.990406      --          --       14.606424      --        5.906637 
 PUPIL      FY          FX          RAY AIMING                          OPD 
            --          --       CENTRAL REF RAY                      0.053803 
 

The first line just prints the fractional object point coordinates as they were 
entered in the dialog box. The first two numbers on the second line also echo 
input data (these are the fractional heights of the reference ray on the reference 
surface, normalized to the reference surface aperture radius). The last two 
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numbers on the second line are the fractional object space coordinates of the 
reference ray. The third line contains output data for the reference ray on the 
image surface. YC and XC are the ray heights (Ychief and Xchief) measured from the 
origin of the image surface coordinate system. YFS and XFS are the longitudinal 
distances from the image surface to the differential focus in the yz and xz planes, 
respectively. YFS and XFS are measured parallel to the z-axis, not along the 
reference ray. OPL is the optical distance along the reference ray from the object 
sphere to the reference sphere, and REF SPH RAD is the radius of the reference 
sphere (used to compute optical path difference). The next task is to trace the 
reference ray as an ordinary ray (i.e., by giving its object-space coordinates). The 
proper way to do this is to obtain the required data from the spreadsheet buffer. 

7. In the text window, click on the value of FY. You should see the full-
precision value echoed in the message area, next to the command line (c2 
= 0.0374888201129). Click the Tra button in the text window. In the 
dialog box, change the Output format control to Full. Change the Surface 
selection option to All. In the field for FY, enter c2; this will be echoed as 
0.037489, but the cell will contain the full precision value. Now execute 
the command by clicking OK. The text window will contain the following 
data. 

 
*TRACE RAY - LOCAL COORDS - FBY  1.00, FBX  0.00, FBZ  0.00 
 SRF        Y/L         X/K         Z/M      YANG/IANG   XANG/RANG      D/OPL 
  1     2.5232e-14      --      1.1111e-28    9.840230      --      6.5408e-15 
          0.170901      --        0.985288   15.023975    9.840230  6.5408e-15 
  2       0.541737      --       -0.007752   14.134625      --        3.169882 
          0.244201      --        0.969725    8.200494   12.494889    4.808078 
 
  3       1.981388      --          --       14.134625      --        5.895349 
          0.244201      --        0.969725   14.134625   14.134625   10.703427 
 PUPIL      FY          FX          RAY AIMING                          OPD 
          0.037489      --       CENTRAL REF RAY                   -3.0233e-12 
 

The output of the trace ray command has been described in chapter 6. Note that 
the height of the reference ray on the reference surface (surface 1) is essentially 
zero, as is the optical path difference. You may recall that the non-zero value of 
FY needed to accomplish this comes from the fact that the object numerical 
aperture of the lens is large enough to require aplanatic ray tracing. 

8. There is another command in OSLO, related to the set_object_point 
command, that provides additional output of differential information. The 
trace_ray_derivs (trd) command is only available from command mode. It 
requires the same input data as the sop (or trr) command. Type the 
command trd in the command line, then press ENTER. In the text output 
window, you will see the same output as before, with the following 
additional lines that give the derivative information for the reference ray. 

*TRACE REFERENCE RAY WITH DERIVATIVES 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --        0.037489      --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
       1.981388      --       -1.061876   -0.542210   10.703427    8.085073 
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       D(YC/FY)    D(XC/FY)    D(YC/FX)    D(XC/FX) 
      -0.250976      --          --       -0.117678 
 
      D(YC/FBY)   D(XC/FBY)   D(YC/FBX)   D(XC/FBX) 
       1.944771      --          --        1.981388 
 

The first number gives the change in chief ray height per unit change in fractional 
aperture height, and so forth. It is important to remember that these are 
derivatives, and accurately describe only rays that have infinitesimal 
displacements from the reference ray. These differential rays are sometimes called 
parabasal rays. If the reference ray is the optical axis, the differential rays become 
equivalent to paraxial rays. 
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It is a good idea to remember that OSLO is primarily a numerical optimization 
program, not a drawing program. Drawings are used in OSLO to aid your 
understanding of the numerical data. If the drawing does not correspond with 
what you expect, it may be because the numerical data is not what you think it is, 
or it may be because the drawing routines are not sufficiently powerful to handle 
the actual data for your system. There are lots of cases of complex optical systems 
that are computed properly by OSLO, but not drawn properly. 

Lens drawings can be tailored to fit many special situations by setting the proper 
lens drawing operating conditions, which can be opened in several ways, e.g. 
from the menu that pops up when you use the drawing buttons in the standard 
graphics window tools. In the present situation, you may wish to reset the default 
drawing rays to eliminate the off-axis field points, since they don't show on the 
drawing because the field angle is too small. Setting the Image space rays field to 
image srf, the number of field points equal to 1 and the number of rays to 9 from an 
on-axis point results in the following drawing. 
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Cooke triplet 
This lens has been used for many years to demonstrate OSLO. It is discussed throughout the 
manual in a wide variety of contexts. As a historical note, this lens was not designed using OSLO, 
but is rather an adaptation of a design done by R. Kingslake and included in his book “Lens 
Design Fundamentals”, pp 286-295, (Academic Press 1978, ISBN 0-12-408650-1). As another 
historical note, this design form was actually invented by H. Dennis Taylor, who worked for 
Cooke. According to Kingslake, the lens was not manufactured by Cooke, but rather by Taylor-
Hobson, another optical firm whose principals were not related to Taylor, despite the name.  

In any case, this form has been used in millions of low cost cameras, projectors, and various other 
instruments. The design here is typical and can be used as a starting system for adaptation. You 
can compare its performance to the dblgauss.len and petzval.len designs included in the OSLO 
demo library. The basic ray and MTF analyses for this lens are as follows. 
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Digital Triplet 

Lenses like the above Cooke triplet are typically designed for film cameras. The 
above lens has a 50mm focal length, which suits the 24x36mm format used for 
35mm cameras. The lens is not optimum for a typical digital camera, which has a 
smaller image size, because the focal length is too long. In this example we 
consider the use of the GENII error function to redesign the lens to have a focal 
length of 10mm, more suited to contemporary digital cameras. In addition, we 
will make the lens faster by 3dB, so that the paraxial specifications become 50mm 
efl, f/2.8, 20 degrees field angle. 

The steps are the following: 

 Open the demotrip lens, open the surface data spreadsheet, and right-click 
in the spreadsheet to pop-up the edit menu. Scale the lens to a focal length 
of 10mm. Then, set the entrance beam radius to 1.78571mm. Note that this 
makes the speed f/2.8 (use Pxc in the text window). 

 Change the apertures of all the surfaces to 1.8 mm so the larger beam can 
get through. With the scaled lens, the elements are too thin to support an 
aperture of 1.8. Increase the thickness of the front and back elements to 
0.7mm, and the thickness of the center element to 0.3mm. Now the on-
axis beam can get through, but the focal length is no longer 10mm because 
the thicknesses have been changed. 

 To fix the focal length, put an axial ray angle solve on the last refracting 
surface (6), setting the angle to -0.178571. This will adjust the curvature 
so the focal length is exactly 10mm again. As soon as you have adjusted 
the curvature, remove the solve by clicking the button in the radius cell 
and selecting Direct Specification. The curvature will not be changed, but the 
constraint will be removed, and the curvature can then be used as a 
variable in optimization. 

The GENII error function is designed to hold the paraxial properties of the system at the values 
that exist at the start of optimization. It is essential that you have the right paraxial properties 
(focal length, aperture, and field) prior to beginning to optimize. Fortunately, you have just set up 
the system so that it has the correct propertures - efl = 10, fnb = 2.8, ang = 20. 

 Click on the Variables button in the surface data spreadsheet and make all 
the curvatures variable. Also make the air spaces variable. Close the 
variables spreadsheet but not the surface data spreadsheet. You will see 
"V's" on the appropriate buttons. 

 Use Optimize>>Generate Error Function>>GENII Ray Aberration to enter 
the error function. Accept all the defaults in the dialog box without 
change. 

 Change the Lens ID to something more descriptive of the current system, 
and save the lens in your private directory under a new name. The final 
solution in the public demo library is called digitrip.len, so pick a related 
but different name. Then close the Surface data spreadsheet using the 
Green check and immediately re-open it. This allows you to cancel 
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unfortunate changes that might be made during optimization by canceling 
using the Red X button. After you have re-opened the spreadsheet (turn on 
Autodraw so you can see what is happening to your lens), you are ready to 
optimize it. 

 Use the Ite button in the Text window to iterate the design until it doesn't 
improve anymore. This should produce an error function of about  0.64. 

 Change the center element from F4 to a model glass, leaving the index and 
v-number unchanged, by clicking the button in the Glass column and 
selecting Model. Then click the button again and make it a special variable 
(RN only). In the variable spreadsheet, set boundaries of 1.5 to 1.8 for the 
RN variable. Close the variables spreadsheet. 

 Change the glass in the front and back elements to LAK33.  

Later, you can experiment yourself with varying these glasses, but for now, accept that LAK33 is a 
reasonable choice. The glass variation procedure will be simplified to finding the correct 
matching flint for these crown elements. If and when you experiment with varying the front and 
back elements, use both RN and DN. In the variables spreadsheet, put boundaries of 1.5 to 1.8 on 
the RN's, and 0.0 to 1.0 on the DN's. 

 Close the surface data spreadsheet and re-open it (so you can return to this 
state if things go awry). Then re-iterate the design until it doesn't improve 
(error function ~ 0.39). 

 Use the Fix option on the first glass button to find the closest Schott glass 
to the variable glass. You should find SF1. Click OK to accept this result. 

 Re-optimize after you have fixed the glass. 

 After you have fixed the glass, work through the variables, one at a time, 
choosing a nearby rounded off value, then making it a direct selection 
instead of a variable. Start with TH[2] = 1.2, re-optimize, TH[4] = 1.1, re-
optimize. Don't fix the last thickness yet. 

 To fix the radii, you can either round off to nearby values, or use a test 
glass list. If you round off, try to use only one place after the decimal for 
the thicknesses, and 2 places after the decimal for the radii. Re-iterate after 
each step.  

 To use a test glass list, first convert the radius to a Direct specification, 
then hold down the SHIFT key while clicking on a radius value twice. The 
field will change into an outline box, and the nearest radius from the 
current test glass list will be shown. Click on the button to accept the 
value, or SHIFT+Click above or below the box to see the next higher or 
lower value in the list (specified by the preference tglf). If the error 
function cannot be restored close to its original value, experiment with 
fixing other radii first. Fitting to a test glass list involves a certain amount 
of trial and error, as well as user discretion as to what is most important. In 
fitting the current lens, we were able to use the same test glass for three 
surfaces (see the final listing below). 
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 Adjust the aperture sizes so they just transmit the axial beam. The front 
element will be 1.8, the center 1.5, and the back 1.6. 

 Set TH[6] to some nominal value (TH[6] = 8.1), and click the thickness 
button for the image surface to establish the final focus position using the 
minimum polychromatic axial spot size criterion. 

When you are done with this process, you will have completed the design. The 
solution that you obtain should be generally similar to (but possibly not identical 
to) the following. Note that the scales have been adjusted by a factor of 5.0 to 
account for the difference in focal length. In spite of the increased speed, the new 
design is generally similar to or better than the old. The final design is included in 
the OSLO demo/Lt library as digitrip.len. 
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Double-Gauss objective 

The double-Gauss design form has dominated the class of photographic lenses for 
many years. There are literally thousands of adaptations of this form, which has 
an apt combination of aperture, field, and design complexity. The design shown 
here is just an ordinary double gauss, using conservative specifications, that you 
can use as an indicator of typical performance as well as a starting system for a 
new design. It is set up to work at 50mm efl, f/2, with a field of about ±20 
degrees. You can compare this to the Cooke triplet (demotrip.len) and Petzval 
lens (petzval.len) to see the relative performance. 

One possibly interesting aspect of the current design is that it has no vignetting. 
The present system, and the design procedure described below, are designed to 
produce optimum performance under the nominal conditions. Most photographic 
lenses are not designed to have peak performance at full aperture. In photographic 
applications, vignetting is usually used to improve performance by truncating the 
oblique spherical aberration that limits the field coverage of the double Gauss 
lens.  

 

 

The double-Gauss objective shown above serves as a starting system to illustrate 
the techniques for lens optimization with the GENII error function. The lens is to 
be optimized for f/2, 50mm focal length, ±20 degrees field coverage. The results 
will be different from the above system because the example system was created 
using a different optimization procedure. 

The example is presented as a series of explicit steps that you should duplicate on 
your computer. The OSLO user interface has been especially constructed to 
provide an easy-to-use interaction during optimization, if you follow the 
recommended procedure. As you progress through the design, you should save 
your lens so that you can recover to a given point rather than start over, if you 
make a mistake. The public/len/demo/light directory contains lens files showing 
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the design at various stages. You should expect your lens data to be similar, but 
not necessarily identical, to that in the tutorial files. 

Starting Design (dblgauss0.len) 

 Click File >> Open and open the lens public/len/demo/light/dblgauss.len.  

 Click File >> Save As and save the lens as private/len/dblgauss0.len. This 
will make a backup copy in your private directory that you can reopen if 
necessary.  

Curvature Solution (dblgauss1.len) 

 Open the surface data spreadsheet (the lens icon or the menu under 
Lens>>Surface Data Spreadsheet…). Make sure that Autodraw is set to 
On, that the entrance beam radius is 12.5mm, the field angle 20 degrees, 
and the focal length 50.000041.  

 Click on the aperture buttons for surfaces 1 and 11 and set the aperture 
specification to Not Checked.  

 Click Optimize >> Variables and click on the Vary All Curvatures button. 
Click the OK button (or the check button in the spreadsheet) to close the 
Variables spreadsheet.  

 Click Optimize >> GENII Error Function to enter the error function with 
default values (Note: If you enter the command geniierf_lt ?, OSLO will 
allow you to enter custom values for the default ray data). Note that the 
Target icon is enabled after you give the command, signifying that the lens 
has operands.  

 Click the Target icon and observe the initial error function is 2.35.  

 Close (i.e. OK) the lens (surface data) spreadsheet and immediately reopen 
it. This has the effect of saving the current lens to a temporary file, which 
you can recall using the Revert capability of OSLO (If you click Cancel in 
a spreadsheet, the program will prompt "Undo all changes ?"). You should 
always optimize a system with the lens spreadsheet open so that you can 
back up if something goes awry during the optimization process. Also, if 
the spreadsheet is open and Autodraw is on, the program will update the 
spreadsheet and draw a picture of the lens after each series of iterations.  

 Click the Optimize (up to 50 iterations) (Bow & Arrow) icon to iterate the 
design by 10 steps. Repeat this five or six times until the merit function 
goes down to about 1.44.  

 Change the lens identification to "CV Solution".  

 Click the Ray Analysis report graphics toolbar icon to display a ray trace 
analysis in the graphics window. Note that the lens still looks similar to 
the starting system, and that the ray curves, although different, are still 
reasonable.  
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 Click File >> Save As and save the lens as dblgauss1.len. If you want, you 
can compare your system with the lens of the same name in the 
public/len/demo/tutorial directory.  

At this stage, we have only used curvatures as variables. This has the advantage that the system is 
still in the same general solution region as the starting system, and the disadvantage that the 
performance is not improved very much. The next stage of the design is to add the thicknesses as 
variables. When you add thicknesses, you must take extra care to provide boundary conditions to 
prevent the system from "blowing up", i.e. wandering off to a solution that is either non-physical 
or in a totally different solution region from the starting system. 

Thickness Solution (dblgauss2.len) 

 Click Optimize >> Variables. At the top of the spreadsheet, change the 
data fields so the air-space thickness bounds run between 0.5 and 25mm, 
and the glass thickness bounds run between 1 and 15mm.  

 Click the Vary All Thicknesses button, then close (accept) the Variables 
spreadsheet.  

 Close (accept) the lens spreadsheet, then immediately reopen, to provide a 
revert file.  

 Click the Optimize (up to 50 iterations) (Bow & Arrow) icon once (only). Look at the 
lens picture made by Autodraw. Note that the first element is much too thin, resulting in a 
"feathered" edge, even though the axial thickness is within its bounds. Now look at the 
spreadsheet data and notice that the thickness of surface 2 is less than its minimum 
boundary (0.5mm). The feathered edge problem requires us to put a boundary condition 
on edge thicknesses, which we will do using "Edge Contact" solves. The minimum axial 
thickness violation requires us to put increased weight on boundary conditions.  

 Click the Cancel button in the lens spreadsheet. When the program pops 
up the "Undo all Changes?" box, click OK in the box. The lens will be 
restored to its state when the spreadsheet was opened (i.e. right before the 
iteration). Reopen the lens spreadsheet, and note that this is so.  

We are going to put edge contact solves on all the positive elements (1,3,8,10). By choosing the 
aperture height at which we specify edge contact, we can start off with roughly the same axial 
thicknesses as the original system. Note that this is only one of the ways to control edge thickness, 
but it is quick and easy. Later in the design, you can free up the thicknesses and see if they will 
move to physically reasonable values. 

 Click the Thickness button for surface 1, then click Solves, and then Edge 
Contact. In the box that asks for the edge contact radius, enter 23.0.  

 Click the Thickness button for surface 3, then click Solves, and then Edge 
Contact. In the box that asks for the edge contact radius, enter 16.0.  

 Click the Thickness button for surface 8, then click Solves, and then Edge 
Contact. In the box that asks for the edge contact radius, enter 16.0.  

 Click the Thickness button for surface 10, then click Solves, and then 
Edge Contact. In the box that asks for the edge contact radius, enter 22.0.  

 Click Optimize >> Operating Conditions. Find the "Weight of boundary 
condition violations" field, and enter 1.0e4. This will force any boundary 
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violations to have much more importance than other operands, and hence 
to be well controlled.  

 Click OK to close the Operating conditions spreadsheet.  

 Click OK to close the lens spreadsheet, then immediately reopen it.  

 Click the Bow & Arrow icon about ten times, which should lower the error function to 
about 1.05.  

 Change the lens identification to "CV/TH Solution".  

 Click File >> Save As and save the lens as dblgauss2.len.  

 Click the Ray Analysis Report Graphics icon. Note that although the error 
function is better than before, that the various ray curves are still not very 
good. In order to make the design better, it will be necessary to use 
different glasses.  

For the design exercise in this tutorial, we will just vary the glasses in the inner doublets. After 
trying this, you can proceed on your own to make a final design by varying all the glasses. To vary 
glasses, it is necessary to first replace the catalog glasses with model glasses. 
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Variable Glass Solution (dblgauss3.len) 

 In the lens spreadsheet, click on the glass button for surface 3, then click 
on Model. In the dialog boxes that appear, click OK three times to accept 
the Glass name, base index, and V-number for the model glass. After you 
have finished, note that the letter M appears on the glass button. Click the 
glass button for surface 3, and select Variable from the pop-up menu of 
actions.  

 Repeat the above step for surfaces 4, 7, and 8.  

OSLO normally treats glasses as one-dimensional variables. When you vary a glass, its index and 
dispersion are simultaneously varied so that the glass stays on the "glass line". For many types of 
lenses, this is an adequate scheme for finding an optimum glass quickly. For a lens like the double 
Gauss, however, the glasses in the interior doublets need to have both the refractive index and 
dispersion varied independently. To do this, you enter additional variables "dn" on each of the 
surfaces. 

 Click Optimize >> Variables. Select Row 21, then click the "Insert After" toolbar icon in 
the Variables spreadsheet. Then select Row 22, and hold down the Shift key while 
clicking on the row button three more times. This will create 4 new rows at the bottom of 
the variables spreadsheet.  

 In the Surf column of the new rows, insert surfaces 3, 4, 7 and 8 
respectively.  

 In the Type column, insert DN for all 4 rows.  

For both refractive index and dispersion, it is necessary to enter explicit boundary conditions. 
Otherwise, the program may try to create glasses with infinite index and zero dispersion. The 
refractive index should be set between 1.5 and 2, and the dispersion should be allowed to range 
from 0 to 1.0. The dispersion factor DN is normalized so that 0 corresponds to the left-hand edge 
of the glass chart, and 1.0 corresponds to the right hand edge of the glass chart. 

 Enter the above boundary conditions in the appropriate cells in the eight 
rows that specify the glass variables.  

 Close the Variables spreadsheet, then close the lens spreadsheet and 
immediately reopen it.  

 Click the Bow & Arrow toolbar icon several times until the error function 
decreases to about 0.47.  

 There is a substantial reduction in the error function from varying the glasses, but the 
glasses are now fictitious. You can update the graphics window to check the current Ray 
Analysis. 

 Click Show >> Surface Data, then select Refractive indices and close 
(accept) the dialog box. The current refractive index data will appear in 
the Text output window. Note that the glass on surface 8 has a refractive 
index of 2.00 and a V-number of 50. This will be a difficult glass to 
match.  

 Change the lens ID to "CV/TH/RN Solution", then click File >> Save As 
to save the current lens as dblgauss3.len. Close the lens spreadsheet and 
reopen it immediately.  
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The next task is to find real glasses to replace the model glasses. OSLO has a special command, 
accessible from the lens spreadsheet, that substitutes the nearest real glass for a model glass. 

 

 

Real Glass Solution (dblgauss4.len) 

 Click the glass button on surface 8, and select Fix >> Schott from the list 
of options. The program should offer to substitute LASFN31. Accept this 
suggestion. Close and reopen the lens spreadsheet. Click the Ite button 
many (~40?) times until the error function decreases to about 0.49.  

 Click the glass button on surface 7, and select Fix >> Schott from the list 
of options. The program should offer to substitute SF9. Accept this 
suggestion. Close and reopen the lens spreadsheet. Click the Ite button 
until the error function decreases to about 0.50.  

 Click the glass button on surface 4, and select Fix >> Schott from the list 
of options. The program should offer to substitute SF59. Accept this 
suggestion. Close and reopen the lens spreadsheet. Click the Ite button 
until the error function decreases to about 0.50.  

 Click the glass button on surface 3, and select Fix >> Schott from the list 
of options. The program should offer to substitute LASF18A. Accept this 
suggestion. Close and reopen the lens spreadsheet. Click the Ite button 
until the error function decreases to about 0.70.  

Note that it is not possible to get a good match with LASF18A glass. Possibly this indicates that 
additional optimization should be carried out with the other glasses as variables.  

 Click File >> Save As to save the current lens as dblgauss4.len. Close the 
lens spreadsheet and reopen it immediately.  

 Double-click the report graphics window to bring the ray analysis up to 
date. The curves should be similar to the following. Note that the sagittal 
ray-intercept curve at full field is not well controlled. Note also that the 
astigmatism curves at the edge of the field do not come together.  
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Open a second graphics window using Window >> Graphics >> New. Click the 
report graphics Through-focus MTF icon. The curves should be similar to the 
following. Note that despite the fact that the ray analysis astigmatism curves do 
not come together at the edge of the field, the actual MTF curves are reasonably 
coincident, at least at 25 cycles/mm. 
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At this point, the optimization has proceeded to the point of a default solution. Now, various trials 
can be conducted to improve the design, such as trying additional glasses. Other possibilities for 
additional optimization are to remove the edge contact solves to see whether the positive elements 
still want to get too thin, to change the weights on selected terms in the error function, or to re-
enter the error function with different rays. 

The general approach to optimization using OSLO is illustrated by the steps of this example: you 
should approach the optimization cautiously and change only a few things at a time, working 
interactively, until you are confident that the combination of variables and operands can be 
trusted to produce a system of high quality. You should always maintain a way to restore your 
system to an earlier state, such as using the revert capability of OSLO spreadsheets. 

Final Solution (dblgauss5.len) 

The lens shown below (public/len/demo/tutorial/dblgauss5.len) is the result of 
about an hour's investigation of various options for improving the design using 
the GENII error function (with different weights on selected operands). It is not 
feasible to trace the course of this optimization explicitly. You should try to see if 
you can match, or improve on, the final design shown below. Note that checked 
apertures have been inserted to provide vignetting at the edge of the field. 
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The data for the final system are shown below. Note that the "outer" glasses have 
been changed. Note also that the radii and thicknesses have been rounded to 
meaningful values. This should be the final step in an optimization run. Each 
variable in turn is set to a rounded off value and removed from the variable list. 
The lens is then re-optimized using the remaining variables. A similar procedure 
is used to fit radii of curvature to test glass values. 
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Petzval Lens 
The Petzval lens is a very old design form ( > 150 years!) that is still a mainstay in lens libraries. 
The original Petzval Portrait lens used a cemented doublet and air-spaced doublet, but the term 
Petzval lens is now generally applied to lenses containing two separate groups (usually doublets) 
in which both groups contribute positive power. 

The Petzval lens is a good design form for high-aperture narrow field applications. Curiously, 
although invented by Petzval to improve the field coverage of high-aperture systems, it makes no 
attempt to correct the Petzval curvature. In modern designs, the Petzval lens often incorporates a 
negative element near the image plane to flatten the field. 

The lens included here is a typical design that can be used as a starting design for specific 
modification. It is scaled to 50mm focal length, so you can compare its performance to 
demotrip.len and dblgauss.len. 
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Monochromatic quartet lens 
The monochromatic quartet is the name given by organizer D.C. O’Shea, to a lens that was 
designed according to the rules of the 1990 International Lens Design Conference contest. The 
lens was specified according to the requirement that it be the best design having a focal length of 
100mm, a speed of f/3, and a field of 15 degrees, using four elements of BK7 glass. 

Of the 44 designs submitted, the top five were essentially the same (three were designed using 
OSLO), and it is speculated that this design is the global solution to the problem as stated. Since 
then, global optimization algorithms have often been tested to ensure that they find this solution. 
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Anamorphic telextender 

This example shows a simple Bravais system, which is a system where the object 
coincides with the image. The system goes on the back end of an ordinary lens to 
create a sharp image with different magnification in the x and y directions. This is 
accomplished using cylindrical lenses with power in the yz meridian. 

The Bravais condition is imposed using a pk lnm command on surface 4. Actually, 
the condition cannot be precisely satisfied using cylindrical lenses because the 
thickness of the lenses displaces the image in the xz meridian. Therefore, the lens 
powers were chosen to make the image in the yz meridian lie on the same surface 
as the xz image. 

Note the use of special apertures on surfaces 3 and 4 to model the rectangular 
lens. 

 

 

 

 

*PARAXIAL CONSTANTS 
   Effective focal length:   -4.160855    Lateral magnification:     2.019103 
   Numerical aperture:        0.049281    Gaussian image height:    -1.009551 
   Working F-number:         10.145865    Petzval radius:            4.269440 
   Lagrange invariant:        0.050000 
 
*PARAXIAL CONSTANTS - XZ PLANE  
 FRACTIONAL XZ APERTURE       1.000000    FRACTIONAL XZ OBJECT       1.000000 
   Effective focal length:  5.0000e+39    Lateral magnification:     1.000000 
   Numerical aperture:        0.099504    Gaussian image height:    -0.500000 
   Working F-number:          5.024938    Petzval radius:          1.0000e+40 
   Lagrange invariant:        0.050000 
*LENS DATA 
Anamorphic Bravais objective 2x 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        -10.000000      0.500000             AIR      
 
  1      8.462000      0.150000      1.100000 A          SK16 C *  
  2        --          4.100000      1.100000             AIR      
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  3     -1.370000      0.100000      0.943398 X          SK16 C *  
  4        --          5.650000 P    0.943398 PX          AIR      
 
  5        --            --          1.050000                      
 
*SURFACE TAG DATA 
  1     CVX       --     
  3     CVX       --     
 
*PICKUPS 
  4     LNM    1   4   10.000000 
  4     AP     3 
  4     SAP  A   3 A 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC     0.500000 
  1     SPC     1.100000 
  2     SPC     1.100000 
  3     SPC     0.943398 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -0.800000  AX2     0.800000  AY1    -0.500000  AY2     0.500000 
  4     PKP     0.943398 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -0.800000  AX2     0.800000  AY1    -0.500000  AY2     0.500000 
  5     SPC     1.050000 
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Fisheye lens 
Lenses that have fields of view of greater than 90 degrees (half-angle) require special attention in 
setup, since the conventional methods for specifying field of view are awkward to handle for this 
case. In addition, special care must be taken within the ray trace routines to ensure stability. 
Finally, care must be taken in evaluating such lenses, since many of the built-in evaluation 
procedures (e.g. report graphics) implicitly assume a field of view of less than 90 degrees. 

The nikofish.len file is an example of such a lens. It is based on a Nikon patent, and is 
implemented here as a 10mm efl lens that covers a field of view of 108 degrees with an aperture of 
f/4. 

 

As you can see from the drawing, the aperture stop of the lens is well back in the 
lens, on surface 14. Obviously the pupil position is a function of the field angle, 
moving almost to the first surface at the edge of the field. In order to 
accommodate this type of system and ensure that the rays pass through the desired 
positions on the aperture stop, OSLO uses the warm (wide-angle ray-aiming 
mode) general operating condition. 

When warm is on, fractional object coordinates (for infinite conjugate systems) 
represent angles in degrees, relative to the nominal field angle of the system. For 
the present system, the field angle is specified as 45 degrees, so a fractional object 
height of 1.0 refers to a point 45 degrees off axis. The edge of the field of view of 
this system occurs at a fractional object height of 2.4.   

In addition, when warm is on, fractional pupil coordinates refer to positions in the 
reference surface, normalized to the reference surface radius (not the entrance 
beam radius). For the nikofish lens, the reference surface (aperture stop) radius is 
5.2 mm, so a fractional aperture coordinate FY = 0.5 refers to a point in the 
aperture stop 2.6 mm from the optical axis. The figure below shows a zoomed 
drawing of the lens near the stop surface. You can see that the rays always go 
through their prescribed points in the aperture stop. In this connection, it should 
be mentioned that it is not necessary to have warm on to have the chief ray go 
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through the center of the stop: this always happens (unless the ray trace fails for 
some reason). The warm condition only affects ordinary rays. 

 

To evaluate fisheye systems, you can use all the routines that use the current field point, which can 
be set to a value greater than 1.0 using the sop command. For example, a ray intercept curve at the 
edge of the field of view can be obtained as follows: 

 

*SET OBJECT POINT 
         FBY         FBX         FBZ 
       2.400000      --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
      18.702850      --        0.219863    0.062672  182.326549   Infinite 
 

 

There is some problem in obtaining a graphical field analysis, because all the internal routines 
extend only to FBY = 1.0. However, the star command *field accommodates two arguments that 
give the number of field points and the maximum fby, respectively. The command *field 12 2.4 
produces the following output. 

 

*FIELD ANALYSIS 
 WAVELENGTH 1 
      FIELD        YC           YFS          XFS         % DIST     LAT COLOR 
      --           --         0.042414     0.042414       --           --     
    0.200000     1.606980     0.040257     0.041150    -0.858303    -0.001824 
    0.400000     3.210651     0.034107     0.037644    -3.444843    -0.003608 
    0.600000     4.807926     0.024917     0.032730    -7.795877    -0.005325 
    0.800000     6.396158     0.014212     0.027698   -13.976597    -0.006981 
    1.000000     7.973349     0.004033     0.024151   -22.088918    -0.008626 
    1.200000     9.538334    -0.003140     0.023787   -32.283884    -0.010379 
    1.400000    11.090926    -0.004421     0.028098   -44.780543    -0.012438 
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    1.600000    12.631948     0.003501     0.037920   -59.894417    -0.015109 
    1.800000    14.163058     0.024490     0.052703   -78.080634    -0.018818 
    2.000000    15.686059    -0.177583     0.069185  -100.000000    -0.024115 
    2.200000    17.201146     0.125809     0.078828  -126.621245    -0.031608 
    2.400000    18.702850     0.219863     0.062672  -159.380288    -0.041751 

Monochromatic air-spaced doublet 

The lasrdblt.len file is designed to focus light (on axis) from a helium-neon laser. 
You can see from the ray analysis below that the lens far outperforms the Cooke 
triplet, double Gauss, and Petzval lenses shown in these examples. On the other 
hand, it has essentially no field of view, and works only in monochromatic light. 
These limitations distinguish the present design from normal doublets, which are 
usually designed to cover an extended spectral range. In the present lens, the 
degrees of freedom normally used to extend the spectral range were instead used 
to balance high-order aberrations. 

 

The air-spaced doublet provides a good system to illustrate the thermal or 
environmental analysis features in OSLO. When the temperature of the lens and 
its environment is changed, OSLO changes the lens data according to the thermal 
expansion of the materials (glass and spacers) used to construct it. In addition, 
refractive indices are recalculated to account for the thermal variation of 
refractive index. 

The temperature of the lens and its surroundings can be set by changing the 
Temperature value in the General Operating Conditions spreadsheet.  

To see the effect of temperature changes on the laser doublet, open the lasrdblt.len 
file and click the Pxc button in the text window to print the paraxial constants 
*PARAXIAL CONSTANTS 
   Effective focal length:   60.000049    Lateral magnification:  -6.0000e-19 
   Numerical aperture:        0.250000    Gaussian image height:   6.0000e-05 
   Working F-number:          2.000002    Petzval radius:         -205.107372 
   Lagrange invariant:     -1.5000e-05 
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Now open the general operating conditions spreadsheet (click GEN in the surface 
data spreadsheet) and change the temperature of the system to 100 degrees. 
Repeat the above command: 
*PARAXIAL CONSTANTS 
   Effective focal length:   59.970699    Lateral magnification:  -5.9971e-19 
   Numerical aperture:        0.250122    Gaussian image height:   5.9971e-05 
   Working F-number:          1.999023    Petzval radius:         -205.091070 
   Lagrange invariant:     -1.5000e-05 
 

Now change the temperature back to 20 degrees. You will see that the lens data 
do not return exactly to their previous values. This is caused by round-off effects 
in the expansion calculations. You should always save the original system in a file 
before changing the temperature, or leave the operating conditions spreadsheet 
open during your analysis and cancel out of it at the end. If you plan extensive 
thermal analysis, you should consult the tem command in the help system or see 
the Program Reference manual for additional options. 

Athermalization 

In OSLO, air spaces are expanded by computing the thermal change in the 
corresponding edge thickness (defined at the aperture radius), and adding this 
change to the axial thickness. Note that this implies that the axial thickness itself 
does not affect the thermal expansion. 

Radii of curvature are expanded according to the solid material bounding the 
radius, if the surface separates a solid and AIR. If a surface separates two solid 
materials, the average TCE of the two solids is used to expand the radius of 
curvature. This is obviously an ad hoc assumption, and for accurate thermal 
analysis, an extra surface should be used so that all solids are separated by AIR. 

In the case of a mirror, OSLO uses the TCE of the following space to compute the 
thermal expansion. If the spacer in the following space is not made from the same 
material as the mirror, it is necessary to add an additional surface in contact with 
the mirror to accommodate the extra data. 

The computation of thermal effects is fairly involved, partly because the data 
supplied by manufacturers are non-linear and not entirely consistent (e.g. some 
data are relative to air, and other data are relative to vacuum). One result of this is 
that it is not possible to exactly reverse a thermal change; there are residual round-
off errors in the system parameters. While these are ordinarily not large enough to 
affect performance, it is a good idea to save a copy of the lens data prior to 
carrying out a thermal analysis. 

The term athermalization refers to the process of making a lens insensitive to 
changes in temperature. When the temperature of the lens and its surroundings is 
changed, there are two effects that can be modeled by OSLO to account for their 
influence upon optical performance: 

Thermal expansion - When temperature increases, all lengths in the optical system 
(radii of curvature, axial thicknesses, spacer thicknesses, aspheric and diffractive 
surface coefficients, and aperture radii) increase (approximately) proportionately, 
according to the value of the thermal expansion coefficient of each material. 
Thermal expansion coefficient values are provided in the Schott, Ohara, and 
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Corning glass catalogs, and may be specified for individual glass or air spaces in 
lenses using the TCE command, as described above. 

Thermal variation of refractive index - The refractive indices of optical materials (i.e. 
glasses) and of air vary with temperature; the index of air (and thus the relative 
indices of glasses) also varies with atmospheric pressure. Coefficients for the 
index vs. temperature relation are provided in the Schott glass catalog and can be 
specified for glasses added to the Private and Shared catalogs. 

The temperature of the lens and its surroundings is set by using the tem command 
or by changing the Temperature value in the General Operating Conditions 
spreadsheet. The syntax of the tem command is: tem(temperature, 
apply_thermal_expansion), where temperature is the temperature in degrees Celsius 
(default = 20 degrees, or room temperature), and apply_thermal_expansion is “Yes” 
to expand all lengths in the lens or “No” to leave the lengths unchanged. If the 
temperature is changed through the General Operating Conditions spreadsheet, 
thermal expansion is always applied. Refractive indices are always recomputed 
when the temperature is changed. 

OSLO applies thermal expansion to lenses as follows. First, the radius of 
curvature, aspheric and diffractive coefficients, and aperture radius of each 
surface is expanded according to the expansion coefficient of the glass (i.e., non-
air) side of the surface; cemented surfaces are expanded according to the average 
of the two expansion coefficients. Second, the (axial) thickness of each glass (i.e, 
non-air space) is expanded, also according to the expansion coefficient of the 
glass. Finally, air spaces are expanded by calculating the change in spacer 
thickness (which is taken to be the same as the edge thickness) and adding this 
change to the axial thickness; the expansion coefficient used is that of the spacer 
material (aluminum, by default). 

To see the effect of temperature changes on the laser doublet, open the 
“public\len\demo\lt\lasrdblt.len” file and print the lens data. The last line of the 
OPERATING CONDITIONS: GENERAL section of the output shows the 
temperature in degrees Celsius; the default is 20 degrees, or room temperature. 
The REFRACTIVE INDICES section lists the glass (medium) for each surface 
and the value of the thermal expansion coefficient (TCE). Note that the refractive 
index of AIR is always given as 1.0, and that the TCE values of the air spaces is 
that of aluminum (236.0  10-7). 
*OPERATING CONDITIONS: GENERAL 
   Temperature:              20.000000    Pressure:                  1.000000 
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1        TCE 
  0      AIR           1.000000      --     
  1      LASF35        2.014931   74.000000 
  2      AIR           1.000000  236.000000 
  3      LASF35        2.014931   74.000000 
  4      AIR           1.000000  236.000000 
  5      IMAGE SURFACE 

Perform a paraxial analysis and note the Effective focal length and Image 
numerical aperture. Trace a spot diagram from the on-axis field point and note the 
Strehl ratio, which characterizes the performance of the system. 
*PARAXIAL SETUP OF LENS 
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 APERTURE 
   Entrance beam radius:     15.000000    Image axial ray slope:    -0.250000 
   Object num. aperture:    1.5000e-19    F-number:                  2.000002 
   Image num. aperture:       0.250000    Working F-number:          2.000002 
……… 
 OTHER DATA 
   Entrance pupil radius:    15.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:        12.089964    Srf 4 to exit pupil:     -15.956128 
   Lagrange invariant:     -1.5000e-05    Petzval radius:         -205.107372 
   Effective focal length:   60.000049 
 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --        0.005766    0.005766   66.447315   48.354128 
 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    17.030000 
 WAVELENGTH 1 
 WAV WEIGHTS: 
       WW1     
    1.000000 
 NUMBER OF RAYS TRACED: 
       WV1     
       232         
 PER CENT WEIGHTED RAY TRANSMISSION:   100.000000 
 
*SPOT SIZES  
   GEO RMS Y   GEO RMS X   GEO RMS R  DIFFR LIMIT     CENTY       CENTX 
    0.000490    0.000490    0.000692    0.001593      --          --     
 
*WAVEFRONT RS 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    RSY         RSX         RSZ 
    0.033080    0.011037    0.995412      --          --          -- 

Now apply change the temperature to 40 degrees and apply thermal expansion by 
issuing the command tem(40, yes) or by setting the Temperature to 40 in the 
General Operating Conditions spreadsheet. Print the lens data and compare the 
surface data and refractive indices to the original values. Perform a paraxial 
analysis and compare the new focal length and numerical aperture to the original 
values. Trace a spot diagram from the on-axis field point and compare the Strehl 
ratio to the original value. 
*OPERATING CONDITIONS: GENERAL 
   Temperature:              40.000000    Pressure:                  1.000000 
 
*LENS DATA 
He-ne f/2 doublet focusing lens 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1     41.046074      5.000740     15.002220 A        LASF35 C    
  2   -542.755316     13.906183     15.002220             AIR      
 
  3    -40.701023      5.000740      9.001332          LASF35 P    
  4   -124.330000     32.413446      9.000000             AIR      
 
  5        --            --          0.002000                      
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1        TCE 
  1      LASF35        2.015019   74.000000 
  2      AIR           1.000000  236.000000 
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  3      LASF35        2.015019   74.000000 
……… 
 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:     15.000000    Image axial ray slope:    -0.250029 
   Object num. aperture:    1.5000e-19    F-number:                  1.999768 
   Image num. aperture:       0.250029    Working F-number:          1.999768 
……… 
 OTHER DATA 
   Entrance pupil radius:    15.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:        12.089353    Srf 4 to exit pupil:     -15.961051 
   Lagrange invariant:     -1.5000e-05    Petzval radius:         -205.103693 
   Effective focal length:   59.993027 
 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --       -0.022704   -0.022704   66.472804   48.374497 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    17.030000 
 WAVELENGTH 1 
 WAV WEIGHTS: 
       WW1     
    1.000000 
 NUMBER OF RAYS TRACED: 
       WV1     
       232         
 PER CENT WEIGHTED RAY TRANSMISSION:   100.000000 
 
*SPOT SIZES  
   GEO RMS Y   GEO RMS X   GEO RMS R  DIFFR LIMIT     CENTY       CENTX 
    0.004227    0.004227    0.005978    0.001593      --          --     
 
*WAVEFRONT RS 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    RSY         RSX         RSZ 
    1.460707    0.434566    0.040493      --          --          -- 

In most cases, the effects of temperature change are limited to first-order; that is, 
changes in focal position and magnification. If the lens has a focusing mechanism, 
it can be used to counteract the temperature change (the focal shift is said to be a 
compensator for the temperature change). This can be seen here by using Autofocus 
and then re-tracing the on-axis spot diagram; the Strehl ratio should indicate that 
the system is once again well-corrected. 
*AUTOFOCUS 
Optimal focus shift =    -0.032475 
 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --        0.009771    0.009771   66.440329   48.342022 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    17.030000 
 WAVELENGTH 1 
 WAV WEIGHTS: 
       WW1     
    1.000000 
 NUMBER OF RAYS TRACED: 
       WV1     



10-278 Standard lenses 

 

       232         
 PER CENT WEIGHTED RAY TRANSMISSION:   100.000000 
 
*SPOT SIZES  
   GEO RMS Y   GEO RMS X   GEO RMS R  DIFFR LIMIT     CENTY       CENTX 
    0.000594    0.000594    0.000841    0.001592      --          --     
 
*WAVEFRONT RS 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    RSY         RSX         RSZ 
    0.086983    0.019991    0.984163      --          --          -- 

In cases where no focusing mechanism is available, athermalization is 
considerably more difficult. It is necessary to choose materials (glass as well as 
mounts and spacers) carefully so that the effects of temperature change on one 
part of the lens are canceled by the effects on other parts of the lens. 
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Zoom telescope 

A rifle scope is an inverting telescope designed to be mounted on a rifle and used 
as a telescopic sight. The scope consists of four parts: an objective, an erecting 
system, a reticle, and an eyepiece. In use, the objective and erecting system for an 
image of an object at or near infinity on the reticle (or vice versa). The erector 
system in a real system contains tilt and decentering adjustments that provide 
alignment capability as well as compensation for windage and bullet drop, but the 
design included here does not include such adjustments. The overall system is 
afocal, and must be designed with generous eye relief to prevent injury when the 
rifle is fired. 

In fact, this system is one position of a zoom system. Surface 11, the last surface 
of the second erector doublet, is specified by a the command pk lnm 4 11 90.7025 
command, sometimes called a zoom pickup, because it holds the total distance 
between surface 4 and 12 at 90.7025mm, no matter what value is given to any 
intervening thicknesses. The system is zoomed by changing thicknesses 5 and 8. 
To design the system, you can choose some value of th[8], then optimize the 
image quality by varying th[5]. This will produce the proper location (or locations 
- there may be two) of components and the magnification. By repeating this 
procedure for several values of th[8], you can construct a cam curve that shows how 
the elements must track to change the magnification.  

The lenses themselves can be designed with the system set at some particular 
magnification, or possibly at two different magnifications, to see how the 
optimum changes vs. magnification. Finally, you select one or the other (or some 
compromise) and make a final cam curve to complete the design. It is not 
necessary to use actual zoom optimization for a simple system such as this. 

Ray displacements in afocal mode are actually direction tangents, not angles in 
radians, but are ordinarily so small that there is negligible difference. 

The ray analyses shown on the next page show the performance of the scope at its 
normal magnification (3.75X), and also at a higher power (9.5X), which is 
achieved by changing th[5] to 15.208348, th[8] to 1.596579, the entrance beam 
radius to 18, and the field angle to .9 degrees. Note that the system has the afocal 
general operating condition set, so the ray displacements automatically are shown 
in radians. 
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OSLO has a number of routines to simplify working with zoom systems. The 
aberrations toolbar in the text output window contains several buttons dedicated 
to zoom systems, permitting analysis of a system in several positions with single 
commands, for example: 
*GROUP THICKNESSES AND AIR SPACES FOR ZOOMING SYSTEMS 
 
Group 1 consists of surf  2 to  6   Thickness =  144.810000 
Group 2 consists of surf  7 to  9   Thickness =    5.480000 
Group 3 consists of surf 10 to 12   Thickness =    4.250000 
Group 4 consists of surf 13 to 17   Thickness =   22.610000 
 
CFG  OBJ<->GRP1  GRP1<->GRP2  GRP2<->GRP3  GRP3<->GRP4   GRP4<->IMS 
1     1.000e+20      23.7700      24.2900      60.6288     120.5415  
2     1.000e+20      15.2083       1.5966      91.8839     120.5415  
 
*ZOOM LENS DATA 
MAGNIFICATION      CFG1       CFG2   
        GRP1 -1.381e-18 -1.381e-18  
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        GRP2   -13.1573     4.0236  
        GRP3     0.0936    -0.7755  
        GRP4 -2.375e+05 -3.235e+04  
 
          POWER        EFL        FNP        SNP         FF         BF 
GRP1     0.0072   138.0769   243.1908  -139.9642   105.1138    -1.8872  
GRP2     0.0379    26.3813     2.7291    -0.9525   -23.6522    25.4288  
GRP3     0.0278    35.9617     0.0191    -2.6531   -35.9427    33.3087  
GRP4     0.0220    45.3525    14.6663     1.2961   -30.6862    46.6486  
 
                  IMAGE  EFFECTIVE   INFINITY      IMAGE      FIELD 
CFG      EFL   DISTANCE        f/#        f/#      ANGLE      ANGLE        MAG 
1  4.039e+07   120.5415  1.346e+06  1.346e+06     2.4137     2.2906     3.7496  
2  1.394e+07   120.5415  3.668e+05  3.668e+05     5.0959     0.9167     9.5000  
 
*VARIATION OF THE 3rd ORDER SEIDEL COEFFICIENTS BY ZOOMING 
                  SA3        CMA3        AST3        PTZ3        DIS3 
CFG1 
    GRP 1   -0.000494    0.000194   -0.000269   -0.000597   -0.000454 
    GRP 2   -0.000272    0.000406   -0.002056   -0.001250    0.009511 
    GRP 3   -0.000210    0.000187   -0.001053   -0.000863   -0.000986 
    GRP 4   -0.000013   -0.000234    0.001114   -0.000682    0.001474 
    SUM     -0.000989    0.000553   -0.002263   -0.003391    0.009545 
CFG2 
    GRP 1   -0.002543    0.000315   -0.000138   -0.000306   -0.000074 
    GRP 2   -0.000501   -0.000363    0.000086   -0.000642    0.001106 
    GRP 3   -0.000645   -0.000003   -0.000359   -0.000443    0.001075 
    GRP 4   -0.000002   -0.000061    0.000412   -0.000350    0.003030 
    SUM     -0.003691   -0.000113    0.000002   -0.001741    0.005137 
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Wide-angle triplet - ASA 

This section shows how Adaptive Simulated Annealing can be combined with 
normal damped least squares in a design study. The task was to design a 35 mm 
efl triplet lens with a speed of f/3.5 covering a half-field of 31.5 degrees. The 
wavelength range was the visible spectrum. No specification was imposed for 
distortion or vignetting. 

The starting design consisted of three zero-thickness pieces of model glass. (ASA 
does not require a starting design; if one is provided, it is discarded during the 
first pass.) The curvatures were allowed to vary between 0.15, the glass 
thicknesses between 2 and 10, and the air spaces between 2 and 20. The refractive 
indices were allowed to vary between 1.5 and 1.9, and the dispersion factors 
between 0 and 1. The annealing rate was set to 0.05, as was the termination level. 
The error function included 50 terms based on Lobatto quadrature with 3 field 
points and 9 rays. Chromatic aberration was controlled using D–d, and the focal 
length was included in the error function rather than constrained as a solve. The 
starting system is shown below. 
*LENS DATA 
ASA Triplet 35mm f3.5 31.5deg 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    6.1713e+19             AIR      
 
  1        --            --     V    5.000000 AS          AIR      
 
  2        --     V      --     V    5.000000 S        GLASS1 V    
  3        --     V      --     V    5.000000 S           AIR      
 
  4        --     V      --     V    5.000000 S        GLASS2 V    
  5        --     V      --     V    5.000000 S           AIR      
 
  6        --     V      --     V    5.000000 S        GLASS3 V    
  7        --     V      --     V    5.000000 S           AIR      
 
  8        --            --          5.000000 S                    
 
 
*OPERANDS 
 OP    DEFINITION                  MODE     WGT     NAME          VALUE   %CNTRB 
O 1    "AVE"                         M      --     _YAVE1        3.310721   0.00 
O 7    "RMS"                         M      --     YRMS1         2.500011   0.00 
O 8    "AVE"                         M      --     _XAVE2        1.125000   0.00 
O 13   "RMS"                         M      --     XRMS2         2.250000   0.00 
O 14   "AVE"                         M      --     _YAVE2          --       0.00 
O 19   "RMS"                         M      --     YRMS2         2.000000   0.00 
O 20   "AVE"                         M      --     _XAVE3        0.875000   0.00 
O 25   "RMS"                         M      --     XRMS3         1.750000   0.00 
O 26   "AVE"                         M      --     _YAVE3          --       0.00 
O 31   "RMS"                         M      --     YRMS3         1.500000   0.00 
O 32   "AVE"                         M      --     _CHRAVE1        --       0.00 
O 38   "RMS"                         M      --     CHRRMS1         --       0.00 
O 39   "AVE"                         M      --     _CHRAVE2        --       0.00 
O 44   "RMS"                         M      --     CHRRMS2         --       0.00 
O 45   "AVE"                         M      --     _CHRAVE3        --       0.00 
O 50   "RMS"                         M      --     CHRRMS3         --       0.00 
O 51   "PU+0.142857"                 M    1.000000               0.142857   0.01 
O 52   "PYC(1,5)"                    M    0.010000                 --       0.00 
** BOUND VIOL: V1 V2 V3 V4 V5 V6 V7  
MIN ERROR:     6.823322 
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ASA was set up to generate 20 solutions, which took about 3 hours on a Sparc2 
workstation. The lenses produced during the ASA portion of the run were then 
modified to remove the glass variables, and the ordinary DLS optimization was 
used to drive each ASA solution to a local minimum, varying only the curvatures 
and thicknesses. The results are summarized in the following table and in the 
figures that follow (The final error function is saved in System Note #1 by ASA). 

ASA solutions 

solution #1: merit .0276 

solution #2: merit .0275 

solution #3: merit .0422 

solution #4: merit .0488 

solution #5: merit .0044 

solution #6: merit .0213 

solution #7: merit .0284 

solution #8: merit .0337 

solution #9: merit .0312 

solution #10: merit .0274 

solution #11: merit .0409 

solution #12: merit .0288 

solution #13: merit .0253 

solution #14: merit .0232 

solution #15: merit .0324 

solution #16: merit .0364 

solution #17: merit .0251 

solution #18: merit .0281 

solution #19: merit .0372 

solution #20: merit .0225 

average .0296 

 

Solution #5 has the best error function of all the solutions found by ASA, so it 
was used as a starting point for additional (local) optimization. The local 
optimization involved constraining the stop to the front surface of the center 
element, adding more rays to the error function, changing the PU requirement on 
the back surface from a minimize to a constraint mode operand, and 
experimenting with glass combinations. Next, the design was turned around. This 
led to the final design: 
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*LENS DATA 
Final design 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    6.0086e+19             AIR      
 
  1     25.682267 V   11.257104 V   14.000000            SF59 C    
  2      9.668970 V    2.500000      7.000000             AIR      
 
  3     25.150557 V   16.844313 V    7.000000            SF59 C    
  4     31.457684 V    1.548261 V    7.000000 A           AIR      
 
  5    110.580228 V    5.567810 V    7.000000            LAK8 C    
  6    -13.566281 V   37.963035 V    7.000000             AIR      
 
  7        --            --         20.919998 S                    
 

The final design has somewhat marginal performance at this focal length. Like 
most designs of this type, it is limited by oblique spherical aberration that cannot 
be corrected. On the other hand, the lens does have good field coverage and ample 
back focus, and would be quite satisfactory at a reduced focal length. 

The design study shows how ASA can be combined with normal lens design to 
produce a new solution. In this mode of application, no attempt is made for global 
optimization. ASA is used instead as a multiple solution generator. ASA has 
advantages over competing methods in this mode of operation, because it 
uniformly searches the entire solution space. 
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Wide-angle triplet - GE 
 

Global Explorer is a CCL command based on the Escape Function method 
developed by Isshiki, and is included with OSLO Premium. This example 
presents a demo procedure to illustrate the steps in using Global Explorer. You 
should first run the procedure as described below, to understand its use. Then you 
can experiment with different lenses and different values for the parameters. 

Before running Global Explorer, you must have a lens in your computer that is 
ready for optimization, that is, it must have variables and operands that define a 
suitable error function. The escape function that is added to the error function is 
generated automatically by Global Explorer, so your error function should not 
include it. This demo uses a starting design for a wide-angle triplet having the 
same paraxial specifications as the design example used for ASA. 

1. Open two graphic windows in addition to the text window, and arrange your 
display so the windows are similarly sized and located to the figures below. 

2. Click File >> Open on the main OSLO menu. Click Public in the dialog box, 
and open the file demo/six/gedemo.len. 

3. First choose the Global Explorer's Set Parameters option by executing it from 
the Optimization >> Global Explorer >> Set Parameters menu, or by typing the 
command ge (If you type the command, it will display an options box). This will 
display the parameters used by Global Explorer in the OSLO Editor. Don't change 
these parameters for the demo, just exit from the editor by clicking File >> Exit in 
the text editor (not on the main menu). Later, you can repeat this step to edit 
different parameters (i.e. change their values) and save the file before exiting. 

 

Most of the parameters for Global Explorer are described in chapter 7. There are a 
few additional ones that have been provided in the CCL program. For example, 
the ge_vigbotfy and ge_vigtopfy parameters allow you to specify the vignetting 
that sets the apertures of the solutions. In the demo, the range of fractional 
aperture vignetting goes from –1.0 to 1.0. Note that this is not the same as the 
vignetting defined in the optimization field point set, which has a range from –0.8 
to 0.8. Often it is advantageous to have the optimization vignetting different from 
the usage vignetting. 
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Another of the parameters is called ge_draw_scale. If this is set to 1 all the 
solutions will be drawn to the same scale. If ge_draw_scale is set to 0, each 
solution will be scaled automatically to fit its viewport.  

The parameter ge_soltol sets the value of the corresponding OSLO operating 
condition opst (optimization solution tolerance). If you have a small display, you 
may want to use the zoom capability of OSLO graphics windows (provided by the 
toolbar buttons) to enlarge a particular viewport of interest so you can see it 
better. 

Global Explorer will save as many lens files as are indicated by the ge_save_files 
parameter. Each file will contain the name set by ge_base_filename. For the 
demo, there will be three files, globex01.len, globex02.len, and globex03.len 

You can open these and evaluate or modify them as desired. Note that the 
solutions not saved as files will be not be available for evaluation or modification. 
It is quite usual for most of the Global Explorer solutions to be of only casual 
interest, and discarding them prevents excessive disk clutter. 

 

4. Run Global Explorer again, and this time choose the Global Explorer option. 
The program will display an options box asking for the desired number of 
solutions. (Note that the values are the squares of integers, which is required by 
the window formatting that Global Explorer uses.) Double click "16" for this 
demo. The program will immediately begin to search for solutions. As it 
progresses, it will display the current starting point in graphics window GW1, and 
the solutions in graphics window GW2. There will be several solutions that are 
similar to previous solutions, and the appropriate graphics viewport will be 
overwritten if the new solution is better (i.e., lower error function) than the old. In 
each viewport, you will see the solution number in the upper right, the FREQ (i.e., 
number of times that solution has been obtained) in the lower left, and the 
minimum error function MF in the lower right. After the search is nearly 
complete, the window will appear as follows. Note that the Text Window displays 
the values of the parameters used for the current search. 
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You will see that it is not possible to tell much about the details of the solutions 
displayed in each viewport. There are two reasons for this. The first is that the 
drawing is automatically scaled to fit in the viewport, so different solutions may 
be drawn at different scales. The second is that each solution drawn in a viewport 
is compared for similarity only to the solution that currently exists there, not to all 
previous solutions. This means that after several replacements, the solution may 
be quite different from the one originally shown in the viewport. However, 
because solutions are only replaced if the new one is better than the old, the 
method guarantees that the final one will be the best of a series. 

After the search is completed, the solutions will be sorted so the minimum error 
function appears first, and combined so that all solutions that fall within the 
minimum difference (as defined by the ge_min_diff parameter described in the 
Global Explorer Beginner's Guide) are merged. The solutions window is then 
redrawn, with only the best one in each group being displayed. For this reason, 
the number of final solutions may be smaller than the original number of solutions 
(the FREQ of each final solution is adjusted to indicate the total merged number 
of overlaps). For the demo, the final display will appear as shown below. 

 

After you have successfully run the demo, you can re-run the program on your 
own lenses. Global Explorer is a multiple solution generator whose purpose is to 
provide several solutions that may be interesting for additional design work. You 
will find that adjusting the parameters used for the program will have major 
effects on the ability of the algorithm to generate multiple solutions and the 
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quality of the solutions. You should not hesitate to experiment with different 
values.  

One of the interesting aspects of Global Explorer is that it displays chaotic 
behavior, in contrast to Adaptive Simulated Annealing (ASA), which displays 
stochastic behavior. That is, if you start Global Explorer with exactly the same 
input conditions, you will get the same final results in several trials, but if you 
change the conditions even a tiny amount between trials, you may get results that 
are grossly different. This is not the case with ASA, which uses random numbers, 
and hence automatically produces a different execution path for each run. 

In setting up a starting point to use with Global Explorer, it is important to use a 
trusted and stable error function, since the program may run for extended lengths 
of time without user intervention. It is usually worthwhile to include edge and 
center thickness controls in the error function, of course in addition to control of 
paraxial properties. 

While you are using Global Explorer, you may wish to abort the optimization if 
you see that the process is not proceeding according to your expectations. To do 
this, press the ESCAPE key on your keyboard. It may take a few moments to 
respond, but the program should terminate gracefully, saving the work previously 
completed. 

 

For additional information about Global Explorer, please see the "Beginner's 
Guide to Global Explorer" which is available in the OSLO on-line help. Search on 
“GE Introduction” (no quotes). Also, see the paper "Global optimization with 
escape function" by Masaki Isshiki in the 1998 International Optical Design 
Conference Proceedings, SPIE Vol. 3482, pp. 104–109 (1998). 
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Eikonal design 

OSLO Premium contains several sample eikonal functions and lenses that use 
these functions. These functions and the material in this section were contributed 
by Adriaan Walther of Worcester Polytechnic Institute. The eikonals themselves 
are contained in the eikonal DLL; the source code may by found in 
\bin\dll\eikonal.c. The lenses are in \public\len\demo\premium\dll.  

The eikonal “ang35” is the angle eikonal of a lens system between its front nodal 
plane and back nodal plane. The paraxial part of the eikonal is f(a – b + c), in 
which f is the focal length, which is stored in eikonal coefficient 0. Coefficients 1 
through 16 go with the third order and fifth order terms of the series development 
in the following order:  

aa, ab, ac, bb, bc, cc;  

aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc. 

Here “aac” means “a squared times c”, etc. Writing the terms in this fashion 
shows more clearly the way in which the terms are ordered. If you look at the C-
code you’ll see a rather peculiar looking expression for this eikonal function, but 
not to worry: it is simply a Horner expansion of the polynomial, which saves 
many multiplications compared to straightforward computation.  

“Angthrd” is exactly the same, but with the fifth order terms left out. In this case 
there are only seven coefficients: the focal length and the six third order 
coefficients.  

The macro lens 

This lens is stored in file “macro04.len”. It is used at six different magnifications: 
0, –0.1, –0.2, –0.3, –0.4, and –0.5. The aperture is f/2.8 for an object at infinity. 
The aperture stop is fixed; it is located in the front nodal plane. The image height 
is kept at 20 mm for all six configurations, close to the corner of a 24x36 
negative.  

The default OSLO error function was generated for the six magnifications jointly, 
and the lens was optimized by first varying the third order coefficients (6 
variables), then varying the third and fifth order coefficients (16 variables), and 
finally adding the six image distances as variables (22 variables in total). This 
procedure was tried a few times with different starting points, but it was found 
that the aberration curves came out pretty much the same. File “macro04.len” 
shows the result of one of these optimization runs.  

This case was done as an exercise. It is essentially the problem that was solved in 
J. Opt. Soc. Am. A 6, 415–422 (1989). At the time this paper was written, an 
entire computer program was written to solve this problem; with OSLO it can be 
solved painlessly in no more than a couple of hours. It is an interesting example of 
the use of eikonal ray tracing, because it shows the best performance that can be 
expected from a non-floating element macro lens, no matter how complicated we 
make it.   

The two-group zoom lens 
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It is well known that a regular camera lens cannot be corrected perfectly for more 
than one magnification. The question may be asked whether there are similar 
theorems for zoom lenses. For instance: can a zoom lens, used with the object at 
infinity, be corrected perfectly for its entire range of zoom settings? It can be 
shown, algebraically, that a two-group zoom lens cannot be perfect in this sense. 
One case of numerical optimization illustrating this point is stored in file 
“0714c.len”.  

Here are some data on this lens: it is a reversed telephoto system with a front 
group with a focal length of –50 mm and a rear group with a focal length of +40 
mm. For a system focal length f, the spacing (measured between nodal planes) is 
2000/f – 10, and the back focal length is 0.8f + 40. In the file, the nominal system 
has a focal length of 30 mm, and configurations 2, 3, and 4 have system focal 
lengths of 45 mm, 60 mm, and 75 mm. The pupil is put in the front nodal plane of 
the second group. For each configuration its diameter is adjusted to yield an f/2.8 
aperture. The field angle is adjusted to give a maximum image height of 20 mm.  

The eikonal function for this lens is “angthrd”, which uses the third order 
coefficients only. The error function is the OSLO standard merit function for the 
four configurations jointly. The variables are the six third order eikonal 
coefficients for both the front and the rear part of the lens, and, in the last stages, 
also the image distances.  

The algebra shows that the third order aberrations cannot all be corrected over a 
continuous range of focal lengths. When you look at the aberration graphs keep in 
mind that there are also fifth and higher order aberrations that have not been 
corrected at all; if the fifth order coefficients were included in the optimization the 
result would be a lens better than shown in this file. 

As it is, the results are not so very bad. If the aperture were reduced to f/4 a very 
good two-group zoom lens would be possible. Designers interested in this type of 
system might want to do more work on it to find the ultimate limits of 
performance for this type of system.  

The Donders afocal system 

This is a “+–+” afocal system that is symmetric at unit magnification. (One could 
also consider “–+–” systems.) With computer algebra it can be shown that, with 
both the object and the image at infinity, all the third and fifth order aberrations 
for the entire range of possible magnifications can be corrected by giving the 
eikonal coefficients suitable values. Note that this holds for an extended field of 
view, not merely on axis. All seventh order aberrations can be corrected as well; 
the conjecture that all the aberrations to all orders can be corrected has not, as of 
yet, been proven. 

If this telescope is put in front of a fixed focal length perfect camera lens, we end 
up with a zoom lens without any third, fifth, (and seventh) order aberrations at 
any zoom setting. The distance between the third group of the telescope and the 
fixed focal length lens can be kept constant, so these two groups can be 
consolidated into one group. The conclusion is that, in principle, a three-group 
zoom lens used with the object at infinity can form a perfect image at all zoom 
settings.  
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This is merely an existence proof, not a recipe how to design zoom lenses. 
Nevertheless these results may have some practical use, because the theory tells 
us what the eikonal function should be for each of the three groups. These groups 
can then be designed one at a time. Of course, we all know from bitter experience 
that the resulting lenses will not match the desired eikonal functions perfectly. So 
at the end of the design a full scale optimization for the entire zoom lens is still 
necessary. Nevertheless it is quite possible that by using the theory we might 
arrive at new and better zoom lens designs.  

Of course, proper imaging is only part of the problem. Weight and size play an 
important role, the groups should not bump into one another, etc. Then there is the 
problem of focussing. The guess is that it takes two more variable spacings (four 
variable spacings in all) to make a zoom lens that is perfect at all zoom settings as 
well as for all object distances.  

The lens stored as “0703a.len” is a Donders telescope followed by a long focal 
length perfect lens so that we do not have to deal with images at infinity. It was 
determined algebraically what the eikonal coefficients should be. Note that the 
symmetry of the system restricts the values of the eikonal coefficients. If F(a,b,c) 
is the eikonal for the first group, then the eikonal of the third group must be 
F(c,b,a). So, for instance, the 8th coefficient for the first group (the aab term) 
must be equal to the 15th coefficient for the third group (the bcc term). The 
middle lens group must be symmetric by itself, so if its eikonal is G(a,b,c) we 
must have G(a,b,c) = G(c,b,a). So its 8th coefficient must be equal to its 15th 
coefficient, etc.  

As the lens file is set up, the transverse magnification of the telescope is –0.50. 
For other magnifications, G say, the first and second spacings should be changed 
to 50 (3 – G) and 50 (3 – 1/G) respectively. As all the third and fifth order 
aberrations are zero the location of the entrance pupil is not really important; it is 
put in the front nodal plane of the first lens for convenience. 

Try to ray trace this lens; you’ll find that the aberrations are not zero! The reason 
is that the third and fifth order aberrations are corrected, but the seventh and 
higher order aberrations are not. To verify that the residual aberrations are indeed 
mostly seventh order, multiply both the aperture size and the field angle by the 
seventh root of 1/10, i.e. by 0.7197. This would reduce the seventh order 
aberrations by a factor of 0.7197 to the seventh power, which is 0.100. The third 
order aberrations would change by a factor 0.7197 to the third power, which is 
0.372. The fifth order aberrations would change similarly by a factor 0.193. A ray 
trace with the reduced aperture and field shows that the ray intercept curves look 
exactly the same as before, but with values 10 times as small. This demonstrates 
that all third and fifth order aberrations are really zero.  

As an exercise, you can change the magnification by merely changing two 
thicknesses (see above) and then ray trace again with the full and the reduced 
aperture and field. You’ll find that the third and fifth order aberrations are always 
corrected, no matter what value you choose for the magnification.  

Other eikonals 
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“Axperf” is the angle eikonal for a lens corrected for spherical aberration at all 
conjugates. Note that the last term of formula (31.49) in the book is wrong; it 
should be (Pa + Qb + Rc)(4ac – b^2), in which P, Q, and R are three arbitrary 
constants. This error is corrected in “axperf”. 

 “Concent” is the angle eikonal for an arbitrary concentric lens. The high degree 
of symmetry of a concentric system makes that each aberration order is 
completely specified by a single coefficient. Terms out to the eleventh order have 
been included in the eikonal. (See book, Eq. (29.7)).  

“Concapl” is the angle eikonal for a concentric system that is perfectly aplanatic 
for a specified magnification. The inputs are the focal length and the 
magnification. See book, Eq. (29.24). Remember that with a flat rather than 
concentric object plane there will be fifth and higher order off-axis aberrations, 
because the distance to the center of the system varies with the field angle when 
the object plane is flat.  
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Tolerancing 

User-defined tolerancing 

User-defined tolerancing is a term used in OSLO to describe the process of 
settting tolerances when optical performance is measured by a user-defined error 
function. This may be the same function used to design the system, or a different 
function intended to represent as-used performance. In user-defined tolerancing, 
compensators are adjusted using the design optimization routines. This is slower 
than MTF/wavefront tolerancing by a wide margin, but it provides great 
flexibility. There are two levels of user-defined tolerancing in OSLO, depending 
on whether the tolerance operands are implemented as CCL or built-in operands. 
Of course, built-in operands provide increased speed. 

Using CCL tolerance operands 

As an example of the use of CCL operands, we consider tolerancing the air-
spaced doublet (lasrdblt.len) supplied in the demo/lt directory. The air space in 
this design can be expected to be critical, since it controls the ray height on the 
overcorrecting surface. To get an idea of the tolerance on thickness 2, you can use 
the User-defined tolerance routine in OSLO. 

 

To run a tolerance analysis on a lens, use a copy of the lens, not the original file. 
OSLO uses the same data structure for optimization and tolerancing, so 
tolerancing data will overwrite optimization data. After you have opened a 
saeparate copy of the lens, you should follow the steps below. 

1) Remove any variables, then make the thickness of the image surface a 
variable, which will be used as a compensator during tolerancing. 

2) Click Tolerance>>Update Tolerance Data>>Surface to open the tolerance 
data spreadsheet. The only tolerance of present interest is the second 
thickness. The ISO 10110 default value for this thickness is 0.2 mm, which is 
much too loose for the present system. As a general rule, it is best to start with 
tolerances that are too small and then increase them as you become familiar 
with their effect on performance. Change the tolerance to 0.05 mm, and close 
the spreadsheet. 

3) Enter the star command *opsettol. The star command will set up the proper 
callback function, and the operands spreadsheet will open. The various 
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options for tolerance operands, labeled Ocmx, will be shown in the text output 
window, to help you in choosing the desired one for your application. 
*opsettol (operand numbers in parentheses) 

GEO_RMS_R(1) PKVAL_OPD(2) RMS_OPD(3)   STREHL(4) 

   0.000692    0.033080    0.011037    0.995416 

 

4) In the spreadsheet, enter ocm2 for the tolerance operand, and enter the name 
pkval_opd to provide a mnemonic description of the operand. 

 

5) Now, to compute the effect of a .05 mm tolerance on the peak-to-valley opd, 
click Tolerance>>User-Defined Tolerancing. Choose Sensitivity from the dialog 
box, and select Air space from the options list, then click OK. 

What happens is that OSLO computes the present value of the tolerance error 
function with the nominal system, then changes the tolerance of the second 
thickness by 0.05, and re-optimizes the system to restore the original error 
function value (n.b. it does not minimize the function). Both positive and negative 
perturbations are evaluated. After a short time, the text window should contain an 
analysis similar to the following. 
*TOLERANCE SENSITIVITY ANALYSIS 
 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.033080 
 
 AIR SPACE TOLERANCE 
                     ERROR FUNCTION CHANGE           COMPENSATED CHANGE 
 SRF   TOLERANCE    PLUS PERT    MINUS PERT       PLUS PERT    MINUS PERT 
  2     0.05         6.953074      6.973735        0.259757      0.294596 
 
 STATISTICAL SUMMARY 
                       UNCOMPENSATED    COMPENSATED 
 WORST CASE CHANGE        6.973735        0.294596 
 STANDARD DEVIATION     
     RSS                  6.973735        0.294596 
     UNIFORM              4.026288        0.170085 
     GAUSSIAN             3.067138        0.129567 
 
 COMPENSATOR STATISTICS 
 COMP           MEAN        STD DEV        MAX          RSS 
 TH     5     0.000122     0.149552     0.149674     0.149674 
 

The analysis shows the effects of a .05 air space tolerance on the error function, 
which represents the peak-to-valley opd. The error function changes are shown 
for both positive and negative perturbations, and for both compensated (i.e. 
adjustment of the image distance) and uncompensated (fixed image distance) 
conditions. Then comes a statistical analysis of the probable effects of this 
tolerance specification on a large number of systems, assuming various 
probability distributions. 
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The above analysis shows the change for a given tolerance. You may instead be 
interested in the tolerance that can be allowed to produce a given change, say 
0.15, which would bring the system to (approximately) the diffraction limit. Click 
Tolerance>>User-Defined Tolerancing again, but this time select Inverse Sensitivity. 
Select Air Space from the list, then enter 0.15 as the allowed change in the error 
function. The text window will then show that the allowed tolerance is about 7 
microns if the focus is not adjusted, or 35 microns if the focus is used to 
compensate for a spacing error. 
*INVERSE SENSITIVITY ANALYSIS 
 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.033080 
 ALLOWED CHANGE IN ERROR FUNCTION:     0.150000 
 
 AIR SPACE TOLERANCE 
                ALLOWED TOLERANCE 
 SRF     UNCOMPENSATED    COMPENSATED 
  2         0.007301        0.035245 
 

The above analysis, while simple, shows the essential steps in tolerancing. 
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Using built-in operands 

As an example of using built-in operands with the user-defined tolerancing 
routines, we will compute power (spherical) error tolerances for a four-element 
copy lens from the OSLO lens library. Open the lens 
“public\len\lib\toolbox\yama001.len.” Before saving the lens to a temporary file, 
move the thickness of the next to last surface to the image surface and then delete 
the surface, so that your results will correspond to the ones below. In tolerancing, 
particularly in user-defined tolerancing, you should not expect exact duplication 
of results. This is because tolerancing involves optimization routines that may be 
set up slightly differently, or use different parameters, from the ones use to make 
the example output. 

1) Note the lens is designed for a magnification of 1. As a first step in 
tolerancing (after saving the file under a new name), we will assign 
apertures to the elements so that there is no vignetting. Close the lens 
spreadsheet if it is open, then use 
Optimize>>Support Routines>>Vignetting>>Set Apertures, and accept 
the default values shown in the dialog box. The resulting lens is 

*LENS DATA 
YAMADA USPT 4,285,579 F/5.6 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --        406.280280     56.340000             AIR      
 
 AST       --        -36.854492     17.000000 AK          AIR      
 
  2     71.953519     10.404504     20.300000          LAKN13 C    
  3   -112.429158      3.825293     20.300000             AIR      
 
  4    -78.402563      7.660029     17.600000             LF5 C    
  5     84.822117     16.593731     15.600000 K           AIR      
 
  6    -80.540361      7.411215     13.900000             LF5 C    
  7     82.495107      3.759799     15.600000             AIR      
 
  8    121.677279     11.054088     18.400000          LAKN13 C    
  9    -70.206359    373.312870     18.400000             AIR      
 
 10        --          0.001155     57.000000 K           AIR      
 
 IMS       --            --         56.852074 S                    
 
*PARAXIAL CONSTANTS 
   Effective focal length:  200.690160    Lateral magnification:    -1.009090 
   Numerical aperture:        0.041257    Gaussian image height:    56.852145 
   Working F-number:         12.119077    Petzval radius:         -2.0564e+03 
   Lagrange invariant:       -2.347600  
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2) For tolerance operands, we will use the field-averaged RMS spot size, 
computed in three wavelengths. Since this is a rotationally-symmetric lens 
and we are only perturbing the curvatures, we can use the OSLO error 
function generator with the default field and pupil sampling options. In the 
dialog box for the Optimize>>Generate Error Function>>OSLO Spot 
Size/Wavefront dialog box, accept all the defaults except for the color 
correction method, which should be set to Use All Wavelengths. After 
generating the error function, you can compute the operands using the Ope 
button in the text output window, which should produce the following. 

*OPERANDS 
OP   MODE    WGT      NAME          VALUE    %CNTRB DEFINITION 
O 20   M    0.750000 Yrms1         0.015309  12.71 RMS                         
O 61   M    1.500000 Xrms2         0.012533  17.03 RMS                         
O 102  M    1.500000 Yrms2         0.017178  31.99 RMS                         
O 143  M    0.375000 Xrms3         0.012813   4.45 RMS                         
O 184  M    0.375000 Yrms3         0.035323  33.82 RMS                         
MIN RMS ERROR:     0.017534 
 

3) We will assume that we are going to allow a focus adjustment in the final 
lens assembly, so next you should designate that the back focus (the 
thickness of surface 10) is a variable to be used as a compensator.  

*VARIABLES 
 VB   SN  CF  TYP       MIN         MAX        DAMPING      INCR        VALUE 
V 1   10   -  TH        --          --        1.000000    0.001693     0.001155 
 

4) Now use Lens>>Show Tolerance data>>Surface to display the default 
(ISO110) tolerances for the lens in the text output window: 

*SURFACE TOLERANCES 
YAMADA USPT 4,285,579 F/5.6 
      RADIUS  RD TOL    FRINGES THICKNESS TH TOL            RN TOL  DECEN  TILT 
 SRF CON CNST CC TOL   PWR   IRR  TLC TOL DZ TOL      GLASS  V TOL   Y/X    A/B 
  1     --      --     --    --  -36.8545 0.4000        AIR   --     --     --   
        --      --                  --      --                --     --     --   
 ------------------------------------------------------------------------------- 
  2   71.9535   --   10.00* 2.00* 10.4045 0.4000     LAKN13 0.0010   --   0.1667 
        --      --                  --      --              0.8000   --   0.1667 
 
  3 -112.4292   --   10.00* 2.00*  3.8253 0.4000        AIR   --     --   0.1667 
        --      --                  --      --                --     --   0.1667 
 ------------------------------------------------------------------------------- 
  4  -78.4026   --   10.00* 2.00*  7.6600 0.4000        LF5 0.0010   --   0.1667 
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        --      --                  --      --              0.8000   --   0.1667 
 
  5   84.8221   --   10.00* 2.00* 16.5937 0.4000        AIR   --     --   0.1667 
        --      --                  --      --                --     --   0.1667 
 ------------------------------------------------------------------------------- 
  6  -80.5404   --   10.00  2.00   7.4112 0.2000        LF5 0.0010   --   0.3333 
        --      --                  --      --              0.8000   --   0.3333 
 
  7   82.4951   --   10.00* 2.00*  3.7598 0.4000        AIR   --     --   0.1667 
        --      --                  --      --                --     --   0.1667 
 ------------------------------------------------------------------------------- 
  8  121.6773   --   10.00* 2.00* 11.0541 0.4000     LAKN13 0.0010   --   0.1667 
        --      --                  --      --              0.8000   --   0.1667 
 
  9  -70.2064   --   10.00* 2.00*373.3129 0.4000        AIR   --     --   0.1667 
        --      --                  --      --                --     --   0.1667 
 ------------------------------------------------------------------------------- 
 10     --      --     --    --    0.0012   --                       --     --   
        --      --                  --                               --     --   
 FRINGE WAVELENGTH:    0.546070 
   Fringes measured over clear aperture of surface unless indicated. 
 * Fringes measured over 30 mm diameter test area, per ISO 10110. 
   Tilt tolerances are specified in degrees. 
 
 

Examination of the above listing reveals that the spherical error tolerance is 10 
fringes, measured over a 30 mm diameter test area for each surface. For this 
example, we will use the default of 10 fringes, but specify that the error is to be 
measured over the entire area of each surface. 

5) To do this, we open the tolerance data spreadsheet and enter “10” for the 
spherical form error for surfaces 2 through 9. You can enter the values one 
by one in the spreadsheet, but it is easier to close the spreadsheet and use 
the Tolerance>>Update Tolerance Data>>Set Tolerance Value command, 
which can change all surfaces at once. After making the change, reopen 
the spreadsheet, which should appear as follows. 

 

6) Note that the lack of the asterisk next to the spherical fringe tolerance 
means that the fringes are measured over the clear aperture of the surface, 
as we want. Now we perform a sensitivity analysis for the spherical form 
error by selecting Tolerance>>User-defined Tolerancing >> Surface, 
choosing Sensitivity and selecting Power fringes from the options list. 

*TOLERANCE SENSITIVITY ANALYSIS 
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 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.017534 
 
 POWER ERROR TOLERANCE 
                     ERROR FUNCTION CHANGE           COMPENSATED CHANGE 
 SRF   TOLERANCE    PLUS PERT    MINUS PERT       PLUS PERT    MINUS PERT 
  2    10.0          0.015823      0.014216        0.000250     -0.000224 
  3    10.0          0.016268      0.013579        0.001278     -0.001205 
  4    10.0          0.014128      0.017034       -0.001387      0.001514 
  5    10.0          0.016408      0.017957       -0.000143      0.000174 
  6    10.0          0.023312      0.025297       -0.000605      0.000647 
  7    10.0          0.020602      0.022830       -0.000778      0.000967 
  8    10.0          0.020502      0.018393        0.000791     -0.000686 
  9    10.0          0.021476      0.019538        0.000582     -0.000544 
 
 STATISTICAL SUMMARY 
                       UNCOMPENSATED    COMPENSATED 
 WORST CASE CHANGE        0.157189        0.006203 
 STANDARD DEVIATION     
     RSS                  0.056306        0.002517 
     UNIFORM              0.032509        0.001453 
     GAUSSIAN             0.024764        0.001107 
 
 COMPENSATOR STATISTICS 
 COMP           MEAN        STD DEV        MAX          RSS 
 TH    10     0.005922     1.536235     1.847792     4.347659 
 

As expected, the change in performance is much less when we allow for 
refocusing. Assuming that the errors have a uniform distribution, the standard 
deviation of the change in the average spot size is reduced from 33 m to 1.5 m 
if back focus adjustment is allowed. However, to achieve this performance level, 
we need to allow for a (2) range in focus of 3 mm. This provides the data we 
need to build a focusing mechanism. 

For this lens, we will assume that the maximum allowed spot size, average over 
the field and chromatic range, is 20 m. Since this value for the nominal system is 
17.5 m, this means the maximum allowed change is 2.5 m. If we desire a 
probable success rate of 99%, the table presented above indicates that we need a 
ratio of maximum allowed change to standard deviation of 2.5, i.e., a standard 
deviation of 1.0 m. We want to redistribute the tolerances to target this standard 
deviation and also to balance the contributions of the surfaces to this target. Using 
 S  = 0.001,  = 0.58 (uniform distribution) and n = 8 in Eq. (9.26) yields a target 
contribution of Star = 0.0006. We use this value as the requested change in an 
Inverse Sensitivity analysis. 
 
*INVERSE SENSITIVITY ANALYSIS 
 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.017534 
 ALLOWED CHANGE IN ERROR FUNCTION:     0.000600 
 
 POWER ERROR TOLERANCE 
                ALLOWED TOLERANCE 
 SRF     UNCOMPENSATED    COMPENSATED 
  2         1.749036       22.487217 
  3         1.604631        4.765315 
  4         1.550645        4.064342 
  5         1.656797       29.400028 
  6         1.380191        9.298149 
  7         1.425375        6.426525 
  8         1.506102        7.705936 
  9         1.490417       10.304978 
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Without back focus adjustment, we see that the allowed spherical error tolerance 
is about 1.5 fringes for surface 3, 4, 6, 7, 8, and 9 and 2 fringes for surfaces 2 and 
5. We now set the tolerances to these values, and re-run the Sensitivity analysis. 
 

*TOLERANCE SENSITIVITY ANALYSIS 
 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.017534 
 
 POWER ERROR TOLERANCE 
                     ERROR FUNCTION CHANGE           COMPENSATED CHANGE 
 SRF   TOLERANCE    PLUS PERT    MINUS PERT       PLUS PERT    MINUS PERT 
  2     2.0          0.001122      0.000552      4.8010e-05   -4.6960e-05 
  3     1.5          0.000834      0.000105        0.000187      0.000105 
  4     1.5        9.6535e-05      0.000896      9.6535e-05      0.000220 
  5     2.0          0.000705      0.001284     -3.1057e-05    3.2300e-05 
  6     1.5          0.000563      0.001238     -9.3445e-05    9.4393e-05 
  7     1.5          0.000415      0.001128       -0.000129      0.000134 
  8     1.5          0.000988      0.000343        0.000112     -0.000110 
  9     1.5          0.001019      0.000411      8.4944e-05   -8.4107e-05 
 
 STATISTICAL SUMMARY 
                       UNCOMPENSATED    COMPENSATED 
 WORST CASE CHANGE        0.008507        0.000912 
 STANDARD DEVIATION     
     RSS                  0.003037        0.000365 
     UNIFORM              0.001753        0.000211 
     GAUSSIAN             0.001336        0.000161 
 
 COMPENSATOR STATISTICS 
 COMP           MEAN        STD DEV        MAX          RSS 
 TH    10     0.025265     0.236382     0.290346     0.673286 
 

 The standard deviation for the uncompensated case is now about 1.5 m. This 
value is larger than the expected value of 1 m because of deviations from the 
linear dependence of the spot size on the surface perturbations.  

Based on the earlier inverse sensitivity analysis for the compensated case, we will 
assign tolerances of 5 fringes to surfaces 3, 4, 7, and 8, 10 fringes to surfaces 6 
and 9, and 20 fringes to surfaces 2 and 5, and repeat the sensitivity analysis. 
*TOLERANCE SENSITIVITY ANALYSIS 
 ERROR FUNCTION FOR NOMINAL SYSTEM:    0.017534 
 
 POWER ERROR TOLERANCE 
                     ERROR FUNCTION CHANGE           COMPENSATED CHANGE 
 SRF   TOLERANCE    PLUS PERT    MINUS PERT       PLUS PERT    MINUS PERT 
  2    20.0          0.040977      0.039167        0.000527     -0.000422 
  3     5.0          0.005663      0.003696        0.000631     -0.000613 
  4     5.0          0.003848      0.005989       -0.000711      0.000743 
  5    20.0          0.044052      0.045786       -0.000255      0.000379 
  6    10.0          0.023312      0.025297       -0.000605      0.000647 
  7     5.0          0.006392      0.008149       -0.000414      0.000461 
  8     5.0          0.007201      0.005568        0.000383     -0.000357 
  9    10.0          0.021476      0.019538        0.000582     -0.000544 
 
 STATISTICAL SUMMARY 
                       UNCOMPENSATED    COMPENSATED 
 WORST CASE CHANGE        0.160539        0.004352 
 STANDARD DEVIATION     
     RSS                  0.071154        0.001577 
     UNIFORM              0.041081        0.000910 
     GAUSSIAN             0.031294        0.000694 
 
 COMPENSATOR STATISTICS 
 COMP           MEAN        STD DEV        MAX          RSS 
 TH    10     0.007251     1.723657     2.922255     4.879934 
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 With these tolerances, the standard deviation of the performance changes is 
slightly less than our target of 1 m. Also note that the individual contributions 
are more evenly distributed than in the previous analysis. The range of focus 
adjustment that is required has increased slightly to about 3.5 mm.  
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Change table tolerancing 

An example of the use of change tables is given in the paper by Smith(27). In this 
paper, Smith presents an analysis of the following laser recording lens, which is 
designed to work at a wavelength of 0.82 m.  
*LENS DATA 
14mm Laser Recording Lens 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --         76.539000      1.949220             AIR      
 
 AST    50.366000      2.800000      5.825000 A          SF11 C    
  2    -39.045000      0.435265      5.810000             AIR      
 
  3    -19.836000      2.000000      5.810000            SF11 C    
  4    -34.360000      0.200000      5.950000             AIR      
 
  5     17.420000      2.650000      5.905000            SF11 C    
  6     79.150000     11.840000      5.610000             AIR      
 
  7      7.080000      2.240000      2.620000            SF11 C    
  8     15.665000      3.182000      2.065000             AIR      
 
  9        --          2.032000      2.000000           ACRYL C    
 10        --            --          2.000000             AIR      
 
 IMS       --            --          0.350759 S                    
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.820000 
        1.000000 
 
*PARAXIAL CONSTANTS 
   Effective focal length:   13.888494    Lateral magnification:    -0.179559 
   Numerical aperture:        0.420000    Gaussian image height:     0.350000 
   Working F-number:          1.190476    Petzval radius:          -15.782541 
   Lagrange invariant:       -0.147420 
 

  

The performance specification for this lens is that the Strehl ratio must be at least 
0.75 over the entire field. Working from this requirement and the nominal design 

 
1. W. J. Smith, “Fundamentals of establishing an optical tolerance budget,” Proc. SPIE Vol. 531, 
pp. 196-204 (1985). 
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prescription, Smith shows that the tolerance budget must produce no more than 
0.173  (peak-to-valley) of OPD. 

Following the discussion in Section IV, we assign the following initial tolerances 
to the lens in order to compute the change tables. Note that the fringes are 
specified at a wavelength of 0.58929 m (Sodium yellow). The sign of the 
spherical error fringes has been chosen to better match the change table in Table 2 
of the paper. Using all positive values only changes the sign of the corresponding 
change table entry and thus has no effect on the statistical sum (RSS) value. The 
tilt tolerance of 0.057 degrees is equal to 1 milliradian. 

 

Table 2 of Smith’s paper is given in terms of peak-to-valley OPD, so when we 
compute the change tables, we enter a scale factor of 0.25 for the tolerance units. 
We need to compute change tables for power (spherical) error, element thickness, 
air spaces, index of refraction, and surface tilt to obtain the data presented in 
Table 2. (In the interest of clarity and since we are only interested in spherical 
aberration, coma, and astigmatism, only the first group of 9 tolerance aberrations 
is displayed in the output below. OSLO always displays a change table containing 
entries for all 18 aberrations and system quantities.) 
*CURVATURE SENSITIVITY ANALYSIS 

TOLERANCE UNITS 

T (Trans.) =    0.007787   L (Long.) =    0.018488   W (Wvfr.) =    1.0      

TOLERANCE THRESHOLD =      --     

 

SRF TOL VAL  TR SPH  AX DMD    COMA FLD DMD    YFS     XFS   DEL BF  AX OPD FLD OPD 

NOM            0.02    --     -0.05    --     -0.92   -0.72   -0.59    0.03    0.15 

 1  -10.000    0.01    --      0.00    --     -2.69   -2.70    0.00    0.01    0.00 

 2   10.000   -0.00    --     -0.01    --      2.68    2.69   -0.00   -0.00   -0.00 

 3   10.000   -0.05    --      0.02    --     -2.59   -2.59    0.00   -0.00    0.00 

 4   10.000    0.01    --     -0.01    --      2.60    2.61   -0.01    0.01    0.00 

 5  -10.000   -0.03    --     -0.01    --     -2.58   -2.58    0.00   -0.01   -0.01 

 6  -10.000    0.03    --      0.00    --      2.52    2.52   -0.00    0.03    0.01 

 7  -10.000   -0.01    --      0.00    --     -2.53   -2.53    0.01   -0.01   -0.00 
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 8  -10.000    0.06    --      0.01    --      2.35    2.36   -0.01    0.06    0.03 

RSS            0.09    --      0.03    --      7.27    7.28    0.02    0.07    0.04 

 

*ELEMENT THICKNESS SENSITIVITY ANALYSIS 

SRF TOL VAL  TR SPH  AX DMD    COMA FLD DMD    YFS     XFS   DEL BF  AX OPD FLD OPD 

NOM            0.02    --     -0.05    --     -0.92   -0.72   -0.59    0.03    0.15 

 1    0.200   -0.00    --      0.00    --     -0.01   -0.01    0.00   -0.00   -0.00 

 3    0.200   -0.03    --     -0.00    --     -0.61   -0.62    0.01   -0.01   -0.01 

 5    0.200    0.00    --     -0.04    --     -5.80   -5.81    0.01    0.00   -0.01 

 7    0.200   -0.02    --     -0.04    --    -18.17  -18.18    0.02   -0.01   -0.01 

RSS            0.04    --      0.06    --     19.09   19.10    0.02    0.01    0.02 

 

*AIR SPACE SENSITIVITY ANALYSIS 

SRF TOL VAL  TR SPH  AX DMD    COMA FLD DMD    YFS     XFS   DEL BF  AX OPD FLD OPD 

NOM            0.02    --     -0.05    --     -0.92   -0.72   -0.59    0.03    0.15 

 2    0.200   -0.02    --      0.02    --     -1.91   -1.92   -0.00   -0.01    0.00 

 4    0.200    0.01    --     -0.02    --     -0.14   -0.14    0.00    0.01   -0.00 

 6    0.200    0.01    --     -0.06    --     -6.91   -6.92    0.01    0.01   -0.01 

 

*REFRACTIVE INDEX SENSITIVITY ANALYSIS 

SRF TOL VAL  TR SPH  AX DMD    COMA FLD DMD    YFS     XFS   DEL BF  AX OPD FLD OPD 

NOM            0.02    --     -0.05    --     -0.92   -0.72   -0.59    0.03    0.15 

 1   0.0010    0.01    --      0.00    --     -0.92   -0.92    0.00    0.01    0.00 

 3   0.0010    0.00    --     -0.00    --      0.40    0.41   -0.00    0.00    0.00 

 5   0.0010   -0.01    --     -0.00    --     -0.91   -0.92    0.00   -0.00   -0.00 

 7   0.0010   -0.00    --      0.00    --     -0.31   -0.31    0.00   -0.00   -0.00 

 9   0.0010    0.00    --      0.00    --      0.10    0.10   -0.00    0.00    0.00 

RSS            0.01    --      0.00    --      1.40    1.40    0.00    0.01    0.00  

 

*SURFACE TILT SENSITIVITY ANALYSIS 

SRF TOL VAL  TR SPH  AX DMD    COMA FLD DMD    YFS     XFS   DEL BF  AX OPD FLD OPD 

NOM            0.02    --     -0.05    --     -0.92   -0.72   -0.59    0.03    0.15 

 1    0.057    0.00    --      0.04    --     -0.01   -0.02   -0.01    0.02    0.01 

 2    0.057   -0.00    --     -0.07    --      0.05    0.03    0.04    0.04   -0.02 

 3    0.057    0.00    --      0.17    --     -0.06   -0.04   -0.05    0.13    0.11 

 4    0.057    0.00    --     -0.08    --      0.05    0.03    0.04    0.05   -0.01 

 5    0.057   -0.00    --      0.11    --      0.02    0.00    0.02    0.08    0.05 

 6    0.057   -0.00    --     -0.11    --      0.02    0.01    0.01    0.08    0.00 

 7    0.057   -0.00    --      0.02    --     -0.03   -0.00   -0.01    0.00    0.02 

 8    0.057   -0.00    --     -0.06    --      0.01   -0.01    0.00    0.04   -0.02 

RSS            0.00    --      0.27    --      0.10    0.06    0.08    0.19    0.13 

 

As mentioned in the paper, the aberrations of concern for this lens are spherical 
aberration, coma, and astigmatism (since the lens will be refocused for off-axis 
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image points). We can convert the change table values for YFS and XFS to 
astigmatism by taking their difference. The resulting RSS astigmatism values for 
the five analyses are 

Perturbation Astigmatism RSS () 

Curvature 0.022 

Thickness 0.012 

Air space 0.015 

Refractive index 0.003 

Surface tilt 0.060 

 

The RSS totals by aberration are 

Aberration RSS Total () 

Spherical 0.103 

Coma 0.283 

Astigmatism 0.067 

 

The RSS totals by perturbation class are 

Perturbation Class RSS Total () 

Radius 0.099 

Thickness/Air space 0.103 

Refractive index 0.011 

Surface tilt 0.273 

 

Thus, the RSS = sqrt(.099**2+.103**2+.011**2+.273**2) = 0.308 , in excellent 
agreement with the analysis in Table 2 of Smith’s paper. This value already 
exceeds the 0.173  that we have available in our budget. If we consider the 
additional effect of one fringe of irregularity, the total OPD variation becomes 
0.84.  

The art of tolerance budgeting comes in when we must reassign the tolerances in 
an attempt to reduce the total OPD to an acceptable level. The approach taken by 
Smith is given in Section VI, “Adjusting the Tolerance Budget”, which is 
reproduced below. 

The OPD of 0.84 wavelengths exceeds the value of 0.288 which we determined in Section 
III to be the maximum which we could allow in order to maintain the Strehl ratio of 0.75. 
Since it is too large by a factor of .84/.288 = 2.9X, we could simply reduce our trial 
budget by this factor across the board. This is not usually the best way. 
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An inspection of Table 2 and its footnotes [the change table] indicates that the sensitivity 
of the tolerances varies widely, ranging from the total insensitivity of coma to the 
indicated index changes, to significant effects from the radius and thickness changes and 
very heavy contributions from the assumed surface tilts (or decentrations). 

We have previously (in the last paragraph of Section II) noted that the RSS process 
indicates that the larger tolerance effects are much more significant than the smaller; the 
significance varies as the square of the size. Thus, a rational approach is to reduce the 
tolerances on those parameters which are the most sensitive. Conversely, one might also 
consider increasing the tolerances on those parameters which are relatively insensitive. 

This is the technique which we shall apply here. However, there are practical 
considerations which should be observed. In most optical shops there is a fairly standard 
tolerance profile. For example, a shop may do most of its work to a five ring test glass fit, 
a thickness tolerance of  0.1 mm, and centering to a one minute deviation. If a larger 
tolerance is allowed, there will be a saving, but it will not be proportional to the increase 
in the tolerance. This is because the shop will still tend to produce to its customary 
profile. They may be able to relax their procedures a bit, and their usual percentage of 
rejections will drop, but the tendency will be very strong to produce the usual profile 
whether it has been specified or not. Thus, there is a limit on the increase in tolerance 
size which will produce a real savings. As another example, many optical glasses are 
routinely produced to an index tolerance of  .001 or  .0015. There is no saving in cost 
if the tolerance is increased beyond the standard commercial tolerance. 

When tolerances are reduced below the “standard profile” however, the cost of 
fabrication begins to climb. This results from the additional care and effort necessary to 
hold the tighter tolerances and/or an increase in the rejection rate. In most shops there is 
effectively a practical limit to the smallness of a given class of tolerance, since the cost of 
fabrication rises asymptotically toward infinity as this limit is approached. 

Thus, for most shops there is both a high limit on tolerances, beyond which there is no 
savings, and a low limit, which the shop is barely capable of meeting. Obviously, one 
should confine the tolerance specifications to this range (or find another shop whose 
capabilities encompass one’s requirements). 

If we take the RSS of the contributions of each parameter tolerance individually, as we 
have done in the last column of Table 2 [see the RSS totals by perturbation class table 
above], then we get a convenient measure of the sensitivity of each tolerance. 
Examination of the table indicates that the variations of radius, thickness, index and 
especially surface tilt are all significant contributors to the final RSS OPD. If there are a 
few very large contributors, a possible general technique would be to reduce any 
dominant tolerances by a factor approximating the factor by which the OPD of [the] trial 
budget exceeds the acceptable OPD. Another technique is to make the tolerance size 
inversely proportional to its sensitivity, so that each tolerance produces the same OPD; 
this is obviously subject to the limitations outlined above, as well as the necessity to 
weigh each class of tolerance in some way so as to take into account their different 
natures and costs. 

Following this line, we get the following budget, for which the RSS OPD 
is 0.167 , just slightly better than the 0.173   required for our Strehl ratio 
specification of 75%. 

*TOLERANCES 
14mm Laser Recording Lens 
               RADIUS    FRINGES          THICKNESS           INDEX DECEN TILT 
 SRF    RADIUS   TOL    SPH   IRR THICKNESS  TOL       GLASS   TOL   TOL   TOL 
  1   50.36600    0.0  1.00  0.20   2.80000 0.1000      SF11 0.0010   0.0 0.011 
  2  -39.04500    0.0  1.00  0.20   0.43527 0.0200       AIR    0.0   0.0 0.011 
 
  3  -19.83600    0.0  1.00  0.20   2.00000 0.0500      SF11 0.0010   0.0 0.011 
  4  -34.36000    0.0  1.00  0.20   0.20000 0.0400       AIR    0.0   0.0 0.011 
 



Tolerancing 10-307 

 

  5   17.42000    0.0  1.00  0.20   2.65000 0.0500      SF11 0.0010   0.0 0.011 
  6   79.15000    0.0  1.00  0.20  11.84000 0.0300       AIR    0.0   0.0 0.011 
 
  7    7.08000    0.0  1.00  0.20   2.24000 0.0700      SF11 0.0010   0.0 0.011 
  8   15.66500    0.0  1.00  0.20   3.18200    0.0       AIR    0.0   0.0 0.011 
 
  9        0.0    0.0   0.0   0.0   2.03200    0.0     ACRYL    0.0   0.0   0.0 
 10        0.0    0.0   0.0   0.0       0.0    0.0       AIR    0.0   0.0   0.0 
 
 11        0.0    0.0   0.0   0.0       0.0    0.0                    0.0   0.0 
 FRINGE WAVELENGTH:    0.589290 
   Fringes measured over clear aperture of surface unless indicated. 
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Wavefront/MTF tolerancing 

As an example of using these tolerance routines, we will compute tolerance 
effects for a scaled version of a laser collimating lens from the OSLO library. The 
base lens we want to open is the public lens file 
“\len\lib\smithgen\ch22\ho5mmc.len”. When opened, this lens has a focal length 
of 100 mm. The system notes tell us that the lens was designed for a focal length 
of 5 mm. We can restore this focal length by right-clicking in the surface data 
spreadsheet, selecting Scale Lens from the menu, and choosing “Scale lens to new 
focal length” from the fly-out menu, and entering “5” for the new focal length. 
This lens is designed for use with a Helium-Cadmium laser at a wavelength of 
0.4416 m, so only 1 wavelength is defined. Also, since we are working with a 
collimator, we will only consider the on-axis performance. Click the Field Points 
button in the surface data spreadsheet to open the Field Points spreadsheet, and 
delete field points 2 and 3. In the Setup spreadsheet, set the object distance to 1.0 
x 1020 and the field angle to 5.7 x 10-5 degrees (n.b. if you enter 0.0 for the field 
angle, it will be set automatically to this value, since 0.0 field is not allowed). In 
order to compare the your results to the ones shown here, move the focus shift 
(0.014 mm) from surface 13 to the image surface, and delete surface 13. The 
specification for the modified lens is given below. 
*LENS DATA 
LASER COLLIMATING LENS   F/1.... 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --        1.0000e+20    1.0000e+14             AIR      
 
 AST       --            --          1.666655 AK          AIR      
 
  2     -4.241940      0.552322      1.666655 K           BK7 C    
  3     -8.586057     28.962576      1.769039 K           AIR      
 
  4    -57.502645      2.209292      4.952020 K           BK7 C    
  5    -12.502519      0.110464      5.088569 K           AIR      
 
  6     12.244025      2.761618      4.915560 K           BK7 C    
  7    -22.689595      0.110464      4.668527 K           AIR      
 
  8      9.937532      2.761613      4.001831 K           BK7 C    
  9    139.154768      0.546917      3.111206 K           AIR      
 
 10    -11.530153      1.104643      3.026087 K           BK7 C    
 11     11.290666        --          2.494580 K           AIR      
 
 12        --          7.733278 S    2.578630 K           AIR      
 
 IMS       --         -0.014000      0.004625 S                    
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.441600 
        1.000000 
 
*PARAXIAL CONSTANTS 
   Effective focal length:    5.000000    Lateral magnification:  -5.0000e-20 
   Numerical aperture:        0.329998    Gaussian image height:   5.0000e-06 
   Working F-number:          1.515161    Petzval radius:          226.799242 
   Lagrange invariant:     -1.6500e-06 
 

From a spot diagram, we see that the on-axis RMS OPD for the nominal design is 
0.05 waves.  
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*WAVEFRONT 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    YSHIFT      XSHIFT      RSZ 
    0.214591    0.049599    0.908313      --          --          --     
 
 

 

We will compute the sensitivity of the on-axis RMS OPD to decentration of the 
five components in the lens. We assign a trial decentration tolerance of 10 m to 
surfaces 2, 4, 6, 8, and 10 (i.e., the front surfaces of the components). OSLO 
assumes that the component decentrations have a Gaussian distribution that is 
truncated at the 2 = 10 m point. 

 

From the Options menu, select MTF/Wvf Tolerancing. In the spreadsheet, select 
RMS wavefront tolerancing, sensitivity mode, and perturbation equation output. 
The tolerance item is component decentration and we want to compute the 
wavefront in wavelength 1. The resulting sensitivity output is shown below. 
*RMS WAVEFRONT SENSITIVITY ANALYSIS - WAVELENGTH 1 
 THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:     0.010000 
 TOLERANCE  SRF/ TOLERANCE               CHANGE IN RMS 
    ITEM    GRP    VALUE  GRD CFG FPT    PLUS     MINUS         A           B 
 CMP DEC Y   2    0.01     A   1   1    0.014     0.014      0.001572 -4.7537e-19 
 CMP DEC Y   4    0.01     A   1   1    0.058     0.058      0.009040 -4.3880e-19 
 CMP DEC Y   6    0.01     A   1   1    0.098     0.098      0.019341  9.5073e-19 
 CMP DEC Y  10    0.01     A   1   1    0.131     0.131      0.030168 -1.1701e-18 
 
 Note: Only tolerances that result in a performance change 
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       of at least 0.01 are displayed. 
       No compensators have been used for this analysis. 
 
 ------------------------------------------------------------------------------- 
 RMS WAVEFRONT ERROR  
                                         NOMINAL  HIGH RMS    MEAN     STD DEV 
   CFG FPT   FBY       FBX       FBZ       RMS     W/ TOLS   CHANGE    (SIGMA) 
    1   1    --        --        --       0.050     0.222     0.054     0.060 
 ------------------------------------------------------------------------------- 
 

From the sensitivity data, we note that all of the B coefficients are zero and that all 
of the A coefficients are positive. This means there is no linear term in the second-
order expansion of RMS OPD as a function of component decentration. These 
results are not surprising, since any decentration destroys the rotational symmetry 
of the system and we would expect that this would degrade the performance of the 
lens. This analysis is a good example of the inadequacy of a linear perturbation 
model for some tolerance criteria. As discussed above, the non-zero A coefficients 
result in a non-zero average change in performance, in this case, of about 0.12 .  

After the display of the sensitivity data, a performance summary is shown. For 
each field point, four items are displayed. First is the nominal value of the RMS 
wavefront error. Second is the estimated high value of RMS wavefront error, with 
the tolerances applied. This value is taken to be the mean-plus-two-sigma value of 
the resulting distribution of systems. Finally, the mean change and standard 
deviation (sigma) of the performance measure are shown. 

The level of performance degradation indicated above is probably not acceptable 
for this lens, which should operate at diffraction-limited or near diffraction-
limited performance. We will attempt to rebudget the component decentration 
tolerances such that the upper limit of the RMS wavefront change corresponds to 
the Strehl tolerance limit of 0.8, or an RMS wavefront error of 0.07 . Since the 
nominal design has an RMS OPD of 0.049 , the maximum change is 0.021 .  

Before carrying out this analysis, it is necessary, because of the short focal length 
of the lens, to reset the smallest allowed tolerance and the tolerance increment, 
which are nominally both 0.01. Use the Tolerance>>Update Tolerance 
Data>>Grades command to open the spreadsheet, and reset the minimum 
component decentration to 0.001, and the increment to 0.0001, as shown below. 

 

Now run the tolerancing analysis again, but this time in inverse sensitivity mode, 
with a requested change in RMS OPD of 0.01 .  
 

*RMS WAVEFRONT INVERSE SENSITIVITY ANALYSIS - WAVELENGTH 1 
 DIFFERENTIAL CHANGE FOR CALCULATION:    0.010000 
 THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:     0.001000 
 TOLERANCE  SRF/ ALLOWED                 CHANGE IN RMS 
    ITEM    GRP TOLERANCE GRD CFG FPT    PLUS     MINUS         A           B 
 CMP DEC Y   2    0.0083   A   1   1    0.010     0.010      0.001083 -3.9455e-19 
 CMP DEC Y   4    0.0035   A   1   1    0.010     0.010      0.001107 -1.5358e-19 
 CMP DEC Y   6    0.0024   A   1   1    0.010     0.010      0.001114  2.2818e-19 
 CMP DEC Y   8    0.0141   A   1   1    0.010     0.010      0.001092  5.1559e-20 
 CMP DEC Y  10    0.0019   A   1   1    0.010     0.010      0.001089 -2.2232e-19 
 
 Note: Only tolerances that result in a performance change 
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       of at least 0.001 are displayed. 
       No compensators have been used for this analysis. 
 
 ------------------------------------------------------------------------------- 
 RMS WAVEFRONT ERROR  
                                         NOMINAL  HIGH RMS    MEAN     STD DEV 
   CFG FPT   FBY       FBX       FBZ       RMS     W/ TOLS   CHANGE    (SIGMA) 
    1   1    --        --        --       0.050     0.082     0.008     0.012 
 -------------------------------------------------------------------------------  
 

From the above, we see that that the fourth component is the least sensitive to 
decentration, while the fifth component is most sensitive. The computed allowed 
tolerances yield a maximum (mean plus two standard deviations) change of 0.08 
, more than we want. Based on this, we try the following budget  

 

The resulting sensitivity analysis is shown below. 
 
*RMS WAVEFRONT SENSITIVITY ANALYSIS - WAVELENGTH 1 
 THRESHOLD CHANGE FOR INDIVIDUAL TOLERANCE DISPLAY:     0.001000 
 TOLERANCE  SRF/ TOLERANCE               CHANGE IN RMS 
    ITEM    GRP    VALUE  GRD CFG FPT    PLUS     MINUS         A           B 
 CMP DEC Y   2    0.005    A   1   1    0.004     0.004      0.000393 -2.3768e-19 
 CMP DEC Y   4    0.003    A   1   1    0.008     0.008      0.000814 -1.3164e-19 
 CMP DEC Y   6    0.002    A   1   1    0.007     0.007      0.000774  1.9015e-19 
 CMP DEC Y   8    0.01     A   1   1    0.005     0.005      0.000550  3.6567e-20 
 CMP DEC Y  10    0.002    A   1   1    0.011     0.011      0.001207 -2.3403e-19 
 
 Note: Only tolerances that result in a performance change 
       of at least 0.001 are displayed. 
       No compensators have been used for this analysis. 
 
 ------------------------------------------------------------------------------- 
 RMS WAVEFRONT ERROR  
                                         NOMINAL  HIGH RMS    MEAN     STD DEV 
   CFG FPT   FBY       FBX       FBZ       RMS     W/ TOLS   CHANGE    (SIGMA) 
    1   1    --        --        --       0.050     0.073     0.006     0.009 
 ------------------------------------------------------------------------------- 

The upper end of the range of RMS wavefront change with this budget is 0.028 , 
slightly larger than our target of 0.021 . We have not allowed for any 
compensating parameters during this analysis, so the resulting tolerances are 
extremely small. This example has been presented to illustrate the types of 
calculations and analysis that can be performed, not as an example of a complete 
analysis of a manufacturable lens. 

 



10-312 Tolerancing 

 

ISO 10110 Element Drawing 
ISO 10110 is an international standard titled “Preparation of drawings for optical 
elements and systems”. It prescribes not only how optical drawings should 
appear, but also how constructional data and tolerances should be specified. 
OSLO uses ISO 10110 recommendations for aspheric surface forms, default 
tolerances, and element drawings. Currently, the element drawing routines are 
limited to rotationally symmetric lenses with spherical surfaces, specified 
according to Part 10 of the standard, “Table representing data of a lens element”. 

Element drawings are prepared using the Lens >> Lens Drawing >> Element. 
This command will bring up a dialog box with a drop-down list showing the first 
surfaces of all the elements in the current lens. If the system contains tilted or 
reflecting surfaces, the list may not be accurate. 

 

After you select a surface, the program shows a spreadsheet that contains the 
items that need to be specified for the element as a whole. Most of the fields are 
set to default values obtained from the lens data, ISO 10110, or the tolerance data. 
In addition to these sources of data, the address preferences (ad1-3) are used to fill 
in the title block on element drawings. 

Each field contains an English description of the data to be provided, and where 
appropriate, a numerical code (e.g. 1/ ) according to the standard. Some fields 
have lists that include values recommended in the standard, and these are 
indicated by buttons. 

At the bottom of the initial dialog box are three buttons. The first deletes all 
element data from a surface (such data is normally stored with the lens). The 
second and third buttons bring up a dialog box for editing the left and right 
surfaces of the lens, as shown on the next page. After you have completed any 
necessary data entry, close the spreadsheet with the Green check, and the drawing 
will be produced in the current graphics window. For hard copy, you can right-
click in the graphics window and print it in the normal way. 
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This dialog box is similar to the first, in that default values are obtained from the 
lens data where possible (if these data are to be changed, they must be changed in 
the appropriate source, e.g. tolerance data must be changed in the tolerance 
spreadsheet). The following is a drawing of the single element used for this 
example. As you choose different options be aware that OSLO will leave 
commands behind that specify what to do on drawings. The intent is that OSLO is 
used for setting these parameters, versus users writing their own CCL, hence the 
commands such as ELMTTL and ELMMED which stand for the title and the 
following items: diameter value, tolerance, roughness, etc. Likewise ELMSF1 1/2 
is for the Left/Right surface drawing specification. These commands will be 
specified for different surfaces and users that want to explore more can make 
alterations in their lens, save, and then open the lens with a text editor to see what 
commands are included. 
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The table below gives a brief summary of the data meanings. For additional 
information please see the ISO/TC 172 webpage for more information including 
participating member bodies. 

 

Summary of ISO 10110 drawing codes 

Property and code form Data 

Stress birefringence 
0/A 

A = Maximum optical path difference (nm/cm) 

Bubbles & inclusions 
1/NxA 

N = Number of bubbles 
A = Bubble grade number 

Inhomogeneity and striae 
2/AB 

A = Homogeneity class 
B = Striae class 

Surface form tolerance 
3/A(B/C) 

or 
3/A(B/C) RMSx < D 

 or 
3/- RMSx < D 

x is either t, i, or a 

A = Maximum sagitta error 
B = Peak-to-valley irregularity 

C = Non-spherical, rotationally symmetric error 
D = Maximum rms tolerance 

t = total rms deviation from nominal surface 
i = rms irregularity 

a = rms asymmetry after removal of spherical and 
rotationally symmetric irregularity 

A,B,C,D in fringes (default = 0.5461m) 

Centering tolerance 
4/ 

 = Surface tilt angle (minutes or seconds) 

Surface imperfection tolerance 
5/N x A; CN x A; LN x A; EA 

N = Number of allowed scratches 
A = Defect grade number (mm) 

N = Number of coating blemishes 
A = Coating blemish grade number (mm) 
N = Number of long scratches (> 2mm) 

A = Maximum width of scratch 
A = Maximum extent of edge chips (mm) 

Laser damage threshold 
6/Hth; ; pdg; fp; nts x np   (pulsed) 

or 
6/Eth; ; nts    (cw) 

 

Hth = Energy density threshold (J/cm2) 
Eth = Power density threshold (W/cm2) 

 = Laser wavelength 
pdg = Pulse duration group 

fp = Pulse repetition frequency 
nts = Number of test sites 

np = Number of pulses per site 
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Reflecting systems 

Schmidt camera 
A Schmidt camera consists of a spherical mirror with an aspheric corrector plate at or near the 
center of curvature of the mirror. The purpose of the aspheric plate is to correct the spherical 
aberration of the mirror. In the design included here, an additional lens is placed near the image 
plane to correct field aberrations on a flat image plane (a normal Schmidt camera has a curved 
image surface). The system data is shown below. 

*LENS DATA 
Schmidt System 100mm f/1.25 3deg 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    5.2408e+18             AIR      
 
  1    2.6134e+03      6.500000     42.000000         FSILICA   *  
  2        --         88.660000     42.000000 AP          AIR      
 
  3        --         98.860000     42.000000 X           AIR   *  
 
  4   -201.029000    -96.860000 P   55.000000      REFL_HATCH      
 
  5    -40.500000     -2.000000      7.000000         FSILICA P    
  6    234.033000     -0.416671      7.000000 P           AIR P    
 
  7        --            --          5.300000                      
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  1      -1.000000 -5.8678e-08 -4.2209e-12  1.2779e-15 -3.0697e-19 
 
*PICKUPS 
  2     AP     1 
  4     THM    3        2.000000 
  5     GLA    1 
  6     GLA    3      AP     5 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   5.2408e+18 
  1     SPC    42.000000 
  2     PKP    42.000000 
  3     SPC    42.000000 
     Special Aperture Group 0: 
     A  ATP      Ellipse  AAC     Obstruct  AAN       --     
        AX1    -7.000000  AX2     7.000000  AY1    -7.000000  AY2     7.000000 
  4     SPC    55.000000 
  5     SPC     7.000000 
  6     PKP     7.000000 
  7     SPC     5.300000 
Note that an obstruction must be placed on surface 3 to block the rays that hit the image surface 
before hitting the primary mirror. The obstruction is specified as a special aperture as shown, and 
is marked not drawable, so that it does not appear in the lens drawing. 

The performance of the system is indicated in the ray analysis below. Note that the ray-intercept 
curves are not smooth. This is characteristic of designs that use high-order aspherics, as this one 
does. It is likely that the curves could be smoothed out by careful weighting of the variables 
during optimization. 
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Reversible catadioptric lens 

This lens is named after the 1985 International Lens Design Conference in Cherry 
Hill, NJ, where it had the best performance of all designs submitted to the 
reversible lens design contest. The rules of that contest specified that the design 
had to meet certain paraxial specifications, and had to have the best performance 
under the condition that it be completely reversible, in the sense that it had to have 
identical performance whether it was used forwards or backwards. Most of the 
submitted solutions were conventional lens forms, but this lens and a few others 
like it were catadioptric designs that achieved very high performance by using a 
mirror to accomplish most of the focusing power.  

The design is included in the demo examples because it shows the use of pickups 
to impose constraints required for designing catadioptric systems, particularly 
ones like this one that have additional reversibility conditions. Please open the file 
to see the detailed data; there is not enough room for a listing here. 

 

 

The design is also a good one to study to learn the sign conventions used in reflecting systems. 
Finally, note that an elliptical aperture is required on the beam-splitter surface to accommodate the 
tilted surface in a cylindrical geometry. 
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Schwarzschild objective 

The Schwarzschild objective is a convex-concave mirror system in which the 
mirrors are approximately concentric, with the long conjugate on the convex 
mirror side. Originally intended as a microscope objective, the design is widely 
used in a variety of two-mirror relay systems. The archetype Schwarzschild 
system can be designed analytically (there is a star command *schwarz that does 
this), but for practical use, variations are usually required. 

The design included here is a basic system designed using the *schwarz star 
command. The ray analysis below shows that the third-order spherical and coma 
aberrations are corrected, but there is high-order over-corrected spherical. This 
can be corrected by perturbing the design. Also, the obscuration can be decreased, 
usually at the expense of increased coma. 
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Extended aperture parabola 
An increasing number of optical systems require ray tracing beyond 90 degrees. The nikofish.len 
example shows how OSLO accommodates optical systems that have a field of view greater than 
90 degrees. This example shows how OSLO accommodates optical systems that have an aperture 
greater than 90 degrees. Often, such systems are found in illumination applications where high-
quality image formation is not required, such as the design of luminaires or light collectors. 

The general operating condition xarm (extended aperture ray aiming mode) sets up a system of 
fractional aperture coordinates based on a maximum beam angle (xaba), measured relative to the 
positive z-axis at the object surface. When xarm is on, fractional coordinates are measured 
similarly to the tilt angles tla and tlb. A fractional coordinate of +1.0 corresponds to a ray angle 
equal to xaba above the z-axis, and a fractional coordinate of -1.0 corresponds to a ray angle equal 
to xaba below the z-axis. 

Extended aperture ray aiming is limited to tracing single rays and computing spot diagrams. There 
is no reference ray, so analyses such as ray fans have no meaning. The figure below shows a 
parabolic mirror used in conjunction with extended aperture ray tracing. Since the mirror is to the 
left of the object, it must be an alternate intersection surface. Note that the mirror has a central 
obstruction to block rays. 

*LENS DATA 
Extended aperture ray aiming 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        -50.000000    1.0000e-06             AIR      
 
  1    100.000000    2.0000e+03    380.000000 AKX  REFL_HATCH   *  
 
  2        --            --        380.000000                      
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  1      -1.000000      --          --          --          --     
 
*SURFACE TAG DATA 
  1     ASI   1 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   1.0000e-06 
  1     SPC   380.000000  CHK 
     Special Aperture Group 0: 
     A  ATP      Ellipse  AAC     Obstruct  AAN       --     
        AX1   -24.000000  AX2    24.000000  AY1   -24.000000  AY2    24.000000 
  2     SPC   380.000000 
 
*OPERATING CONDITIONS: GENERAL 
   Image surface:                    2    Aperture stop:                    1 
. 
   Telecentric entrance pupil:     Off    Wide-angle ray aiming mode:     Off 
   Aper check all GRIN ray segs:   Off    Extended-aper ray aiming mode:   On 
   Plot ray-intercepts as H-tan U: Off    XARM beam angle:         150.000000 
   Source astigmatic dist:      --        Ray aiming mode:          Aplanatic 
   Temperature:              20.000000    Pressure:                  1.000000  



Reflecting systems 10-321 

 

 

 

 



10-322 Reflecting systems 

 

Hubble space telescope 

The Hubble telescope has become famous for many reasons, not the least of 
which is the well-known fabrication error that has now been compensated. The 
version included here is the original Ritchey-Chrétien design including two 
hyperbolic mirrors. The design itself is ideal, but it was fabricated in a way that 
produced about 6 waves of spherical aberration due to an improper conic constant 
on the primary mirror. You may wish to experiment to find the deviation in the 
conic constant that would cause such aberration, as well as ways to compensate 
for it.  

In setting up the system, a wavelength of 0.6328 was used, because that is the 
wavelength of the light used to test it. Note that surface 1 is needed to serve as a 
central obstruction. 
*LENS DATA 
Hubble space telescope 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.9199e+17             AIR      
 
  1        --        4.9061e+03    1.2094e+03 SX          AIR   *  
 
  2   -1.1040e+04   -4.9061e+03 P  1.2000e+03 AX   REFL_HATCH   *  
 
  3   -1.3580e+03    6.4059e+03 S  150.000000      REFL_HATCH   *  
 
  4        --            --        110.578590 S                    
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  2      -1.002299      --          --          --          --     
  3      -1.496000      --          --          --          --     
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Pentaprism 

A pentaprism changes the direction of a beam by 90 degrees. It is straightforward 
to enter such a system using the bend command in OSLO. However, to draw a 
picture of the system requires special work because of the nature of the prism. 
The system shown here uses OSLO’s boundary data information (bdi) to draw the 
prism, as shown in the figure below. 

The pentaprism system included here is intended as a base system into which you 
can insert your own optics as required. Blank pieces of glass are placed in front 
and behind the prism for demonstration. The data are shown in the following list.  

 

 

*LENS DATA 
Penta prism example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1        --          1.000000      1.414214 A           BK7 C *  
  2        --          1.000000      1.414214             AIR     Your lens 
 
  3        --          2.414214      1.000000 X          BAK1 C *  
  4        --         -2.000000      1.082400 X       REFLECT   *  
  5        --          2.414214      1.082400 X       REFLECT   *  
  6        --          1.000000      1.000000 X           AIR   * Penta prism 
 
  7        --          1.000000      1.414214             BK7 C *  
  8        --            --          1.414214             AIR     Your lens 
 
  9        --            --          1.414214                      

From an optical standpoint, the interesting surfaces are 3-6. The orientation of the 
surfaces is straightforward and easily handled by the ben command. The sides of 
the prism are rectangular, so each surface must have a rectangular special 
aperture, calculated according to the standard pentaprism geometry. Since the 
actual prism surfaces are to be represented by bdi information (in contrast to being 
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enclosed in a bounding box, cf. p372), it is important that the drawing information 
accurately represent the true situation. 
*TILT/DECENTER DATA 
  4     DT    1         DCX       --       DCY       --       DCZ       --     
        BEN             TLA    22.500000   TLB       --       TLC       --     
  5     DT    1         DCX       --       DCY       --       DCZ       --     
        BEN             TLA    22.500000   TLB       --       TLC       --     
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   1.0000e+14 
  1     SPC     1.414214 
  2     SPC     1.414214 
  3     SPC     1.000000 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -1.000000  AX2     1.000000  AY1    -1.000000  AY2     1.000000 
  4     SPC     1.082400 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -1.082400  AX2     1.082400  AY1    -1.082400  AY2     1.082400 
  5     SPC     1.082400 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -1.082400  AX2     1.082400  AY1    -1.082400  AY2     1.082400 
  6     SPC     1.000000 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -1.000000  AX2     1.000000  AY1    -1.000000  AY2     1.000000 
  7     SPC     1.414214 
  8     SPC     1.414214 
  9     SPC     1.414214 

For the drawing, surfaces 3-6 are marked “not drawn” in the special data surface 
control spreadsheet: 
*SURFACE TAG DATA 
  1     LMO ELE  (2 surfaces) 
  3     LMO ELE  (4 surfaces) 
  3     DRW OFF 
  4     DRW OFF 
  5     DRW OFF 
  6     DRW OFF 
  7     LMO ELE  (2 surfaces) 

There is no spreadsheet for entering boundary data. You can use the normal lens 
editor in command mode, giving the commands 
len upd 
gto 3 
bdi 16 9 
vx 1 -1 -1 0 0 
vx 2 -2 2 0 0 
. 
pf 1 1 2 3 4 
pf 2  5 6 7 8 
. 
etc. according to the list below: 
end 

In connection with the input of bdi data, please note that the data must be 
preceded by a bdi command that states how many vertices and how many polygon 
faces are to be used. 

The last number in each vertex record is the surface number relative to the current 
surface. In the output listing, this is converted into an absolute surface number 
reference.  
*BOUNDARY DRAWING DATA 
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 SRF 3: 
 VX NBR         X            Y            Z        COORD SURF 
    1       -1.000000    -1.000000       --             3 
    2       -1.000000     1.000000       --             3 
    …etc. 
 PF NBR        VX1          VX2          VX3          VX4 
    1            1            2            3            4 
    2            5            6            7            8 
    …etc. 
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Thermal mirror 

The proper way to set up this system is to insert a second surface as shown in the 
lens data output below. Be sure to include the pickups on the radius of curvature 
and aperture radius. Next, change the thermal condition for the reflective mirror 
surface 1 with the TCE command “tce 1 71”. Note that the units for the thermal 
coefficient of expansion can be found in the glass catalog help page. Finally, 
remove all solves in the system. The output you will get should contain (use the 
index output but not the general conditions since the temperature has not 
changed): 

*LENS DATA 
Thermal Mirror Example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ     0.0         1.0000e+20    1.0000e+14             AIR      
 AST  -200.000000      0.0          50.000000 A       REFLECT      
  2   -200.000000 P -100.000000     50.000000 P           AIR      
 IMS     0.0           0.0         1.0000e-04                      
 
*REFRACTIVE INDICES 
 SRF  GLASS/CATALOG        RN1        RN2        RN3    VNBR      TCE    
  0   AIR               1.000000   1.000000   1.000000   0.0      0.0        
  1   REFLECT           1.000000   1.000000   1.000000   0.0   71.00000 
  2   AIR               1.000000   1.000000   1.000000   0.0  236.000000       
  3   IMAGE SURFACE 
 
*PARAXIAL CONSTANTS 
   Effective focal length: -100.000000 Lateral magnification:-1.0000e-18 
 

Now if you change the temperature to 100, you will have the following system 
(now revert to output with no refractive index data but showing the relevant 
general conditions for the different temperature):  
 
*LENS DATA 
Thermal Mirror Example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ     0.0         1.0000e+20    1.0000e+14             AIR      
 AST  -200.113600     -0.003607     50.028400 A       REFLECT      
  2   -200.113600 P -100.176810     50.028400 P           AIR      
 IMS     0.0           0.0         1.0000e-04                      
 
*PARAXIAL CONSTANTS 
   Effective focal length:-100.056800  Lateral magnification:-1.0006e-18 
 
*CONDITIONS: GENERAL 
   Temperature:100.000000    Pressure:1.000000 
 

The dummy surface has shifted by a small amount due to round-off error in the 
calculations. Note that the thickness change of surface 2 assumes that you mount 
the mirror of surface 1 by the edges. If you make the radius of surface 2 equal 0 
and redo the thermal change, the thickness of surface 2 would be different. In the 
case where the radius is zero on surface 2, the calculation is the same as assuming 
that the aluminum "spacers" are tied to the vertex of surface 1 (not the edges). 
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TIR prism/mirror system 

Many optical systems contain reflecting prisms and mirrors for redirecting beams 
or changing the orientation of images. Plane mirrors generally have no effect on 
image quality, and reflecting prisms are usually equivalent to blocks of glass. 
Nevertheless, for mechanical and tolerancing reasons it is often necessary to 
include the effects of tilted and decentered surfaces in the design data. This 
section gives an example of how to add a right-angle prism and turning mirror 
behind the lasrdblt.len lens. The example is primarily tutorial, not optical. 

 

 

The prism will have an aperture of 10 (note that apertures in OSLO are specified 
by their radii, not diameters), and will be located 1 mm to the right of the last lens 
surface. 

1) Open the lasrdblt.len file, change the lens identifier to “Right-angle 
prism/mirror example” and save it in your private directory under a new 
name. 

2) Before entering any surface data, click Lens >> Lens drawing conditions, 
and modify the spreadsheet so that it looks like the following. The items to 
be changed are Apertures, Image space rays and Number of field points 
for ray fans. These changes will make the Autodraw window more useful. 



10-328 Reflecting systems 

 

 

 

3.  Close the Lens drawing operating conditions spreadsheet and return to the 
surface data spreadsheet. Drag the bottom of the window frame down until 
there is room for four more rows, then move the cursor to the row button for 
surface 5. Now press SHIFT+SPACE four times to insert the additional rows 
(this is a shortcut to using the mouse), or click row button 5 and click the 
Insert Before toolbar icon 4 times. Drag the bottom of the spreadsheet window 
down to see all the rows. Enter 1 for the thickness of surface 4. 

4.  Next you will insert the prism. Enter SF15 for the glass on surface 5. Click on 
the Special button for surface 6, select Surface Control >> General, and turn 
on TIR only. This means that rays will be reflected if they undergo total 
internal reflection and will fail otherwise. Note that for a TIR surface, the 
refractive index of the surface is the one for the medium into which the ray 
goes if it fails the TIR condition. The program knows that if the ray is totally 
internally reflected, the refractive index is the same as that in the incident 
medium. 

5.  Set the apertures of surfaces 5 - 7 to 10. Set the thickness of surface 5 to 10. 
The Autodraw window should now look as follows: 

 

5.  Surface 6 will be the reflecting face of the prism, tilted at 45 degrees. Click 
the Special button and select the Coordinates item on the pop-up list. In the 
spreadsheet, enter 45 for TLA, and change the Tilt and bend button to Yes. 

6. Enter -10 for the thickness of surface 6. Thicknesses are negative after an odd number of 
reflections, as discussed previously. Enter 10*sqrt(2) for the aperture. 

7.  The center of the turning mirror is to be 8mm below the prism. Set th 7 to -8. 
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8.  Click the Spe button in the text window. The following should appear in the 
Text window. 

*TILT/DECENTER DATA 
  6     DT    1         DCX       --       DCY       --       DCZ       --     
        BEN             TLA    45.000000   TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  6     TIR   1 
 

The next step will be to add a turning mirror that reflects the beam so that it 
continues from left to right. 

9.  Enter data for the turning mirror as shown below. Use an axial ray height 
solve to locate the final image surface, in the same manner as the laser doublet 
example. The mirror is entered using the Reflect (Hatch) item on the Glass 
Options list. This has no optical significance, but causes the back side of the 
mirror to be hatched on the drawing, as shown. Set the aperture to 8mm. 
Select Special, Coordinates to set the tilt to -45 degrees, and set the bend flag. 
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*TILT/DECENTER DATA 
  6     DT    1         DCX       --       DCY       --       DCZ       --     
        BEN             TLA    45.000000   TLB       --       TLC       --     
  8     DT    1         DCX       --       DCY       --       DCZ       --     
        BEN             TLA   -45.000000   TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  6     TIR   1  
 

Note that an axial ray height solve is used on surface 8, even though the system 
has tilted elements. In the case where only tilts of plane surfaces are used, and the 
bend flag is used to propagate the optical axis, paraxial optics remain valid. 
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Diffractive optics 

Hybrid achromatic doublet 

One attractive feature of using a diffractive surface is that it provides a way to add 
power to a system with only a marginal change in bulk. Also, since the 
manufacturing processes for diffractive surfaces do not restrict the phase function 
to just a power (r2) term, it is possible to add a diffractive surface to a refractive 
singlet to perform both chromatic and monochromatic aberration correction. As a 
simple example, we will examine the design of a refractive/diffractive achromatic 
doublet. This type of element, combining both refractive and diffractive optics, is 
sometimes called a hybrid element.  

We can use the thin lens achromatic doublet design equations for an initial design. 
Let  denote the total power of the doublet and ref and diff denote the powers of 
the refractive and diffractive components, respectively. Thus, since this is a thin 
lens system,  = ref + diff. Also, let ref and diff be the Abbe values for the two 
components. Then, the component powers for the achromat are 

ref
ref

ref diff

diff
diff

diff ref


  

  


  

  

 

(10.1)   

For refractive materials, ref is positive, and, as we have seen, diff is negative. Thus, 
we see from Eq. (10.1) that both components have the same sign of power as the 
total power of the doublet. This is in contrast to the familiar two-glass achromatic 
which consists of a positive crown glass element and a negative flint glass 
element. Since both components of the hybrid doublet are of the same sign of 
power, this generally results in weaker surface curvatures for the refractive lens. 
We also see from Eq. (10.1) that most of the power of the doublet is provided by 
the refractive component. This is not surprising, given that the diffractive lens is 
far more dispersive. For example, using the usual d, F, and C lines and BK7 glass 
(ref = 64.2, diff = 3.45), we see that approximately 95% of the total power of the 
doublet is provided by the refractive component.  

Given the very strong wavelength dependence for a diffractive element, one very 
often finds that chromatic variation of something becomes the limiting aberration 
for a system containing diffractive optics. For this achromatic doublet, secondary 
spectrum may be a problem. The partial dispersion for a diffractive lens is given 
by 
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For the visible spectrum (d, F, C) this value is Pdiff = 0.596. The longitudinal 
secondary color for the achromat is 

1 ref diff
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(10.3)   
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For a BK7/diffractive achromat, the secondary spectrum is about 0.0014 of the 
focal length; compare this to a two-glass achromat, which has a secondary 
spectrum of about 1/2200 = 0.00045 of the focal length. Another common 
problem in hybrid systems, particularly fast systems, is spherochromatism. Of 
course, if the first order properties of a diffractive lens are strong functions of 
wavelength, it should not be surprising that the higher order properties also have 
large chromatic variations. 

As a design example, we will choose a 100 mm focal length, F/7, BK7/diffractive 
hybrid doublet. The field of view is  1. At this speed and aperture, it seems 
reasonable to assume that the main aberrations will be of third and fifth-order, so 
we will use a sixth-order expansion for the diffractive surface. We start with a 
convex-plano lens with an approximate power split of 95% to 5% between the 
refractive and diffractive components. 

Open a new lens with 2 surfaces. On surface 1 set the radius to 54.4, the thickness 
to 2, and the glass to BK7. Put an axial ray height solve to 0 for the thickness of 
surface 2 (you can type "py 0" in the cell, or use theoptions button). Click the 
Special options button for surface 2. Select Diffractive Surface >> Symmetric 
CGH (even orders). In the spreadsheet, set the DOE DFR field to 6, and set the 
DF1 coefficient to -0.00025, as follows: 

 

Close the Special spreadsheet and click the Setup button in the lens spreadsheet. 
Enter 7.0 for the working f-number and 1.0 for the field angle, as follows: 

 

Close the Setup spreadsheet, and enter a Lens ID for the lens as shown below. 
Click the options buttons for the radius of surfaces 1 and 2 and make them 
variables. Save the lens as diffdblt1.len. The spreadsheet should look as follows. 
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Click the Variables button, and add DF1, DF2, and DF3 on surface 2 as variables. 
In order to enter subscripted variables like these, you must type the entries into 
the cells; you cannot click the menu items in the options list. The variables 
spreadhseet should look like the following. 

 

 

On the Optimize menu, click Generate Error Function >> Ray operands. Accept 
the initial dialog box defaults (i.e. no vignetting). After closing the dialog, delete 
all the operands from the spreadsheet that pops up (use SHIFT+Drag with the row 
buttons), except for the following. Modify the first operand as shown. 

 

The names of the operands describe the meaning of the particular OCM operands 
set up for this error function. The actual function that evaluates them is called 
opcb_rays(), which can be found in the public CCL file optim_callbacks.ccl. 
Operands 2-4 are the DY, OPD, and Conrady DMD for the on-axis marginal ray. 
Operand 5 is a user-defined coma operand, defined (according to the CCL code) 
as shown below. You see that it forces the DY for the upper and lower rim rays 
from the edge of the field to be anti-symmetrical, meaning that the aberration 
must be astigmatic, as described in Chapter 5. 

… 
Ocm[23] = ssb(9,5);  // off-axis upper FY dy 
… 
Ocm[26] = ssb(9,8);  // off-axis lower FY dy 
// insert user defs here 
Ocm[31] = 0.5*(Ocm[23] + Ocm[26]); // tangential coma 

… 

After you hace completed the lens data entry, the variables entry, and the 
operands entry, save the lens (diffdblt1.len). Close the lens spreadsheet and re-
open it to establish a base system you can return to if the optimization does not go 
the way you expect. The click the Ite button (twice) in the text window. After the 
first series, the error function should be in the 1e-9 range, and after the second it 
should be in the 1e-15 range. 
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*ITERATE FULL  10 
NBR     DAMPING   MIN ERROR   CON ERROR  PERCENT CHG. 
 0  1.0000e-08    0.032620      --     
 1  1.0000e-08    0.001508      --       95.376152 
… 
10  1.0000e-08  2.3639e-09      --       78.468650 
 
*ITERATE FULL  10 
NBR     DAMPING   MIN ERROR   CON ERROR  PERCENT CHG. 
… 
 9  3.7921e-08  6.4692e-15      --       49.278539 
 10  3.7921e-08  6.3801e-15      --        1.377601 
 

Now click the ray analysis report graphics button in the current graphics window, 
which should produce a plot similar to the following. 

 

The plot shows that the spherical aberration, coma, and axial color are under good 
control, with the dominant residual aberration being secondary spectrum, as 
expected from the above discussion. The correction produced by the DMD 
operand is typical. In order to study the chromatic correction in more detail, we 
will modify the error function to make a non-zero target for the DMD.operand. 
Since we don't know what target to use, it would be helpful to try several values, 
and we will set up a graphic slider to do this. 

First, save the preliminary design as diffdblt2.len. 

In command mode, operands are set up using the "o" command, for example the 
AXIS_EDMD operand that we want is entered by the command 
O 4 "OCM18-<target>" "AXIS_EDMD" //cmd defn and name are in reversed order from ss 
 

What we need to do is to attach the target value to a slider and execute this 
command every time the slider is moved. A straightforward way to do this is to 
write a CCL program, but this is not needed for this simple task. Instead, we can 
adapt the built-in slider-wheel spreadsheet to perform the task. The slider-wheel 
spreadsheet is set up to execute the CCL callback function sw_callback. There is a 
default function in the public CCL directory (in asyst_callbacks.ccl), but we need 
a customized version. It should be placed in the private CCL directory; commands 
placed there replace the public ones at run-time. 
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Using a text editor, create a file my_callbacks.ccl in your private CCL directory, 
and enter the following CCL code in the file: 
/* My slider-wheel callback for diffdblt example */ 
cmd Sw_callback(int cblevel, int item, int srf) 
{ 
 if (cblevel > 10) 
 { 
  sprintf(str1,"ocm18%+f \n",-cc[0]); 
  o 4 str1; 
  ite cblevel-10; 
 } 
 else if (cblevel > 0) 
  ite cblevel; 
} 
 

After you have entered the command, you must re-compile your private CCL. If 
you are using the built-in OSLO editor, it will be compiled automatically when 
you exit from the editor. Otherwise, you can use the button on the main toolbar to 
compile the command. Assuming that you get a "No error detected" compilation 
message, you are ready to use the command. We will discuss how it works later. 

To use the slider-wheel to adjust the DMD target, open the sliderwheel setup 
spreadsheet and set it up as shown below. Note that the parameter being varied is 
the conic constant of the object surface. When the curvature of the object surface 
is zero, the conic constant has no effect on anything. Our sw_callback function 
makes use of this, and uses the conic constant of surface 0 to hold the target value 
for the DMD operand. By setting the callback level to 12, we trigger the path 
through the function that sets up the DMD operand, as you can see from looking 
at the above callback command. 

 

 

After you close the spreadsheet, use the Tile Window command to arrange the 
window on your screen. If you click on one of the buttons at the end of the slider 
bar, you will see that changing the target by .001 is too big a step, so use the step 
size buttons at the right-hand end of the slider to reduce the step to .0001. You can 
then experiment with using the mouse wheel, or dragging the slider, to see the 
effects. If you set the target (i.e. cc[0]) to -0.0002, then update the ray analysis 
window, you should see a plot like the following. 
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Here, we adjusted the target for DMD so that the ray-intecepts is red and blue are 
the same for the marginal ray. This was done mainly as an exercise; the original 
chromatic balance targeting DMD to 0 is actually slightly better. As a tool for 
studying parameters during optical design, sliders can be very helpful. For future 
reference, the two most important techniques used here are: 

 Use a dummy parameter (i.e. one that has no optical effect on the system) 
to store non-optical data. This allows you to use the slider-wheel 
spreadsheet for a broadened class of applications. 

 Use the CCL "sprintf" command to build commands at run-time, i.e. 
commands that are built dynamically as you drag a slider. 

Infrared diffractive doublet 

One of the first practical applications of diamond-turned computer-generated 
holograms was a single element achromat for the infrared. This lens, designed by 
Reidl and McCann, combines a conventional aspheric on the front surface with a 
diffractive surface on the back of a Germanium singlet to achieve good 
performance at f/1.  

There are several reasons why diffractive optics may be more favorably applied to 
infrared systems. Most obviously, the longer wavelength means that the 
diffracting zones are wider and easier to fabricate. Many IR materials may be 
diamond turned, allowing for fabrication of both diffractive surfaces and aspheric 
refracting surfaces. By using an aspheric surface for aberration correction, the 
diffractive surface is only needed to correct chromatic aberration. Usually, this 
results in a very weak diffractive surface, with very low higher order aberration 
contributions. Also, the low diffractive power means that the /L ratios are small 
and high diffraction efficiency can be expected. Finally, the chromatic properties 
of some IR materials provide a good match to the diffractive surface. The paper 
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by Reidl and McCann28 suggests the consideration of zinc selenide and zinc 
sulfide in the 3-5 m band, and germanium and Amtir 3 in the 8-12 m band.  

Reidl and McCann give the following design for an F/1 germanium-diffractive 
doublet. The front surface of the lens is aspheric and the rear surface is spherical, 
with an r2 diffractive phase profile. Note that the system, while achromatic, has 
secondary spectrum that cannot be corrected using this scheme. 

 
 
*LENS DATA 
Germanium-Diffractive Doublet 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.7455e+18             AIR      
 
  1        --            --         37.500000 AS          AIR      
 
  2     72.560520      8.000000     38.000000           GERMA C *  
  3     97.060800     70.304121 S   38.000000             AIR   *  
 
  4        --         -0.009739      1.342401 S                    
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  2      -0.080670  8.4761e-10  2.6551e-13      --          --     
 
*DIFFRACTIVE SURFACE DATA 
  3   DOE DFR   2 - SYMMETRIC DIFFRACTIVE SRF       DOR   1 DWV     10.000000 
                                                    KCO   1 KDP        --     
      DF0        --     DF1   -2.2143e-05 
 
*WAVELENGTHS 
CURRENT  WV1/WW1     WV2/WW2     WV3/WW3 
   1   10.000000    8.000000   12.000000 
        1.000000    1.000000    1.000000 
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1         RN2         RN3        VNBR        TCE 
  0      AIR           1.000000    1.000000    1.000000      --          --     
  1      AIR           1.000000    1.000000    1.000000      --      236.000000 
  2      GERMA         4.003227    4.005480    4.002024  869.131714      --     

 
2. M. J. Reidl and J. T. McCann, “Analysis and performance limits of diamond turned diffractive 
lenses for the 3-5 and 8-12 micrometer regions,” Proc. SPIE Vol. CR38, 153-163 (1991). 
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  3      AIR           1.000000    1.000000    1.000000      --      236.000000 
  4      IMAGE SURFACE 
 
*PARAXIAL CONSTANTS 
   Effective focal length:   76.643439    Lateral magnification:  -7.6643e-19 
   Numerical aperture:        0.489279    Gaussian image height:     1.337816 
   Working F-number:          1.021913    Petzval radius:         -383.173311 
   Lagrange invariant:       -0.654565 
 

On-axis, the lens is essentially diffraction limited over the 8-12 m wavelength 
region. 

 

Because of the large difference in dispersions between germanium and the 
diffractive surface, almost all of the power of the doublet is contained in the 
refractive component. The diffractive surfaces has only three full diffracting 
zones. 
*DIFFRACTIVE SURFACE ZONE RADII 
 SURFACE 3        UNITS: mm 
 PHASE INCREMENT PER ZONE =     1.000000 x 2 PI 
 MINIMUM APERTURE RADIUS      --        MAXIMUM APERTURE RADIUS   38.000000 
 ZONE NUMBER   ZONE RADIUS 
       0           --     
       1        21.251117 
       2        30.053618 
       3        36.808015 
 MINIMUM ZONE WIDTH WITHIN LIMITS =    6.754397 (ZONE 3) 
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Simple grating monochromator 

The Ebert monochromator, also known as the Fastie-Ebert monochromator, since 
it was developed for practical use by Fastie, is a very simple design that uses a 
plane grating at or near the focal point of a spherical mirror. The design included 
in OSLO puts the grating exactly at the focal point, which makes the system 
telecentric on both object and image sides. The focal points of the overall system 
are also at infinity, so the system is afocal. Notwithstanding this, the object and 
image are both at finite distance, and the system is set up as a focal system. 

 

The grating is the aperture stop. This means that the chief ray enters the system 
parallel to the axis. To accommodate this, the tele general operating condition in 
OSLO must be turned on. An additional concern caused by the grating being the 
stop comes from the fact that it is square (the grating used is 25mm square with 
600 grooves/mm). This means that the input numerical aperture must be large 
enough so that the grating is filled, which means that the reported paraxial data 
does not report the actual performance (see the discussion of apertures in chapter 
4). 
*LENS DATA 
Ebert Grating Monochromator 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        125.000000    1.0000e-06             AIR   *  
 
  1   -250.000000   -125.000000     50.000000      REFL_HATCH      
 
  2        --        125.000000 P   12.500000 AX   REFL_HATCH   *  
 
  3   -250.000000 P -125.000000     50.000000 P       REFLECT      
 
  4        --            --         25.000000                      
 

The system setup is somewhat unorthodox. The field of view is very narrow, and 
the object surface is decentered to move the entrance slit off the axis of the 
spherical mirror. The mirror is tilted using a return_coordinates (rco) command in 
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which the coordinates are returned to the current surface. This has the effect of 
providing a local coordinate system in which the tilt of the current surface is 
removed prior to moving to the next surface. 
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*TILT/DECENTER DATA 
  0     DT    1         DCX       --       DCY   -25.000000   DCZ       --     
                        TLA       --       TLB       --       TLC       --     
  2     RCO   2 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA    10.000000   TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  2     GOR  -1          GSP     0.001667 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   1.0000e-06 
  1     SPC    50.000000 
  2     SPC    12.500000 
 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1   -12.500000  AX2    12.500000  AY1   -12.500000  AY2    12.500000 
 
  3     PKP    50.000000 
  4     SPC    25.000000 
 

Another interesting aspect of the Ebert monochromator setup is the default 
drawing rays, which must be set to fractional coordinates that account for the 
oversized pupil, and to wavelengths that show the grating dispersion. 
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f- scan lens 

A laser line scan lens is essentially a monochromatic system and only needs to 
have good performance at a single wavelength, so it is a suitable candidate for 
diffractive optics. The lens should have a uniform spot size across the field and 
satisfy the f- condition so that it can translate a constant angular velocity into a 
constant linear velocity. 

If we consider the design from the point of view of the third-order aberrations, we 
can identify three degrees of freedom: 

i) the fourth order term (DF2) in the phase polynomial (the second-order 
term DF1 is determined by the desired focal length), 

ii) the position of the aperture stop, and 

iii) the bending of the substrate for the diffractive lens. 

We know that the Petzval curvature is equal to zero for a diffractive lens. If we 
can eliminate both coma and astigmatism, then we have eliminated all of the 
field-dependent aberrations that affect the spot size. There is a general solution to 
this problem, using the fourth-order term and stop position to set coma and 
astigmatism to zero. The remaining variable, the bending, can be used to control 
one of the remaining Seidel aberrations: spherical aberration or distortion. For the 
case of a scan lens, we need a prescribed, non-zero amount of distortion in order 
to achieve f- correction. (Recall that a distortion-free lens has an image height 
that is proportional to the tangent of the field angle.) 

Scan lenses of this type have been considered by Buralli and Morris(29) The 
third-order solution shown in this example is a diffractive scan lens with a 
substrate radius of curvature that is equal to 2 times the focal length and an 
aperture stop (i.e., the scanner mechanism) located 2/3 of the focal length in front 
of the lens. The lens has the following parameters: focal length = 325 mm; F/20; 
0 = 0.6328 m; scan angle = 20. With these construction parameters, this lens 
is capable of scanning the width of an 8.5 by 11 inch piece of paper at a resolution 
of approximately 1600 dots per inch.  

The lens data below illustrates the use of the Sweatt model for a diffractive lens. 
Note that the two radii of curvature differ slightly from the diffractive lens 
substrate radius of 2f = 650 mm. In the limit of n  , the Sweatt model is 
exact; since we must use a finite value for the index in OSLO (n = 10,001, in this 
case) these is a slight error in the resulting calculations using this lens. By 
converting the lens to a DFR surface (use the *swet2dfr SCP command), however, 
you can see that the error introduced by the finite value of n is negligible. 

 
*LENS DATA 
Diffractive Scan Lens 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --        1.0000e+20    3.6397e+19             AIR      
 

 
3. D. A. Buralli and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” 
Appl. Opt. 30, 2151-2158 (1991). 
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  1        --        216.666667      8.125000 AS          AIR      
 
  2   -650.065007        --         87.000000      SWEATT_MOD      
  3   -649.935006    324.926455     87.000000             AIR      
 
  4        --            --        118.283242 S                    
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.632800 
        1.000000 
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1        TCE 
  0      AIR           1.000000      --     
  1      AIR           1.000000  236.000000 
  2      SWEATT_MOD  1.0001e+04  236.000000 
  3      AIR           1.000000  236.000000 
  4      IMAGE SURFACE 
 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:      8.125000    Image axial ray slope:    -0.025000 
   Object num. aperture:    8.1250e-20    F-number:                 20.000000 
   Image num. aperture:       0.025000    Working F-number:         20.000000 
 FIELD 
   Field angle:              20.000000    Object height:          -3.6397e+19 
   Gaussian image height:   118.290326    Chief ray ims height:    118.281403 
 CONJUGATES 
   Object distance:         1.0000e+20    Srf 1 to prin. pt. 1:    216.666667 
   Gaussian image dist.:    325.000000    Srf 3 to prin. pt. 2:        --     
   Overall lens length:     216.666667    Total track length:      1.0000e+20 
   Paraxial magnification: -3.2500e-18    Srf 3 to image srf:      324.926455 
 OTHER DATA 
   Entrance pupil radius:     8.125000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:        24.375000    Srf 3 to exit pupil:    -650.000000 
   Lagrange invariant:       -2.957258    Petzval radius:         -3.2503e+06 
   Effective focal length:  325.000000 
 

 

We can use the Evaluate>>Spot Diagram>>Spot Size and OPD vs field command from 
the menu to evaluate the RMS spot size and RMS OPD across the field. 
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Note the excellent state of correction of the field aberrations, even though this 
design was done using only third-order considerations. The spot size even gets 
slightly smaller with field angle, mainly due to a small amount of fifth-order 
Petzval curvature that is of opposite sign to the (uncorrected) third-order spherical 
aberration. One feature of using the Sweatt model is access to the aberration 
coefficients, since the lens appears as a “normal” refractive lens to the program.  
*SEIDEL ABERRATIONS 
 SRF      SA3         CMA3        AST3        PTZ3        DIS3 
 SUM   -0.005714 -2.4643e-06  1.1956e-05 -5.3812e-05   -5.223535 
 
*FIFTH-ORDER ABERRATIONS 
 SRF      SA5         CMA5        AST5        PTZ5        DIS5        SA7 
 SUM -4.6871e-06  1.7327e-05 -1.0561e-06    0.003965    0.403654 -4.6909e-09 
The state of correction for the f-� condition can be assessed using the *ftheta SCP command. 
*F-THETA ANALYSIS 
   FRACTIONAL  FIELD ANGLE      IMAGE     REFERENCE   SCAN ERROR  LOCAL ERROR 
  FIELD ANGLE   (DEGREES)      HEIGHT    IMG HEIGHT   (PER CENT)   (PER CENT) 
      --           --           --           --           --           --     
    0.050000     1.000000     5.671892     5.671697     0.003443     0.003443 
    0.100000     2.000000    11.343785    11.343394     0.003445     0.003447 
    0.150000     3.000000    17.015677    17.015091     0.003446     0.003448 
    0.200000     4.000000    22.687569    22.686788     0.003443     0.003435 
    0.250000     5.000000    28.359458    28.358485     0.003433     0.003390 
    0.300000     6.000000    34.031342    34.030182     0.003408     0.003287 
    0.350000     7.000000    39.703214    39.701879     0.003364     0.003097 
    0.400000     8.000000    45.375069    45.373576     0.003291     0.002785 
    0.450000     9.000000    51.046897    51.045273     0.003182     0.002310 
    0.500000    10.000000    56.718686    56.716970     0.003027     0.001626 
    0.550000    11.000000    62.390422    62.388667     0.002814     0.000684 
    0.600000    12.000000    68.062087    68.060364     0.002532    -0.000571 
    0.650000    13.000000    73.733659    73.732061     0.002168    -0.002197 
    0.700000    14.000000    79.405115    79.403758     0.001709    -0.004257 
    0.750000    15.000000    85.076425    85.075455     0.001141    -0.006815 
    0.800000    16.000000    90.747558    90.747152     0.000448    -0.009939 
    0.850000    17.000000    96.418478    96.418849    -0.000384    -0.013704 
    0.900000    18.000000   102.089144   102.090546    -0.001373    -0.018179 
    0.950000    19.000000   107.759511   107.762243    -0.002534    -0.023443 
    1.000000    20.000000   113.429531   113.433940    -0.003887    -0.029577 
 CALIBRATED FOCAL LENGTH =  324.964300 

Here again we see that the performance is quite good, just with a third-order 
design.  

The Sweatt model can be converted to a phase model surface by using the 
*swet2dfr command and answering “y” (for “yes”) when prompted for whether 
you wish to change the lens data. 
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*LENS DATA 
Diffractive Scan Lens 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    3.6397e+19             AIR      
 
  1        --        216.666667      8.125000 AS          AIR      
 
  2   -650.000000    324.926455     87.000000             AIR   *  
 
  3        --            --        118.283242 S                    
 
*DIFFRACTIVE SURFACE DATA 
  2   DOE DFR  10 - SYMMETRIC DIFFRACTIVE SRF       DOR   1 DWV      0.632800 
                                                    KCO   1 KDP        --     
      DF0        --     DF1     -0.001538 DF2   -9.1033e-10 DF3   -1.0773e-15 
      DF4   -1.5937e-21 DF5   -2.6404e-27 

Whether this is a practical design or not is, perhaps, a debatable question, since 
the Show >> Auxiliary Data >> Diffractive Surf Zones command reveals that this 
lens has about 18,000 diffracting zones! This example does, however, show some 
of the interesting performance capabilities of diffractive lenses.  

Diffractive eyepiece 

As mentioned in an earlier section, diffractive optics can be used to decrease the 
size and weight of an optical system. One application of this ability has been in 
the area of eyepiece design, as demonstrated by Missig and Morris.30 In this 
paper, Missig and Morris present two hybrid refractive/diffractive eyepieces, both 
with three refractive components, and each with performance that compares 
favorably to a five element Erfle eyepiece. The prescription for the hybrid 
eyepiece with a single diffractive surfaces is given below. 
*LENS DATA 
Hybrid Eyepiece #2 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    5.7735e+19             AIR      
 
  1        --         15.811850      4.000000 AS          AIR      
 
  2    -54.098070      3.929290     12.800000             BK7 C    
  3    -19.425860      0.100000     12.800000             AIR      
 
  4    157.285720      4.036940     13.000000             BK7 C    
  5    -43.015550      0.244010     13.000000             AIR      
 
  6     34.971150      5.382580     13.000000             BK7 C    
  7        --         15.871516     13.000000             AIR   *  
 
  8        --            --         11.560626 S                    
 
*DIFFRACTIVE SURFACE DATA 
  7   DOE DFR   4 - SYMMETRIC DIFFRACTIVE SRF       DOR   1 DWV      0.587560 
                                                    KCO   1 KDP        --     
      DF0        --     DF1     -0.001945 DF2    4.1213e-06 
 
*WAVELENGTHS 
CURRENT  WV1/WW1     WV2/WW2     WV3/WW3 
   1    0.587560    0.486130    0.656270 
        1.000000    1.000000    1.000000 
 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:      4.000000    Image axial ray slope:    -0.199764 

 
4. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 
2452-2461 (1995). 
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   Object num. aperture:    4.0000e-20    F-number:                  2.502949 
   Image num. aperture:       0.199764    Working F-number:          2.502949 
 FIELD 
   Field angle:              30.000000    Object height:          -5.7735e+19 
   Gaussian image height:    11.560626    Chief ray ims height:     11.560626 
 CONJUGATES 
   Object distance:         1.0000e+20    Srf 1 to prin. pt. 1:     20.819636 
   Gaussian image dist.:     15.871516    Srf 7 to prin. pt. 2:     -4.152074 
   Overall lens length:      29.504670    Total track length:      1.0000e+20 
   Paraxial magnification: -2.0024e-19    Srf 7 to image srf:       15.871516 
 OTHER DATA 
   Entrance pupil radius:     4.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:       100.615275    Srf 7 to exit pupil:     519.541289 
   Lagrange invariant:       -2.309401    Petzval radius:          -32.184283 
   Effective focal length:   20.023591 
 Note: This optical system contains special surface data. 
       Calculations based on a paraxial raytrace may be invalid. 
 

This design weighs only about one-third of the weight of the Erfle eyepiece and 
uses only BK7 glass. The diffractive surface has about 360 diffracting zones and a 
minimum zone width of approximately 25 m. Thus, for the design wavelength, 
the maximum value of /L is 0.58756/25 = 0.023, so we would expect that scalar 
diffraction theory should be applicable to the analysis of this lens.  

Using the scalar theory developed in chatper 6, with 0 = 0.58756 m and m = 1, 
we find that the diffraction efficiencies for the d, F, and C wavelengths are 1.0, 
0.865, and 0.964, respectively. A useful, one number figure of merit for 
diffractive lenses is the integrated efficiency int, which is the pupil averaged value 
of the local diffraction efficiency local.  

 int

1
,local

pupil pupil

x y dxdy
A

    
(10.4)   

where Apupil is the area of the exit pupil. It has been shown that the integrated 
efficiency may be used to scale the MTF in order to account for the presence of 
non-design diffraction orders when assessing image quality. For more details on 
the use of the integrated efficiency, see Buralli and Morris(31).  

In OSLO, the local diffraction efficiency may be found by including the 
diffraction efficiency in the output of a single ray trace. The effects of integrated 
efficiency may be included by enabling the Use diffraction efficiency option in the 
General operating conditions. All efficiencies are computed using the extended 
scalar theory described in an earlier section. For example, we can compute the 
local efficiency along the chief rays at full field by establishing a full field object 
point and then tracing single rays in each of the three wavelengths using the tre 7 
command (the efficiency of all the other surfaces is 1.0). 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
      10.839311      --        2.652196   -0.469393   52.080996 -169.938905 
 
*TRACE EFFICIENCY RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG      DIFF EFF 

 
5. D. A. Buralli and G. M. Morris, “Effects of diffraction efficiency on the modulation transfer 
function of diffractive lenses,” Appl. Opt. 31, 4389-4396 (1992). 
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  7      11.609880      --          --       -2.779553      --        0.996364 
PUPIL      FY          FX                                              OPD 
            --          --                                              --     
 
*TRACE EFFICIENCY RAY - LOCAL COORDINATES (WAVELENGTH 2) 
 SRF        Y           X           Z           YANG        XANG      DIFF EFF 
 
  7      11.570568      --          --       -2.864184      --        0.862362 
PUPIL      FY          FX                                              OPD 
            --          --                                              --     
 
*TRACE EFFICIENCY RAY - LOCAL COORDINATES (WAVELENGTH 3) 
 SRF        Y           X           Z           YANG        XANG      DIFF EFF 
 
  7      11.627421      --          --       -2.785666      --        0.961072 
PUPIL      FY          FX                                              OPD 
            --          --                                              -- 

Because the wavelength-to-grating period ratio is small, the local efficiencies are 
very close to the scalar theory predictions given above. Note that we have not 
entered a value for the depth of the kinoform surface, so the optimum depth has 
been used by default. The scalar theory depth value for a lens with the refractive 
index of BK7 is 0.58756 m/0.5168 = 1.14 m. We can evaluate the effects of 
changing the kinoform blaze height by entering a value for the kinoform zone 
depth. For example, with a depth of 1.5 m, the efficiency along the full field 
chief ray drops to 70%. 
*DIFFRACTIVE SURFACE DATA 
  7   DOE DFR   4 - SYMMETRIC DIFFRACTIVE SRF       DOR   1 DWV      0.587560 
                                                    KCO   1 KDP      0.001500 
      DF0        --     DF1     -0.001945 DF2    4.1213e-06 
 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
      10.839311      --        2.652196   -0.469393   52.080996 -169.938905 
 
*TRACE EFFICIENCY RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG      DIFF EFF 
 
  7      11.609880      --          --       -2.779553      --        0.703233 
PUPIL      FY          FX                                              OPD 
            --          --                                              -- 

Note that changing the value of the kinoform depth does not change the 
propagation direction characteristics of the diffracted rays; only the diffraction 
efficiency is affected.  

The integrated efficiency can be determined from the percent weighted ray 
transmission in spot diagrams. For example, using the optimum depth, the on-axis 
integrated efficiencies are 99.5%, 87.0%, and 95.6%. Again, these values are 
close to the scalar theory values because of the low /L ratios. These efficiency 
values are used to scale the MTF, if calculated. 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    50.000000 
 WAVELENGTH 1 
 WAV WEIGHTS: 
       WW1         WW2         WW3     
    1.000000    1.000000    1.000000 
 NUMBER OF RAYS TRACED: 
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       WV1         WV2         WV3     
      1976           0           0         
 PER CENT WEIGHTED RAY TRANSMISSION:    99.516699 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    50.000000 
 WAVELENGTH 2 
 WAV WEIGHTS: 
       WW1         WW2         WW3     
    1.000000    1.000000    1.000000 
 NUMBER OF RAYS TRACED: 
       WV1         WV2         WV3     
         0        1976           0         
 PER CENT WEIGHTED RAY TRANSMISSION:    87.037691 
 
*SPOT DIAGRAM: MONOCHROMATIC  
 APDIV    50.000000 
 WAVELENGTH 3 
 WAV WEIGHTS: 
       WW1         WW2         WW3     
    1.000000    1.000000    1.000000 
 NUMBER OF RAYS TRACED: 
       WV1         WV2         WV3     
         0           0        1976         
 PER CENT WEIGHTED RAY TRANSMISSION:    95.634114 
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Fresnel diffractive magnifier 

The Fresnel diffractive magnifier is a plastic element with an aspheric Fresnel 
surface on the front and a diffractive surface on the back. It is an interesting 
system for both its tutorial value and its optical performance. The optical 
performance is much better than that of a simple lens, as shown by the ray 
analysis below. 

A Fresnel surface in OSLO is one that has the power of a curved surface, but is 
actually placed on a substrate having a different curvature (usually flat). This is 
accomplished by dividing the surface into prismatic zones, so that the surface 
normal approximates that of the curved refracting surface at any point. As the 
number of zones increases, the approximation becomes better. Fresnel surfaces 
were originally used in searchlights, where a substantial reduction in weight was 
accomplished. More recently, Fresnel surfaces have been used in a variety of 
consumer optics products made from embossed plastic. 

A diffractive surface is outwardly similar to a Fresnel surface, but there is an 
important difference between the two: With a Fresnel surface, light from different 
zones combines incoherently, while with a diffractive surface, light from different 
zones combines coherently. The former follows the laws of refraction, while the 
latter follows the laws of diffraction. Curiously, the chromatic aberration of the 
one has the opposite sign of the other, which is used in the magfrenl.len 
magnifier. The lens data is shown below. 

 
*LENS DATA 
Fresnel diffractive magnifier 5X 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    4.3661e+18             AIR      
 
  1        --        250.000000      5.000000 A           AIR      
 
  2     32.626000      2.000000     20.000000           CARBO C *  
  3        --         48.700000     20.000000             AIR   *  
 
  4        --            --          5.000000                      
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
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  2      -0.969340 -1.5465e-07      --          --          --     
 
*DIFFRACTIVE SURFACE DATA 
  3   DOE DFR   2 - SYMMETRIC DIFFRACTIVE SRF       DOR   1 DWV      0.587560 
      DF0        --     DF1     -0.001041 
 
*SURFACE TAG DATA 
  2     FRN   1   FCV       --       FCC       --     
Note that surface 2, the Fresnel surface, is made aspheric to correct higher order aberrations. 
Surface 3, the diffractive surface, contains only a quadratic phase term to add some focusing 
power and correct the chromatic aberration. The ray analysis on the previous page shows that the 
system is well-corrected for primary but not secondary color. 

 

Conventional 5x magnifier 

This lens is an ordinary 50mm focal length singlet, 31mm diameter, set up as it 
would be for use as a visual magnifier. The eye relief has been assumed to be 
250mm, and the pupil diameter has been taken as 10mm to provide freedom of 
eye movement. 

This lens has been included in the demo library mainly for comparison to the 
Fresnel diffractive magnifier (magfrenl.len). A great deal of caution needs to be 
exercised in interpreting the ray analysis for a visual instrument such as a 
magnifier, because the eye is neither in a fixed position, nor at a fixed focus. The 
eye (particularly a single eye) can tolerate rather poor imagery, but tends to be 
intolerant of imagery that changes rapidly with eye position. 
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Optical holographic element 

This is a hologram made from two point sources. An example holographic lens 
may be found in the public lens file “len\demo\lt\hologram.len.” This is an on-
axis holographic optical element, recorded with a helium-neon laser (0.6328 m), 
with a focal length of 30 mm. The prescription for the HOE is shown below. 
*HOLOGRAPHIC OPTICAL ELEMENT DATA 
  2     HOR  -1         HWV     0.632800 
        HV1   0         HX1       --       HY1       --       HZ1  -1.0000e+20 
        HV2   1         HX2       --       HY2       --       HZ2    30.000000 
 

The locations of the two point sources used to record the holograms are specified 
by their x, y, and z coordinates in the local coordinate system of the HOE surface. 
This is an on-axis lens, so the x and y coordinates of both point source 1 (HX1, 
HY1) and point source 2 (HX2, HY2) are zero. Point source 1 is actually a plane 
wave, incident upon the hologram from the left (the negative z direction), so HZ1 
is set to –1.0  1020. Since this is a real wave (the light travels from the source to 
the HOE surface), source 1 is real. This status is indicated by the “virtual factor” 
HV1; the virtual factor is true (1) for a virtual source and false (0) for a real 
source. Since point source 1 is real, HV1 = 0. Point source 2 is located at the focal 
point, which is 30 mm to the right of the HOE surface, so HZ2 is equal to 30. This 
wave is recorded such that the light is propagating from the HOE to the source, so 
this is a virtual source and HV2 = 1. As mentioned above, a helium-neon laser 
was used to record the hologram, so the construction wavelength (HWV) is 
0.6328. The construction wavelength is always specified in micrometers, just like 
all wavelengths in OSLO. The desired reconstruction diffraction order (HOR) is –
1; in this order, an on-axis plane wave reconstruction beam will be diffracted into 
a spherical wave converging to the focal point. This follows from elementary 
holography theory: if one of the construction beams is used to reilluminate the 
hologram, the other construction beam will be produced by the diffraction. 

This lens has two configurations; in the first configuration, the hologram substrate 
has a radius of curvature equal to the focal length while in the second 
configuration, the substrate is planar. For both configurations, the on-axis image 
is perfect, since the reconstruction geometry is the same as the recording 
geometry. The off-axis performance, however, is quite different. Curving the 
hologram substrate is analogous to the “bending” of a thin lens. Curving the HOE 
around the focal point eliminates the coma and results in an aplanatic element 
(i.e., the Abbe sine condition is satisfied), as shown by Welford.32 The 
elimination of coma is quite evident from the ray intercept curves. 

 

 
6. W. T. Welford, “Aplanatic hologram lenses on spherical surfaces,” Opt. Commun. 9, 268-269 
(1973). 
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The Rowland circle mount 

An important advance in the development of grating spectrographs was the 
concave grating, introduced by Henry A. Rowland in the early 1880’s. The 
grating lines are ruled on a concave reflecting surface, so that this single surface 
both separates the light of different wavelengths (by diffraction) and focuses the 
resulting spectra. The grating lines are equally spaced along a chord of the surface 
and are, thus, unequally spaced on the reflecting surface itself.  

Rowland found that if the source (entrance slit) is placed on a circle whose 
diameter is equal to the radius of curvature of the grating surface, the resulting 
diffracted spectra are focused on this same circle, provided that the surface of the 
grating is tangent to this circle and the grating lines are orthogonal to the plane of 
the circle. This circle is called the Rowland circle. For this example, we use a 
grating with 600 lines/mm, ruled on a surface with a radius of curvature of 100 
mm. The radius of the Rowland circle is half the radius of the grating surface, or 
50 mm. 

The performance of a concave grating with object and image on the Rowland 
circle is illustrated in this example. You can set up the system by entering the 
following data  

 

Note that the object and image surfaces both have a radius of curvature equal to 
the Rowland circle radius. The special data is set to the following values. For the 
DRW ON data, use the SPECIAL>>Surface Control>>General spreadsheet, and 
for the diffractive surface, use the SPECIAL>>Diffractive Surface>>Linear 
Grating spreadsheet. 
*SURFACE TAG DATA 
  0     DRW ON 
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  1     DRW ON 
  2     GOR   1          GSP     0.001667   GBO   0          GDP       --     

3 DRW ON 
 

 

If you are viewing this example in color, you see that the drawing shows black 
rays incident on the grating, and colored rays reflecting to the image surface. To 
make this drawing of the system, you need to modify the system wavelengths and 
set special Lens Drawing conditions. First, add a fourth wavelength, 2 microns. 
This wavelength is long enough so the ray trace will fail at the grating surface. 
*WAVELENGTHS 
CURRENT  WV1/WW1     WV2/WW2     WV3/WW3     WV4/WW4 
   1    0.587560    0.486130    0.656270    2.000000 
        1.000000    1.000000    1.000000    1.000000 
 

Next, set the Lens>>Lens Drawing conditions. Note that all 4 field points are 
from the axis, but have different wavelengths. 

 

Finally, you need to reset a preference. Use File>>Preferences>>Preference 
Groups>>Graphics, which will show the following dialog.  
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You need to set the Pen sequence control word as shown (normally abcdefgh). 
The Pen sequence control word sets the order of pens used for drawings. In 
drawing ray trajectories, when a new field point is encountered, OSLO uses the 
next pen from the sequence. When it reaches the end, it starts over again. The first 
four colors are (normally) black, green, blue, red. In the present system, the lens is 
drawn in black, the first field point in green, the second in blue, the third in red, 
and the fourth in black. By setting the fourth wavelength to 2 microns, we create a 
situation where the ray fails at the grating. Therefore the black rays are only 
shown up to the grating surface. 

This example illustrates a trick that can be used to produce a special drawing. 
Fundamentally, OSLO is a numerical optimization program, not a drawing 
program. Drawings are provided mainly to give the designer some idea of what 
system he or she is working with. However, occasionally it may be necessary to 
produce a non-standard drawing for a special purpose, and tricks such as the one 
used here can be helpful. 
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Gradient index 

Gradient-lens for a CD pickup 

Gradient-index technology has been applied to several diverse application areas. 
One of the common ones is in consumer optics, where small gradient lenses or 
arrays of gradient lenses are used in CD-ROMS and copiers. The lens shown here 
was designed by Nishi and Tayuma at Nippon Sheet Glass (NSG), manufacturer 
of  gradient lenses known by the trademark Selfoc. 

In connection with Selfoc lenses, it is worth noting that although NSG makes the 
paraxial data for their lenses available to the public, the actual data describing the 
real index distributions has not been published. The data for the index 
distributions used in this lens do not necessarily coincide with that for commercial 
Selfoc lenses. The lens is included here to show an example of how it can be 
entered into OSLO, as well as to assess the general performance level that might 
be expected from a GRIN lens of this type. 

In the drawing shown below, the block on the right is an optical disc. In analyzing 
this system, please recall that since the standard paraxial trace does not handle 
gradient index materials, you must use the *pxc and *pxt commands to obtain 
paraxial data. 
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Gradient index rod 

As noted before, gradient index technology is used in many diverse applications. 
The system in this example is a gradient index rod that is more like a fiber than a 
lens. It is, however, an imaginary system, designed using OSLO without regard 
for actual refractive indices that can be manufactured. 

 

The drawing above shows both on-axis and off axis beams. Note that the off-axis 
beam for both the upper and lower rim rays is truncated by the edge of the rod. In 
order for this to happen, you must turn on the Aperture check all GRIN segs 
general operating condition. If you don’t, the rays will be free to propagate 
outside the boundary defined by the aperture on the surface for with the GRIN 
material is defined. 
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Lasers and Gaussian beams 

Basic Gaussian beam imaging 

In this example, we will consider the propagation of a Gaussian beam in a simple 
imaging system. In Chapter 1, it was shown that the ABCD matrix relating object 
and image planes can be written as 

0

1 1

m

f m

 
    

M  (10.5) 

where m is the transverse magnification and f is the focal length of the imaging 
lens. Using the ABCD law and assuming n = n = 1, we can propagate a Gaussian 
beam described by q in the object plane to a beam described by q in the image 
plane via 

1 1
mq

q
q

f m

 



 

(10.6) 

Using the definition of the q parameter, it is easy to separate Eq. (10.6) into its real 
and imaginary parts and find expressions for the spot size w and wavefront radius 
of curvature R in the paraxial image plane 

w m w   (10.7) 

2m Rf
R

f mR
 


 (10.8) 

Several interesting conclusions can be drawn from the above relations. Not 
surprisingly, the ratio of the spot sizes is just the paraxial magnification. Perhaps 
less obvious is an implication of the image radius of curvature equation. Consider 
the case where we place the input beam waist in the object plane, so R = . 
Taking the limit of Eq. (10.8) for this case, we find that R = mf. For the usual case 
of a positive lens with real object and image distances, f is positive and m is 
negative. Thus, R is seen to be positive, which in the beam sign convention means 
that the image space beam has already passed through its waist before intersecting 
the paraxial image plane, i.e., the beam waist is inside the paraxial image location. 
This phenomenon is sometimes called the focal shift, since the point of maximum 
axial irradiance is not at the geometrical focal point. In order to have a beam waist 
in the paraxial image plane (R = ), we must have a radius R = f/m in the object 
plane. 

The focal shift phenomenon is more dramatic for “slow” beams with a small 
divergence angle, or in other words, beams with a small Fresnel number. (The 
Fresnel number for a circular aperture of radius a and wavefront radius of 
curvature R is given by a2/R.) We can illustrate this using the interactive ABCD 
analysis spreadsheet in OSLO. We will select a lens from the catalog database 
with a focal length of about 500 mm and use the paraxial setup spreadsheet to set 
the paraxial magnification to 1. Be sure to change the primary wavelength to 
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0.6328 m and delete wavelengths 2 and 3 before setting the magnification. 
Using, for example, the Melles Griot lens MGLDX248, the lens prescription is 

 

Using the interactive ABCD analysis spreadsheet, we will examine the 
propagation of a Gaussian beam through this lens. Use a waist size of 0.25 mm 
and a waist distance of 0 to place the incident beam waist at surface 0. 

There are a few conventions to remember in using the Gaussian beam spreadsheet 
in OSLO.  

 To use the spreadsheet, you must enter data in two of the four fields (w, 
w0, z, R) on the specification surface. The remaining 2 fields will be 
calculated automatically. The data entry field will be indicated by an 
asterisk (*) once you enter a value. It is not possible to enter impossible 
input data; the program will display an error message. 

 Sign conventions. The waist position is entered relative to the 
specification surface. If the waist is to the left of the specification surface, 
it has a negative sign (if there are no mirrors). The sign convention for 
wavefront radius is the same as for surface radius of curvature. That is, 
considering a wavefront diverging to the right, the wavefront radius of 
curvature is negative. In most laser literature, such a divergent wavefront 
has a positive radius of curvature. 

 OSLO uses a convention that source distances less than 1e8 are considered 
finite, while source distances more than 1e8 are considered infinite. In the 
case of Gaussian beam propagation, infinite distance cannot be handled, so 
OSLO uses a convention that when the object distance is greater than 1e8, 
the beam waist is considered to be on surface 1. This makes it easier to 
compare Gaussian beam propagation with ordinary geometrical 
propagation, because when the object distance is infinite, the wavefront on 
surface 1 is plane for either case. 

 The OSLO Gaussian beam spreadsheet compares the beam given on a 
specification surface to the beam on an evaluation surface. The default 
specification surface is the object surface, and the default evaluation 
surface is the image surface. However, there is no requirement that the 
specification surface be in object space, or even that the evaluation surface 
have a higher surface number than the specification surface. It is possible 
to make the specification surface an interior surface, and find the solution 
in either object of image space by just changing the evaluation surface 
number.  



Lasers and Gaussian beams 10-359 

 

In the present example, the object distance is finite, so the waist is on the object 
surface (surface 0).  

 

Now click the Print beam data in text window button to see a complete analysis 
on all surfaces. 

*GAUSSIAN BEAM - YZ PLANE 

 WAVELENGTH =   0.632800      M-SQUARED =   1.000000 

 SRF   SPOT SIZE  DIVERGENCE  WAIST SIZE  WAIST DIST  INC RADIUS  RFR RADIUS RAYLEIGH RG 

  0     0.250000    0.000806    0.250000      --          --          --      310.286885 

 

  1     0.848204    0.000164    0.810525  1.5242e+03 -1.1017e+03  1.7545e+04  4.9415e+03 

  2     0.848050    0.000946    0.212834  867.397688  1.7575e+04  925.703167  224.886721 

 

  3     0.250000    0.000946    0.212834 -138.583415 -503.519128 -503.519128  224.886721 

 

The spreadsheet and surface-by-surface analysis confirm the above discussion: 
the spot size in the paraxial image plane is the same as the spot size in the object 
plane (since |m| = 1) and the output beam waist lies to the left of the paraxial 
image plane, as can be seen in the schematic beam spot size plot. Also note that, 
as expected, the output wavefront radius of curvature is equal to the focal length. 

If you click the Plot beam spot size button, you will produce a graphical depiction of 
the beam propagation through the system. This is an anamorphic drawing in 
which the scale in the y-direction is greatly expanded so you can see the changing 
spot size. If you select the slider-wheel design option, a graphics slider will be 
created that lets you drag a cursor along the z-axis and displays the current spot 
size in the graphics window, as shown below. 
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Point Spread Function calculation 

We can use the point spread function computation in OSLO to verify the ABCD 
analysis. From the Gaussian beam data, we see that the radius of curvature of the 
wavefront at surface 1 is 1.1017 x 103 mm and the spot size at surface 1 is 
0.848204 mm. To set up an equivalent PSF calculation, we change the object 
distance (the thickness of surface 0) to match this wavefront radius of curvature 
value; then the geometric wavefront will have the same radius of curvature at the 
lens as the Gaussian beam we have just traced. Also, we set the setup operating 
conditions to use a Gaussian beam with an entering spot size equal to the 
Gaussian beam spot size at surface 1. We also increase the number of aperture 
divisions to 41.04, for increased accuracy. The entrance beam radius is set to 2 
mm (2.35 spot sizes), so that the spot diagram grid approximates an untruncated 
incident Gaussian. 

 

 

After entering the data, we close the Setup spreadsheet and use the 
Evaluate>>Spread Function>>Plot PSF Scans commmand with default options to 
compute the PSF. We see from the output (below) that the computed spot size is 
0.2502 mm, essentially the same as the size predicted by the paraxial Gaussian 
beam trace. 
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If we compute the central value of the point spread function at the paraxial image 
plane and at the waist distance (z = –138.583 mm) the ratio if the irradiances is 
0.726, essentially the same value as computed from the fundamental Gaussian 
beam solution to the wave equation, which predicts an irradiance ratio of (w0/w)2 = 
(0.213/0.25)2 = 0.725. 
*POINT SPREAD FUNCTION  
 WAVELENGTH 1 
      Y           X           Z           PSF      AMPLITUDE     PHASE 
      --          --          --        0.921462    0.959928 -106.967090 
 
*POINT SPREAD FUNCTION  
 WAVELENGTH 1 
      Y           X           Z           PSF      AMPLITUDE     PHASE 
      --          --     -138.583415    1.267969    1.126041  -75.772180 

 

We can repeat the above plot with a focus shift of -138.583 to compare the spot 
size at the beam waist with that found using the Gaussian beam spreadsheet. We 
need to increase the scale of the plot to accommodate the increased peak PSF 
(1.268). Again using the Evaluate>>Spread Function>>Plot PSF Scans 
commmand, we find that the point spread function size at z = –138.583 is 0.2132, 
consistent with the waist calculation of 0.2128 mm. 
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Truncated Gaussian beam 

Now we will consider the effect of a finite aperture on the beam. If there is a 
diffracting aperture in the system that is not much larger than the spot size at the 
aperture, then we cannot use the usual Gaussian beam formulae to analyze the 
propagation of the beam. We need to compute the diffraction integrals taking into 
account the finite limits imposed by the aperture. Thus, we must use the OSLO 
PSF analysis routines based on the spot diagram. As an example, we will insert a 
real circular diaphragm (i.e. a checked aperture) just before the lens. The radius of 
the diaphragm will be equal to the 1/e2 spot size of the beam at that point. Make 
the aperture a checked aperture so that the beam is truncated at this point. 

 

Now if we plot the x and y scans through the point spread function, we see that the 
spot size is no longer equal to the prediction of the Gaussian beam trace and the 
beam is no longer a Gaussian. By zooming the graphics window, you can see that 
the diffraction pattern exhibits evidence of the ring structure that is familiar from 
the analysis of uniformly illuminated pupils. [See, for example, Mahajan(33)]. 
Remember that OSLO normalizes the point spread function values to the peak of 
the perfect PSF for the same pupil size and focusing distance, so the irradiance 
normalizations are different for the above and below PSF plots. 

 
7. V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, 
obscuration, and aberrations,” J. Opt. Soc. Am. A 3, 470-485 (1986). 



Lasers and Gaussian beams 10-363 

 

 

 



10-364 Lasers and Gaussian beams 

 

Tilted spherical mirror 

 

This example is taken from a paper by DeJager and Noethen(34) The system is a 
spherical mirror tilted 45 degrees. The input beam is circular but the output beam 
is highly astigmatic because of the large tilt. The system considered is a mirror 
with a radius of curvature of –50 mm, operating at a paraxial magnification of –
1/3. Following DeJager and Noethen, enter the following system. 

 
*TILT/DECENTER DATA 
  1     DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA    45.000000   TLB       --       TLC       --     

Setup an on-axis object point and use the astigmatic Gaussian beam trace to 
propagate a circular beam with an object surface spot size of 1 mm. The input 
waist is at the object surface. 
*SET OBJECT POINT 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --       11.859577  -21.358516   33.333300  -33.333300 
 
*TRACE GAUSSIAN BEAM 
 WAVELENGTH =   0.632800       M-SQUARED =    1.000000 
 SRF    Y SPT SIZE  X SPT SIZE  BEAM AZMTH   Y RFR RAD   X RFR RAD PHASE AZMTH 
        Y WST SIZE  X WST SIZE               Y WST DST   X WST DST 
  0       1.000000    1.000000      --          --          --          --     
          1.000000    1.000000                  --          --     
 
  1       1.414500    1.000203      --       17.678937   35.360409      --     
          0.003560    0.007121               17.678713   35.358617 
 
  2       0.885686    0.057730      --      -15.654840    2.056608      --     
          0.003560    0.007121              -15.654587    2.025317 
 

 
8. D. DeJager and M. Noethen, “Gaussian beam parameters that use Coddington-based Y-NU 
paraprincipal ray tracing,” Appl. Opt. 31, 2199-2205 (1992); errata: Appl. Opt. 31, 6602 (1992). 



Lasers and Gaussian beams 10-365 

 

These results are nearly identical with the image space beam calculated by 
DeJager and Noethen. Note the difference between the wavefront radii of 
curvature for the Gaussian beam and the geometric field sags (YFS and XFS of 
the reference ray output).  

General astigmatism 

This example is taken from the paper by Arnaud and Kogelnik mentioned earlier 
in this chapter. The system consists of two cylindrical lenses, with a relative 
orientation between their cylinder axes of 45 degrees. This is a nonorthogonal 
system, and we would expect that a stigmatic incident beam should suffer from 
general astigmatism after passing through the two lenses. The paper states that the 
two lenses have focal lengths of 250 mm and 200 mm, and are separated by 500 
mm. It is also stated that the input beam, of wavelength 0.6328 m, has a waist 
that is located 500 mm in front of the first cylindrical lens. We can use the catalog 
database to find cylindrical lenses of the proper focal lengths and construct, for 
example, the following system. 

 

 

*TILT/DECENTER DATA 
  3     DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA       --       TLB       --       TLC    45.000000 
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  4     RCO   1 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA       --       TLB       --       TLC       --     
 

Note that surface 4 has a return coordinates specification to restore the remaining 
surface to untilted coordinates. Surfaces 5 through 10 are dummy surfaces, placed 
at 100 mm intervals, to correspond to the observation planes in Fig. 6 of the 
Arnaud and Kogelnik paper. Unfortunately, the paper does not give the value of 
the input beam waist that was used to generate the photographs in Fig. 6. We will 
assume a circular input beam with a 250 m diameter, i.e., a waist size of 0.125 
mm. 
>> trr 0 
 
*SET OBJECT POINT 
         FBY         FBX         FBZ 
         --          --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YC          XC          YFS         XFS         OPL    REF SPH RAD 
         --          --     -602.938147   65.736979  1.1144e+03  433.336428 
 
>> tgb ful all 0.125 0.125 0.0 0.0 0.0 
 
*TRACE GAUSSIAN BEAM 
 WAVELENGTH =   0.632800       M-SQUARED =    1.000000 
 SRF    Y SPT SIZE  X SPT SIZE  BEAM AZMTH   Y RFR RAD   X RFR RAD PHASE AZMTH 
        Y WST SIZE  X WST SIZE               Y WST DST   X WST DST 
  0       0.125000    0.125000      --          --          --          --     
          0.125000    0.125000                  --          --     
 
  1       0.815345    0.815345      --      744.967305 -775.778310      --     
          0.120145    0.125000              728.791376 -757.544599 
  2       0.810420    0.820075      --      488.794855 -514.933799      --     
          0.120145    0.125000              478.051970 -502.970122 
 
  3       0.125654    1.621025  -45.000000  517.175680 -532.661386   15.166995 
      No waist information; beam has general astigmatism. 
  4       0.126339    1.613054  -44.520709  353.080556 -310.473989   17.350078 
      No waist information; beam has general astigmatism. 
 
  5       0.203564    1.434653   17.423235 -160.508935  446.318575   -7.393698 
      No waist information; beam has general astigmatism. 
 
  6       0.275956    1.415702   37.991769 -229.910974  407.348510   -3.418038 
      No waist information; beam has general astigmatism. 
 
  7       1.575798    0.277228  -32.997671 -310.935616  361.858250   -0.610825 
      No waist information; beam has general astigmatism. 
 
  8       1.866401    0.234750  -19.257529 -387.981434  355.943169    3.149425 
      No waist information; beam has general astigmatism. 
 
  9       2.230996    0.196775   -9.949000 -442.951614  611.649234   11.359960 
      No waist information; beam has general astigmatism. 
 
 10       2.636856    0.198718   -3.472671 -414.322269 -1.9493e+03   37.601892 
      No waist information; beam has general astigmatism. 
 

These results are consistent with the photographs in Fig. 6 and the discussion of 
Section VII of the paper. Just after the second lens (surface 4) the beam is nearly 
horizontal. After the second cylindrical lens, the beam suffers from general 
astigmatism and no waist information can be calculated. As the beam propagates 
(surfaces 5 – 10), it changes size and rotates toward a more vertical orientation. 
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The spot size and wavefront axes are never aligned as the beam propagates, since 
the BEAM AZMTH and PHASE AZMTH angle are never the same.  

Using the values of the Y SPT SIZE, X SPT SIZE, and BEAM AZMTH 
computed on surfaces 5 through 10, we can draw the spot ellipse as the beam 
propagates beyond the cylindrical lenses. The ellipses, shown below, can be 
compared to the experimental results presented in Fig. 6 of the Arnaud and 
Kogelnik paper. 

2.0 mm

z = 100.0 mm Surface 6

2.0 mm

z = 200.0 mm Surface 7

2.0 mm

z = 300.0 mm Surface 8

2.0 mm

z = 400.0 mm Surface 9

2.0 mm

z = 500.0 mm Surface 10

2.0 mm

z = 600.0 mm Surface 11
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Laser cavity design 

Usually, a laser consists of some gain medium which is placed in a cavity (usually 
two mirrors) to provide feedback. These laser cavities (or resonators) support 
modes of propagation; the fundamental mode is the Gaussian beam studied in this 
chapter. A resonator mode is a configuration of the optical field that is self-
consistent, i.e., the beam parameters for the field are the same after each complete 
round trip of the wave through the cavity. Thus, the modes are axial standing 
wave patterns in the cavity. For a stable mode, the beam wavefront radius of 
curvature is equal to the radius of curvature of the mirror, when the field is 
incident upon each cavity mirror. In this example, we will design a simple Fabry-
Perot cavity (two plane mirrors).  

Since the cavity has plane mirrors and the wavefront radii of curvature at the 
mirrors are equal to the mirror radii for a mode, the beam radii must be infinite on 
the mirrors. In other words, there must be a beam waist located at each mirror. To 
study the propagation of the beam from one mirror to the other, we only need to 
enter the optical system such that the object surface corresponds to one of the 
cavity mirrors and the image surface corresponds to the other mirror. Inside the 
cavity, we have the gain medium and a focusing lens. The gain medium is a 5 mm 
long, 0.5 mm diameter tube of neodymium-doped yttrium aluminum garnet 
(Nd:YAG, refractive index 1.82) and the lens is a 10 mm focal length, plano-
convex fused silica lens from Melles Griot (Part No. 01LQF005). The lens is 
separated from the YAG rod by 0.5 mm and the second mirror (the image surface 
in our case) is 0.5 mm from the convex surface of the lens. We start with the 
YAG rod 5 mm from the object surface (the first mirror). Note that the lens has 
been reversed from its orientation in the catalog lens data base. 

 

 

We need to find the correct separation from the object to the YAG rod in order to 
have a Gaussian beam waist on both mirrors. Thus our first variable is the 
thickness of surface 0. The other unknown quantity is what the beam waist size is 
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for the mode. Unfortunately, the beam size is not one of the variable types in 
OSLO. We can, however, use a “dummy” variable to represent to waist size. For 
example, since surface 0 has a curvature of zero, changing the conic constant has 
no effect on the shape of the surface or the optical properties of the system. Thus, 
we can make the conic constant of surface 0 a variable, with the understanding 
that it represents the object space beam waist. Since a waist size of 0 is not 
allowed, we start with a value of 0.01. 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  0       0.010000      --          --          --          --     
*VARIABLES 
 VB   SN  CF  TYP       MIN         MAX        DAMPING      INCR        VALUE 
V 1    0   -  TH      4.000000    6.000000    1.000000  1.0002e-05     5.000000 
V 2    0   -  CC    1.0000e-05    0.500000    1.000000  1.0000e-05     0.010000 

We will use the astigmatic beam trace and SCP to compute the necessary 
operands. The beam will have a waist on surface 0 and a spot size (i.e., waist size) 
equal to the value of the object surface conic constant. One operand will be the 
waist distance for the image surface (surface 5). We want the image space waist 
to be at surface 5, so this value should be zero. Also, the beam should be confined 
to the YAG rod, so we target the beam size exiting the rod (surface 2) to be 2/3 of 
the radius of the rod. The SCP command “*yagmode” computes these operand 
components. 
*OPERATING CONDITIONS: OPTIMIZATION 
   ……. 
   CCL/SCP operands command:    *yagmode 
 
*yagmode 
set_preference(outp, off); 
i = sbrow; 
ssbuf_reset(i, 16); 
trace_ref_ray(0.0, 0.0, 0.0, 0.0, 0.0); 
trace_gaussian_beam(ful, all, cc[0], cc[0], 0.0, 0.0, 0.0); 
Ocm[1] = ssb(9, 1);  // Spot size on surface 2 
Ocm[2] = ssb(16, 3); // Waist distance from image surface 
ssbuf_reset(-i, 0); 
set_preference(outp, on); 
 

In terms of the above callback command, the operands are as follows: 

Once the operands and variables are properly entered, we can use the Ite 
command on the text output toolbar to iterate the design. After the optimization 
process has converged, we examine the variables and operands. Tracing the 
resulting mode beam confirms that the output waist is located on surface 5 and 
that the beam size at the YAG rod is the desired value. 
*VARIABLES 
 VB   SN  CF  TYP       MIN         MAX        DAMPING      INCR        VALUE 
V 1    0   -  TH      4.000000    6.000000  720.576161  1.0002e-05     5.070257 
V 2    0   -  CC    1.0000e-05    0.500000  4.2833e+04  1.0000e-05     0.015956 
 
*OPERANDS 
 OP    DEFINITION                 MODE     WGT     NAME          VALUE   %CNTRB 
O 1    "OCM1-0.1667"                M    1.000000 Spot size   9.7145e-16   5.16 
O 2    "OCM2"                       M    1.000000 Waist dist  4.1662e-15  94.84 
MIN ERROR:   3.0250e-15 
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*TRACE GAUSSIAN BEAM 
 WAVELENGTH =   1.064000 
 SRF    Y SPT SIZE  X SPT SIZE  BEAM AZMTH   Y RFR RAD   X RFR RAD PHASE AZMTH 
        Y WST SIZE  X WST SIZE               Y WST DST   X WST DST 
  0       0.015956    0.015956      --          --          --          --     
          0.015956    0.015956                  --          --     
 
  1       0.108798    0.108798      --       -9.430706   -9.430706      --     
          0.015956    0.015956               -9.227868   -9.227868 
  2       0.166700    0.166700      --       -7.889794   -7.889794      --     
          0.015956    0.015956               -7.817510   -7.817510 
 
  3       0.177267    0.177267      --      -12.155806  -12.155806      --     
          0.015956    0.015956              -12.057320  -12.057320 
  4       0.216670    0.216670      --      3.8427e+04  3.8427e+04      --     
          0.216669    0.216669                0.500000    0.500000 
 
  5       0.216669    0.216669      --      4.6117e+18  4.6117e+18      --     
          0.216669    0.216669              4.1662e-15  4.1662e-15 

 

Laser-diode collimating lens 

This example illustrates the difference between paraxial and aplanatic ray aiming 
used for evaluation of high-speed lenses. It is available in the file diodcoll.len. 
The lens here is designed to take light from a laser diode and produce a collimated 
beam. It is a commercially available design available from Melles Griot as their 
part number 06GLC002. It is designed for a numerical aperture of 0.5 on the short 
conjugate side, and has a focal length of about 8mm. 

 

In traditional optical design, lenses are designed with the long conjugate side on 
the left. There are two reasons for this convention. First, there is a maximum 
distance that rays can be traced without loss of numerical accuracy using ordinary 
ray trace equations (in OSLO, this distance is 108 units). Many programs are set 
up to take object distances greater than this as being at infinity, for which special 
equations are used. When the long distance is on the image side, the system must 
be evaluated in afocal mode. This is not a problem for OSLO, which has built-in 
afocal mode support. 

The second reason has to do with the way that rays are aimed at the lens from 
object space. In traditional programs, rays are aimed at a flat entrance pupil. This 
means that fractional coordinates of rays are proportional to their direction 
tangents in object space. When the object is at a great distance, this is ok, but 
actually fractional coordinates should be proportional to the direction cosines of 
rays in object space. We call this aplanatic ray aiming, as opposed to paraxial ray 
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aiming. Aplanatic ray aiming was used in GENII for many years, and has been 
introduced into OSLO since the programs were merged in 1994. It has the 
advantage that OSLO can now be used to evaluate systems from short to long 
conjugate, which is not possible with a program that uses paraxial ray aiming. 

The laser diode collimator is a fast enough system for the differences between 
paraxial and aplanatic ray aiming to be readily observable. The figures below 
shows the two cases (the system was changed to focal mode to produce these 
plots). 

 

Beam circularizer for diode lasers 

Most diode lasers emit asymmetric beams. The numerical aperture is different in 
the yz and xz planes, and often the beam has astigmatism, which is a separate issue. 
One way to make the beam circular is to use a pair of anamorphic prisms, as 
shown in this example. The prisms used here are available as Melles Griot part 
number 06GPU001. They work in collimated light (otherwise they would add 
astigmatism), so in an actual application the prisms must be used in combination 
with a collimator. Such a system is included as the file anaprism.len, described 
below. 

The prisms have a vertex angle of 29.43333 degrees, a width of 12mm, and a 
maximum thickness perpendicular to the back face of 8.5mm. For a given entry 
angle to the first prism, the angle of the second prism is fixed by the requirement 
that the beam emerge parallel to itself. The displacement of the beam depends on 
the prism separation. The listing below shows how the system should be set up in 
OSLO. Surfaces 4 and 6 are expressed in the coordinate system of surface 1 using 
a return_coordinates (rco) command. The rco command goes on the preceding 
surface and indicates that the coordinates of the next surface are to be taken 
according to the dcx, dcy, dcz, tla, tlb, and tlc relative to a base surface (here, 
surface 1). 

In order to prevent a confusing drawing caused by the tilted surfaces, the surfaces 
themselves are marked not drawable (in the Surface Control spreadsheet). A plan 
view of the system shows just the ray trajectories. Note that although the drawing 
makes it look like there are only two surfaces, there are actually 4. The rays are 
close enough to normal incidence on the other two that the drawing doesn’t show 
them. 
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To substitute for the missing prism surfaces, the entire assembly has been placed 
in a box, using bdi (boundary data information) data. OSLO graphics routines can 
be instructed to put 3D objects on a drawing that are totally unrelated to the 
optical function of the depicted system. These objects are specified by a list of 
vertices (vx) and polygon faces (pf), as shown in the listing below. To enter such 
data yourself, open the lens file in the text editor and use the same scheme. The 
vertex and face information must be preceded by a bdi command, which gives the 
number of data items. The final solid-model drawing of the system is as follows: 

 

 

*LENS DATA 
Anamorphic prism assembly 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.0000e+18             AIR      
 
  1        --          6.000000      4.000000 AS          AIR   *  
 
  2        --          5.872557    1.0000e-06            SF11 C *  
  3        --            --        1.0000e-06             AIR   *  
 
  4        --          5.872557    1.0000e-06            SF11 C *  
  5        --            --        1.0000e-06             AIR   *  
 
  6        --            --          4.000000             AIR   * Prism assy 
 
  7        --         -0.003198      4.179133 S                    
 
 
*TILT/DECENTER DATA 
  2     DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA   -59.800000   TLB       --       TLC       --     
  3     RCO   1 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA    29.433333   TLB       --       TLC       --     
  4     DT    1         DCX       --       DCY    -6.400000   DCZ    16.866459 
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                        TLA    29.292833   TLB       --       TLC       --     
  5     RCO   1 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA   -29.433333   TLB       --       TLC       --     
  6     DT    1         DCX       --       DCY    -6.400000   DCZ    23.000000 
                        TLA       --       TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  1     LMO EGR  (6 surfaces) 
  1     DRW AP 
  6     DRW AP 
 
*BOUNDARY DRAWING DATA 
 SRF 1: 
 VX NBR         X            Y            Z        COORD SURF 
    1        7.000000     7.000000       --             1 
    2       -7.000000     7.000000       --             1 
    3       -7.000000   -14.000000       --             1 
    4        7.000000   -14.000000       --             1 
    5        7.000000     7.000000    23.000000         1 
    6       -7.000000     7.000000    23.000000         1 
    7       -7.000000   -14.000000    23.000000         1 
    8        7.000000   -14.000000    23.000000         1 
 PF NBR        VX1          VX2          VX3          VX4 
    1            1            2            3            4 
    2            1            5            6            2 
    3            5            8            7            6 
    4            8            7            3            4 
    5            1            4            8            5 
    6            2            3            7            6 
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Shaping a diode laser beam 
This file combines a diode-laser collimator (diodcoll.len), a cylindrical lens, and an anamorphic 
prism assembly (anaprism.len) to create an overall system that converts the light from a 
hypothetical diode laser having a beam divergence ratio of 3:1 and 10 microns of astigmatism into 
a collimated circular Gaussian beam having a wavefront quality of better than 0.25. The diode is 
assumed to be single mode, and to have a numerical aperture in the xz plane of 0.3, and a 
numerical aperture in the yz plane of 0.1. The general layout of the system is as shown below. For 
additional information on the collimator see page 370, and for additional information on the prism 
assembly see page 371.  

 

 

 

*LENS DATA 
Astigmatic diode/prism assembly 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --          1.578414    1.0000e-06             AIR      
 
  1   ELEMENT GRP     10.200000      2.500000 A          SF11 C *  
  6    Collimator      3.000000      4.500000             AIR     Collimator 
 
  7       ELEMENT      1.000000      4.000000             BK7 C *  
  8    Astig corr        --          4.000000             AIR   * Astig corr 
 
  9   ELEMENT GRP     17.745114      4.000000             AIR   *  
 14    Prism assy        --          4.000000             AIR   * Prism assy 
 
 15       ELEMENT      1.000000      4.000000             BK7 C *  
 16    Out window        --          4.000000             AIR     Out window 
 
 17        --            --          2.515146 S                    
The astigmatism of the source is listed as the general operating condition sasd on the general 
operating conditions, as shown below. The value is the distance between the apparent source 
locations in the yz and xz meridians, 0.01 millimeters in the present example. 

 

*OPERATING CONDITIONS: GENERAL 
   .  
   . 
   Source astigmatic dist:    0.010000    Ray aiming mode:          Aplanatic 
   Temperature:              20.000000    Pressure:                  1.000000 
 

The numerical aperture of the system is listed as 0.3 on the surface data spreadsheet. This tacitly 
assumes that the beam is circular. The ellipticity of the beam is indicated in the spot diagram 
operating conditions, since that is the place where it is important. The spot size in the y-direction is 
called ssy, and the spot size in the x direction is called ssx. Since the diode aperture is specified in 
NA, the spot size must be given as ss = th[0]*tan(asin(NA)). Which yields ssy = .159, ssx = .496. 
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The data below show the results of a spot diagram. Note that since the system is afocal, the spot 
data appears in angular measure (radians). Note also that the spot is much larger in the x direction 
than the y direction, as confirmed by the plot. 

*SPOT DIAGRAM: MONOCHROMATIC APODIZED 
 APDIV    11.050000 
 WAVELENGTH 1 
 WAV WEIGHTS: 
       WW1     
    1.000000 
 GAU   SSY         SSX 
    0.100000    0.300000 
 NUMBER OF RAYS TRACED: 
       WV1     
        96         
 PER CENT WEIGHTED RAY TRANSMISSION:     6.532767 
 
*SPOT SIZES  
  GEO RMS YA  GEO RMS XA  GEO RMS RA  DIFFR LIMIT    CENTYA      CENTXA 
  1.3927e-06  9.4077e-06  9.5102e-06  6.8377e-05      --          --     
 
*WAVEFRONT RS 
 WAVELENGTH 1 
   PKVAL OPD     RMS OPD  STREHL RATIO    RSY         RSX         RSZ 
    0.031658    0.007022    0.998711  1.1417e-10      --          --     
 

 

Spot diagrams only show the intersection points of rays with the image surface, not the ray 
weights. In the present case, the different ssx and ssy values put different weights on the rays (you 
can confirm this using the Calculate >> Display spot diagram command and selecting ray 
weights). The weights affect calculations such as energy distributions, and more particularly 
Fourier transforms, which are used to compute the intensity distribution in the emergent beam. 
The plot below shows the point spread function (i.e. the far-field intensity distribution) for the 
present system. The abscissa is in radians, since the evaluation is in afocal mode. 
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Gaussian beam movie 

OSLO contains commands for making and viewing movies. Movies are 
sequences of graphics displays ("frames") that are saved in a single file that can 
be "played back" using the Show_movie command, which is executed when you 
select a movie from the User >> Movies submenu. As an example, the file 
gbmovie.mov is shipped with all versions of OSLO. It illustrates Gaussian beam 
propagation through a system where there are two lenses within the Rayleigh 
range of the beam. In the movie, a laser emitting a collimated beam having a spot 
size that ranges between .02 and .5 mm is placed at the focal point of a singlet 
lens that is separated from another identical singlet by its focal length. To run the 
movie, select the Gaussian Beam entry on the Movies submenu, or try the 
command 

 show_movie gbmovie fab 0 10 

A typical output screen is shown below. 

You can make movies yourself. There are two ways to make a movie. One, 
available in all versions of OSLO, is to open a movie file and save frames in it 
one by one. You can use SCP to automate the process. The commands required 
for this are as follows: 

 Open_movie(char Filename[])  

 Save_frame(void)  /* repeat as needed */ 

 Close_movie(void) 

For more information on movies, see the OSLO Help system. 
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Aplanatic laser focusing system 
This system is designed in chapter 5 using Melles Griot catalog lenses. Here, a small “light pipe” 
has been added in the image plane to simulate a fiber. The light pipe has a diameter of  0.005mm, 
and a length of 0.05mm, so it is similar in geometrical size to the one postulated for the example. 
To see the fiber, you must make a special drawing in which you limit the surfaces drawn to 6 and 
7, then you can zoom in as much as possible. The result is the second drawing below. 

 

 

 

 

You can readily see that the extreme rays miss the edge of the fiber. Of course no particular 
quantitative information can be obtained from this, since the system is close to the diffraction 
limit. If you want to obtain detailed information on the coupling into the fiber, you should use the 
Options >> Fiber coupling command. If you want to use this command, you should first remove 
the light pipe (surfaces 6 and 7) from the system, since the command assumes that the fiber is 
located in the image plane. 
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Fiber coupling 

As a simplified example of the calculation of fiber coupling efficiency, consider 
the case of coupling the output of a diode laser into a fiber. A common technique 
to accomplish this is the use of ball lenses, since small diameter spheres are easier 
to manufacture than thin lenses of the same diameter. We assume that the diode 
has far-field divergence half angles of 30 in y and 10 in x. In the Gaussian beam 
chapter, it is shown that the relationship between beam waist size w0 and 
divergence angle   is 

1

0

tan
w

  
    

 
(10.9)   

Assuming a wavelength of 0.83 m, this leads to beam waists of w0y = 0.458 m 
and w0x = 1.498 m. This beam is, of course, elliptical. Since we will be using a 
rotationally symmetric ball lens, we need to choose an appropriate magnification 
for coupling to the fiber mode, which is circular. A circular beam with the same 
cross-sectional area at the waist would have a waist size of w0 = (w0xw0y)1/2 = 0.828 
m. Thus, assuming a 5 m radius Gaussian mode and the diode waist as the 
object, we choose a nominal paraxial magnification of m = (5/0.828)  –6. Using 
a 1 mm radius fiber coupling sphere from the Melles Griot catalog, we construct 
the following system. 

 

 

Note that we have located the aperture stop at the center of the sphere. The spot 
diagram operating conditions are set so that the Gaussian apodization matches our 
assumed divergence angles of 30 and 10. Thus the entering spot sizes are 
th[0]*tan(30) = 1.285*0.577 = 0.742 mm and th[0]*tan(10) = 1.285*0.176 = 
0.227 mm. 
*OPERATING CONDITIONS: SPOT DIAGRAM 
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   Aperture divisions:      100.000000    Use Gaussian pupil apodization:  On 
   X 1/e^2 entr. irrad.:      0.226635    Y 1/e^2 entr. irrad.:      0.742076 
   Use all wavelengths in diagram:  On    P-V OPD for MTF switch:    3.000000 
   Use equal image space incrmnts.:Off    Through-foc. frequency:   25.000000 
   Diffraction efficiency calcs.:  Off 
 

A Gaussian beam trace confirms that the input beam is imaged with a spot size 
magnification of –6 and the average spot size is (2.75*8.99)1/2  = 5 m. This 
Gaussian beam analysis only considers the propagation of the beam in a small 
region around the axis. This ball lens has a large amount of spherical aberration 
and the actual diffraction pattern is not the ideal Gaussian shape. 
*TRACE GAUSSIAN BEAM 
 WAVELENGTH =   0.830000 
 SRF    Y SPT SIZE  X SPT SIZE  BEAM AZMTH   Y RFR RAD   X RFR RAD PHASE AZMTH 
        Y WST SIZE  X WST SIZE               Y WST DST   X WST DST 
  0       0.000458    0.001498      --          --          --          --     
          0.000458    0.001498                  --          --     
 
  1       0.742076    0.226640      --       -1.285313   -1.285369      --     
          0.000458    0.001498               -1.285313   -1.285313 
 
  2       0.164726    0.050331      --       -0.684757   -0.685547      --     
          0.000600    0.001964               -0.684748   -0.684503 
  3       0.645851    0.197248      --        6.711874    6.711661      --     
          0.002746    0.008980                6.711752    6.697749 
 
  4       0.002746    0.008990      --       -6.610179   -6.610179      --     
          0.002746    0.008980               -0.000123   -0.014127 
 

 

This departure from the 5 m Gaussian shape of the mode is reflected in the 
computation of the coupling efficiency, which is about 18%. 
*FIBER COUPLING EFFICIENCY - WAVELENGTH 1 
 GAUSSIAN MODE - 1/e**2 RADIUS =    0.005000 
 FIBER DISPLACEMENT   Y       --       X       --     
 FIBER TILT          TLB      --      TLA      --     
 POWER COUPLING =    0.1826       (  -7.385    dB) 
 AMPLITUDE COUPLING    REAL =   -0.1981     IMAGINARY =    0.3786 

The above efficiency was calculated at paraxial focus. It is well known, of course, 
that in the presence of spherical aberration, best focus is not located at the 
paraxial focus. Introduction of a focus shift can also be used to increase the 
coupling efficiency. For example, shifting the end of the fiber by 620 m towards 
the lens increases the efficiency to just over 40%. 
*LENS DATA 
Fiber Coupling Example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --          1.285313    1.2853e-06             AIR      
 
  1        --         -1.000000      1.100000 AS          AIR      
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  2      06LMS202 F    2.000000 F    0.800000 F         FIXED F *  
  3               F    6.711875      0.800000 F           AIR      
 
  4        --         -0.620000      0.088442 S 
 
*FIBER COUPLING EFFICIENCY - WAVELENGTH 1 
 GAUSSIAN MODE - 1/e**2 RADIUS =    0.005000 
 FIBER DISPLACEMENT   Y       --       X       --     
 FIBER TILT          TLB      --      TLA      --     
 POWER COUPLING =    0.4255       (  -3.711    dB) 
 AMPLITUDE COUPLING    REAL =    0.418      IMAGINARY =    0.5008 
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Polarization and vector diffraction 

Malus’s law 

Malus’s law states that if linearly polarized light is incident upon an ideal linear 
polarizer, the intensity of the transmitted light is given by 

    20 cosI I    (10.10) 

where  is the angle between the pass-plane of the polarizer and the azimuth of 
the incident linear polarization and I(0) is the transmitted intensity when  = 0. 
We can prove this result using the Jones calculus formalism developed in the 
previous section. Assume we have incident light that is linearly polarized in the y 
direction. Assuming, for simplicity, that the light has unit intensity, the incident 
Jones vector is 

0

1i

 
  
 

E  (10.11) 

The Jones matrix for a linear polarizer is given by Eq. (2.78). Since the incident 
light is y-polarized, the angle   in Eq. (2.78) is equivalent to the angle  in Eq. 
(10.10). Using the general transformation law for the Jones calculus [Eq. (2.74)], we 
find that the Jones vector for the transmitted wave is 

2

cos sin

cost

  
   

E  (10.12) 

The intensity of the transmitted light is the sum of the squared moduli of the x and 
y components of Et, i.e., I() = Etx2 + Ety2 or 

   2 2 4 2 2 2
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(10.13) 

This is Malus’s law, with I(0) = 1. We can set up a simple system in OSLO to 
analyze this case, using the polarization element to model the linear polarizer. We 
start with the pass-plane of the polarizer aligned with the incident polarization ( 
= 0). 
*LENS DATA 
Malus's Law Example 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1        --            --          1.000000 AS          AIR      
 
  2        --         10.000000      1.000000 S           AIR   *  
 
  3        --            --          1.000010 S                    
 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  2      JA       --          --          JB       --          --     
         JC       --          --          JD     1.000000      --     
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.500000 
        1.000000 
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*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:      1.000000    Image axial ray slope:   1.0000e-20 
   Object num. aperture:    1.0000e-20    F-number:                    --     
   Image num. aperture:     1.0000e-20    Working F-number:        5.0000e+19 
 FIELD 
   Field angle:             5.7296e-05    Object height:          -1.0000e+14 
   Gaussian image height:  -1.0000e+14    Chief ray ims height:    1.0000e-05 
 CONJUGATES 
   Object distance:         1.0000e+20    Srf 1 to prin. pt. 1:        --     
   Gaussian image dist.:   -1.0000e+20    Srf 2 to prin. pt. 2:        --     
   Overall lens length:         --        Total track length:      1.0000e+20 
   Paraxial magnification:    1.000000    Srf 2 to image srf:       10.000000 
 OTHER DATA 
   Entrance pupil radius:     1.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:         1.000000    Srf 2 to exit pupil:         --     
   Lagrange invariant:     -1.0000e-06    Petzval radius:          1.0000e+40 
   Effective focal length:      --     
 
*OPERATING CONDITIONS: GENERAL 
   Image surface:                    3    Aperture stop:                    1 
   Evaluation mode:             Afocal    Reference surface:                1 
   Aberration mode:            Angular    Aperture checking in raytrace:   On 
   Number of rays in fans:          21    Designer:                      OSLO 
   Units:                           mm    Program:   OSLO SIX Rev. 5.10 SIN-G 
   Wavefront ref sph pos:   Exit pupil    OPD reported in wavelengths:     On 
   Callback level:                   0    Print surface group data:       Off 
   Compute solves in configs:      Off  
   Telecentric entrance pupil:     Off    Wide-angle ray aiming mode:     Off 
   Aper check all GRIN ray segs:   Off    Extended-aper ray aiming mode:  Off 
   Plot ray-intercepts as H-tan U: Off    XARM beam angle:          90.000000 
   Source astigmatic dist:      --        Ray aiming mode:          Aplanatic 
   Temperature:              20.000000    Pressure:                  1.000000 
 
*OPERATING CONDITIONS: POLARIZATION 
   Use polarization raytrace:       On    Degree of polarization:    1.000000 
   Ellipse axes ratio:          --        Y to major axis angle:       --     
   Handedness of ellipse:        Right    Use 1/4 wave MgF2 coating:      Off 

Since the incident polarization and the pass-plane of the polarizer are aligned, all 
of the incident light should be transmitted, as the polarization ray trace data 
indicates. 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG        D 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --          --          --          --     
          1.000000    1.000000      --          --          --     
 
  2         --          --          --          --          --          --     
          1.000000    1.000000      --          --          --     
 
  3         --          --          --          --          --       10.000000 
          1.000000    1.000000      --          --          --     
 PUPIL      FY          FX                                              OPD 
            --          --                                              --     

We now change the pass-plane angle of the polarizer to 30 by changing the 
elements of the Jones matrix for surface 2. 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  2      JA     0.250000      --          JB     0.433013      --     
         JC     0.433013      --          JD     0.750000      -- 

Malus’s law predicts that the transmitted intensity should be cos2(30) = 0.75. The 
transmitted light should be linearly polarized at an angle of 30 from the y-axis. 
Tracing a polarization ray confirms this. 
*TRACE RAY - LOCAL COORDINATES 
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 SRF        Y           X           Z           YANG        XANG        D 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --          --          --          --     
          1.000000    1.000000      --          --          --     
 
 
  2         --          --          --          --          --          --     
          0.750000    1.000000      --       30.000000      --     
 
 
  3         --          --          --          --          --       10.000000 
          0.750000    1.000000      --       30.000000      --     
 
 PUPIL      FY          FX                                              OPD 
            --          --                                              -- 

A pass-plane angle of 60 results in a transmitted intensity of cos2(60) = 0.25. 

*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  2      JA     0.750000      --          JB     0.433013      --     
         JC     0.433013      --          JD     0.250000      --     
 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG        D 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --          --          --          --     
          1.000000    1.000000      --          --          --     
 
 
  2         --          --          --          --          --          --     
          0.250000    1.000000      --       60.000000      --     
 
 
  3         --          --          --          --          --       10.000000 
          0.250000    1.000000      --       60.000000      --     
 
 PUPIL      FY          FX                                              OPD 
            --          --                                              -- 

Finally, orienting the pass-plane of the polarizer along the x-axis (= 90) results 
in complete attenuation of the incident light. 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  2      JA     1.000000      --          JB       --          --     
         JC       --          --          JD       --          --     
 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y           X           Z           YANG        XANG        D 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --          --          --          --     
          1.000000    1.000000      --          --          --     
 
 
  2         --          --          --          --          --          --     
            --          --          --          --          --     
 
 
  3         --          --          --          --          --       10.000000 
            --          --          --          --          --     
 
 PUPIL      FY          FX                                              OPD 
            --          --                                              -- 
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Fresnel rhomb 

It is easy to see that the Fresnel equations [Eqs. (2.61) - (2.64)] predict different 
amounts of reflected and transmitted electric fields for s and p components, except 
for the case of normal incidence (i = 0). This means that, in general, all surfaces 
in an optical system act as polarization elements, to a greater or lesser degree. In 
many systems, this is an undesirable effect, and a great amount of effort has been 
extended in order to produce coatings that are insensitive to polarization. On the 
other hand, there are optical elements that put the differences between s and p 
reflection coefficients to advantageous use. One of these devices is the Fresnel 
rhomb, which is used to convert linearly polarized light to circularly polarized 
light.  

For angles greater than the critical angle, the Fresnel reflection coefficients are 
complex, indicating that the reflected waves undergo a phase shift. In addition, 
this phase shift is different for the s and p components. It can be shown that the 
relative phase difference between s and p polarization for a totally internally 
reflected wave is  
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where the refractive index ratio n/n is less than 1 and the angle of incidence is 
greater than the critical angle, i.e., sini i  n/n. The maximum relative phase 
difference m is  
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Fresnel demonstrated how to use the phase difference to convert linearly 
polarized light to circularly polarized light. The incident, linearly polarized wave 
is oriented such that the electric vector makes an angle of 45 with the plane of 
incidence. Then, the incident s and p amplitudes are equal and if the beam is 
totally internally reflected, the reflected amplitudes remain equal. The refractive 
index ratio and angle of incidence must be chosen so that the relative phase 
difference  is equal to 90. If this is to be achieved with a single reflection, Eq. 
(10.15) implies that (using m/2 = 45, so that tanm/2 = 1) 
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This means that the refractive index ratio must be 
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or 
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This is not a realistic value if it is desired to use an optical glass in air. Fresnel 
observed that if n/n = 1.51, then Eq. (10.15) indicates that the maximum phase 
difference is 45.94, so it should be possible to choose an angle of incidence such 
that  = 45 and then use two total internal reflections to achieve a total phase 
shift of 90. Using n/n = 1.51 and  = 45 in Eq. (10.14) yields two values for the 
angle of incidence: i = 48.624 or i = 54.623. A glass block, that produces two 
total internal reflections at either of these two angles, is called a Fresnel rhomb.  

We can enter a Fresnel rhomb in OSLO by making use of the total internal 
reflection only surface. We do not want to designate the surfaces as mirrors, since 
we need the phase shift of total internal reflection to achieve the desired change in 
polarization state. Using the larger value for the desired angle of incidence on the 
TIR surfaces, the prescription for the Fresnel rhomb is given below. 
*LENS DATA 
Fresnel Rhomb 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    7.1006e+19             AIR      
 
  1        --            --          2.000000 AS          AIR      
 
  2        --         12.500000      7.912300 X        GLASS2   *  
  3        --         10.000000      8.000000 X           AIR   *  
  4        --         25.000000     10.000000 X           AIR   *  
  5        --         10.000000      7.912300 X           AIR   *  
 
  6        --            --         11.451742 S                    
 
*TILT/DECENTER DATA 
  2     RCO   2 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA   -35.376895   TLB       --       TLC       --     
  3     DT    1         DCX       --       DCY    -5.000000   DCZ       --     
                        TLA    90.000000   TLB       --       TLC       --     
  4     RCO   1 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA       --       TLB       --       TLC       --     
  5     DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA   -35.376895   TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  3     TIR   1 
  4     TIR   1 
 
*OPERATING CONDITIONS: GENERAL 
   Image surface:                    6    Aperture stop:                    1 
   Evaluation mode:             Afocal    Reference surface:                1 
   Aberration mode:            Angular    Aperture checking in raytrace:   On 
   Number of rays in fans:          21    Designer:                      OSLO 
   Units:                           mm    Program:   OSLO SIX Rev. 5.10 SIN-G 
   Wavefront ref sph pos:   Exit pupil    OPD reported in wavelengths:     On 
   Callback level:                   0    Print surface group data:       Off 
   Compute solves in configs:      Off  
   Telecentric entrance pupil:     Off    Wide-angle ray aiming mode:     Off 
   Aper check all GRIN ray segs:   Off    Extended-aper ray aiming mode:  Off 
   Plot ray-intercepts as H-tan U: Off    XARM beam angle:          90.000000 
   Source astigmatic dist:      --        Ray aiming mode:          Aplanatic 
   Temperature:              20.000000    Pressure:                  1.000000 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   7.1006e+19 



Polarization and vector diffraction 10-387 

 

  1     CMP     2.000000 
  2     SPC     7.912300 
 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1    -6.132251  AY2     6.132251 
 
  3     SPC     8.000000 
 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1    -8.949719  AY2    16.050281 
 
  4     SPC    10.000000 
 
 
     Special Aperture Group 0: 
     A  ATP      Ellipse  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1   -16.050281  AY2     8.949719 
 
  5     SPC     7.912300 
 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1    -6.132251  AY2     6.132251 
 
  6     CMP    11.451742 
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.500000 
        1.000000 
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1        TCE 
  0      AIR           1.000000      --     
  1      AIR           1.000000  236.000000 
  2      GLASS2        1.510000   84.000000 
  3      AIR           1.000000  236.000000 
  4      AIR           1.000000  236.000000 
  5      AIR           1.000000  236.000000 
  6      IMAGE SURFACE 
 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:      2.000000    Image axial ray slope:   2.0000e-20 
   Object num. aperture:    2.0000e-20    F-number:                    --     
   Image num. aperture:     2.0000e-20    Working F-number:        2.5000e+19 
 FIELD 
   Field angle:             -35.376895    Object height:           7.1006e+19 
   Gaussian image height:   7.1006e+19    Chief ray ims height:     -9.451742 
 CONJUGATES 
   Object distance:         1.0000e+20    Srf 1 to prin. pt. 1:        --     
   Gaussian image dist.:   -1.0000e+20    Srf 5 to prin. pt. 2:        --     
   Overall lens length:      47.500000    Total track length:      1.0000e+20 
   Paraxial magnification:    1.000000    Srf 5 to image srf:       10.000000 
 OTHER DATA 
   Entrance pupil radius:     2.000000    Srf 1 to entrance pup.:      --     
   Exit pupil radius:         2.000000    Srf 5 to exit pupil:      -3.311258 
   Lagrange invariant:        1.420113    Petzval radius:          1.0000e+40 
   Effective focal length:      --     
 Note: This optical system contains special surface data. 
       Calculations based on a paraxial raytrace may be invalid. 
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We select the incident polarization state by setting the polarization operating 
conditions to define linearly polarized light, oriented at 45 to the x and y axes. 
*OPERATING CONDITIONS: POLARIZATION 
   Use polarization raytrace:       On    Degree of polarization:    1.000000 
   Ellipse axes ratio:          --        Y to major axis angle:    45.000000 
   Handedness of ellipse:        Right    Use 1/4 wave MgF2 coating:      Off 
Now we trace a ray from full-field (i.e., an angle of incidence of 54.623 on 
surfaces 3 and 4) and observe the state of polarization as the ray passes through 
the rhomb. 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YCA         XCA         YFSA        XFSA        OPL 
         --          --     -8.1536e-18 -8.1536e-18   58.264253 
 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y/L         X/K         Z/M      YANG/IANG   XANG/RANG      D/OPL 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --      -35.376895      --          --     
         -0.578952      --        0.815361   35.376895   35.376895      --     
          1.000000    1.000000      --       45.000000      --     
 
  2         --          --          --          --          --          --     
            --          --        1.000000      --          --          --     
          0.958715    1.000000      --       45.000000      --     
  3       5.458304      --      8.8818e-16  -54.623105      --        8.636288 
         -0.815361      --        0.578952   54.623105   54.623105   13.040795 
          0.958715    1.000000    0.414214   44.999999      LEFT =   -1.000000 
  4      -8.625087      --          --     -125.376895      --       17.272577 
         -0.815361      --       -0.578952  -54.623105  -54.623105   39.122386 
          0.958715    1.000000    1.000000  -27.956108      LEFT =   -1.000000 
  5       1.833416      --          --          --          --        6.054216 
            --          --        1.000000      --          --       48.264253 
          0.919134    1.000000    1.000000  -27.956110      LEFT =   -1.000000 
 
  6       1.833416      --          --          --          --       10.000000 
            --          --        1.000000      --          --       58.264253 
          0.919134    1.000000    1.000000  -27.956110      LEFT =   -1.000000 
 PUPIL      FY          FX                                              OPD 
            --          --                                          1.4211e-11 

After the first total internal reflection (surface 3), the light is elliptically polarized; 
the ratio of the axes of the polarization ellipse is 0.414. After the second reflection 
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(surface 4), the light is circularly polarized; the ratio of the axes is 1.0. The wave 
is normally incident on the end faces of the rhomb (surfaces 2 and 5), so the 
polarization state is not changed at these surfaces, but some of the incident 
intensity is lost due to reflection losses of about 4% at each surface.  

The Fresnel rhomb can also be used “in reverse.” If circularly polarized light is 
incident upon the rhomb, linearly polarized light exits the rhomb. 
*OPERATING CONDITIONS: POLARIZATION 
   Use polarization raytrace:       On    Degree of polarization:    1.000000 
   Ellipse axes ratio:        1.000000    Y to major axis angle:       --     
   Handedness of ellipse:         Left    Use 1/4 wave MgF2 coating:      Off 
 
*TRACE REFERENCE RAY 
         FBY         FBX         FBZ 
       1.000000      --          --     
        FYRF        FXRF         FY          FX 
         --          --          --          --     
         YCA         XCA         YFSA        XFSA        OPL 
         --          --     -8.1536e-18 -8.1536e-18   58.264253 
 
*TRACE RAY - LOCAL COORDINATES 
 SRF        Y/L         X/K         Z/M      YANG/IANG   XANG/RANG      D/OPL 
         INTENSITY  DEG. POLRZ. ELL. RATIO  ELL. ANGLE   HANDEDNESS 
  1         --          --          --      -35.376895      --          --     
         -0.578952      --        0.815361   35.376895   35.376895      --     
          1.000000    1.000000    1.000000    3.925177      LEFT =   -1.000000 
 
  2         --          --          --          --          --          --     
            --          --        1.000000      --          --          --     
          0.958715    1.000000    1.000000    3.925177      LEFT =   -1.000000 
  3       5.458304      --      8.8818e-16  -54.623105      --        8.636288 
         -0.815361      --        0.578952   54.623105   54.623105   13.040795 
          0.958715    1.000000    0.414214  -45.000001      LEFT =   -1.000000 
  4      -8.625087      --          --     -125.376895      --       17.272577 
         -0.815361      --       -0.578952  -54.623105  -54.623105   39.122386 
          0.958715    1.000000  4.9216e-16  -44.999999     RIGHT =    1.000000 
  5       1.833416      --          --          --          --        6.054216 
            --          --        1.000000      --          --       48.264253 
          0.919134    1.000000  4.9216e-16  -45.000001     RIGHT =    1.000000 
 
  6       1.833416      --          --          --          --       10.000000 
            --          --        1.000000      --          --       58.264253 
          0.919134    1.000000  4.9216e-16  -45.000001     RIGHT =    1.000000 
 PUPIL      FY          FX                                              OPD 
            --          --                                          1.4211e-11 
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Wollaston Prism 

OSLO Premium Edition has the capability of tracing rays through uniaxial 
birefringent materials such as calcite. Two types of waves (and rays) can 
propagate in uniaxial media; these waves are called the ordinary wave (or o-ray) 
and the extraordinary wave (or e-ray). Ordinary waves and rays can be traced using 
the same techniques as are used for ray tracing in isotropic media. Tracing 
extraordinary rays, however, is more complicated. The refractive index for 
extraordinary rays is a function of the angle of incidence. Also, for the 
extraordinary ray, the wave vector (the normal vector to the wavefront) is 
generally not in the same direction as the ray vector (the vector in the direction of 
energy flow, i.e., the Poynting vector). 

The interaction of an electric field with a material is characterized by the 
permittivity (dielectric constant)   of the material. The permittivity relates the 
electric field E to the electric displacement D. For the nonmagnetic materials used 
in optical systems, Maxwell’s relation states that the refractive index n is equal to the 
square root of the permittivity, i.e., n2 = . For isotropic materials, the permittivity 
is a scalar quantity (although a function of wavelength). By contrast, the 
permittivity of an anisotropic medium such as a crystal must be described by a 
tensor. In other words,  is a 3 x 3 matrix that relates the components of E to the 
components of D. (The difference between the wave vector and the ray vector for 
the extraordinary ray is a consequence of D no longer being collinear with E.) 

Since the refractive index is no longer a constant at a particular point in the 
material, the medium is termed birefringent, since the index of refraction depends 
on the propagation direction. For the crystal materials under consideration here, a 
coordinate system can be found in which only the diagonal elements of the 
dielectric tensor are non-zero. The coordinate axes of this system are called the 
principal axes and the diagonal elements of the tensor are called the principal values of 
the permittivity. For uniaxial media, two of the principal values are equal. For 
biaxial media, all three of the principal values are different. (Note that OSLO does 
not treat biaxial materials.) For a uniaxial material, the axis along which the 
permittivity differs is the crystal axis, i.e., the axis of symmetry of the crystal. The 
principal values and principal axes define the index ellipsoid. In order to trace rays 
through this uniaxial birefringent medium, then, we must specify the ordinary 
refractive index, the extraordinary refractive index, and the orientation of the 
crystal axis.  

In OSLO, the data for the ordinary indices is taken from the normal glass 
specification for the surface. To specify that a medium is birefringent, click the 
glass options button for the desired surface, and select Birefringent medium from 
the pop-up menu. In this spreadsheet, you can specify the material that defines the 
extraordinary refractive indices and the orientation of the crystal axis.  

The extraordinary indices may either be calculated from a catalog material, or the 
indices may be specified explicitly. Click the appropriate radio button to specify 
your choice. The orientation of the crystal axis is determined by the specification 
of direction numbers for the axis. The direction numbers (denoted by CAK, CAL, 
and CAM, which are the direction numbers in x, y, and z, respectively) are the 
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Cartesian components of a vector in the direction of the crystal axis. If the 
direction numbers are normalized (i.e., the magnitude of the vector is unity), the 
direction numbers are the direction cosines of the crystal axis. It is not necessary, 
however, to enter the direction numbers in normalized form. For example, if the 
crystal axis is parallel to the y-axis of the surface, the direction numbers would be 
CAK = 0, CAL = 1, CAM = 0. (For this case, where CAK = CAM =0, CAL could 
be any non-zero value.) For birefringent materials, the crystal axis direction 
numbers may be made optimization variables and operand components. 

In general, a ray incident upon a birefringent material will be split into two rays (o 
and e), with orthogonal linear polarizations. Since OSLO does not split rays, you 
must specify which ray is to be traced through the material. This designation is 
also made in the birefringent medium spreadsheet. By default, the ordinary ray is 
traced. The easiest way to see the results of tracing the other ray is to make the 
system a multiconfiguration system, where the configuration item is the ray that is 
traced through the medium (the name of the configuration item is BRY).  

As mentioned above, for the extraordinary ray the wave vector and the ray vector 
are generally not in the same direction. Thus, we need two sets of direction 
cosines to characterize the propagation of the ray through the medium. In OSLO, 
the direction cosines (K, L, and M) reported in the trace_ray command (Evaluate 
>> Single Ray) correspond to the ray vector. Similarly, the RVK, RVL, and RVM 
operands refer to the data for the ray vector. If an extraordinary ray is being 
traced, the output of the trace_ray command will contain three more columns of 
numbers (columns 7, 8, and 9 of the spreadsheet buffer). These columns contain 
the values of the direction cosines for the wave vector. These columns are labeled 
LWV, KWV, and MWV, keeping with the OSLO convention of outputting the y 
value before the x value. If it is desired to use the wave vector direction cosines in 
ray operands, the components KWV, LWV, and MWV are available. For ordinary 
rays in birefringent media and for rays in isotropic media, the KWV, LWV, and 
MWV components have the same value as the RVK, RVL, and RVM 
components. 

Five common uniaxial materials are contained in the miscellaneous glass catalog: 
calcite (CaCO3), ADP, KDP, MgF2, and sapphire (Al2O3). With the exception of 
the o-indices for calcite, the dispersion equations for these materials were taken 
from the Handbook of Optics, Volume II, Chapter 33, “Properties of Crystals and 
Glasses”, by W. J. Tropf, M. E. Thomas, and T. J. Harris, Table 22 (McGraw-
Hill, New York, 1995). The calcite o-index dispersion equation data was 
calculated by performing a least-squares Sellmeier fit to the data in Table 24 of 
the reference. The RMS error of this fit is 0.000232, as compared to the tabulated 
values, over the wavelength range from 0.200 m to 2.172 m represented by the 
values in Table 24. (Also, several minor typographical errors in Table 22 have 
been corrected. The equations for calcite should be in terms of n2 not n. The 
absorption wavelength in the third term for the e-index of MgF2 should be 
23.771995, not 12.771995.) Note that each material corresponds to two entries in 
the glass catalog: one for the o-indices (CALCITE_O, ADP_O, KDP_O, 
MGF2_O, SAPPHIRE_O) and one for the e-indices (CALCITE_E, ADP_E, 
KDP_E, MGF2_E, SAPPHIRE_E).  
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As an example of the use of birefringent materials, consider the following system, 
which is a Wollaston prism. This prism consists of two wedges of a birefringent 
material, in this case calcite. In the first wedge, the crystal axis is in the y-
direction, while in the second wedge, the crystal axis is in the x-direction. With 
this orientation of crystal axes, an o-ray in the first wedge becomes an e-ray in the 
second wedge, and vice-versa. If a beam of circularly polarized light is normally 
incident on the prism, two beams exit the prism: one deflected upwards, with 
horizontal linear polarization, and the other downwards, with vertical linear 
polarization. 
*LENS DATA 
Wollaston Prism 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --        1.0000e+20    1.0000e+14             AIR      
 
 AST       --            --         10.000000 A           AIR      
 
  2        --          5.773503     10.000000       CALCITE_O CB   
  3        --          5.773503     11.547005       CALCITE_O CB*  
  4        --          3.000000     10.000000             AIR      
 
 IMS       --            --          8.000010 S                    
 
*TILT/DECENTER DATA 
  3     RCO   3 
        DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA   -30.000000   TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  3     DRW ON 
 
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.589290 
        1.000000 
 
*REFRACTIVE INDICES 
 SRF     GLASS            RN1        TCE 
  0      AIR           1.000000      --     
  1      AIR           1.000000  236.000000 
  2      CALCITE_O     1.658342      --     
 EXTRA   CALCITE_E     1.486440 
 BRY       Ordinary    Crystal Axis (K,L,M)      --        1.000000      --     
  3      CALCITE_O     1.658342      --     
 EXTRA   CALCITE_E     1.486440 
 BRY  Extraordinary    Crystal Axis (K,L,M)    1.000000      --          --     
  4      AIR           1.000000  236.000000 
  5      IMAGE SURFACE 
 
*CONFIGURATION DATA 
TYPE  SN   CFG  QUALF       VALUE 
BRY    2    2     0           EXT 
BRY    3    2     0           ORD 
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Vector diffraction 

In addition to the propagation of the state of polarization through an optical 
system, a polarization ray trace allows for the computation of vector diffraction 
patterns. Conventional diffraction analysis of optical systems makes the 
assumption that the optical field is a scalar quantity. Comparison with experiment 
shows that this is an excellent approximation for numerical apertures of less than 
about 0.55 or 0.60. For focusing at larger numerical apertures however, the 
longitudinal (z) component of the field can not be ignored. In this case, the point 
spread function integral [See the point spread function section of the Image 
Evaluation chapter.] must be computed separately for each of the three (x, y, and z) 
orthogonal polarization fields in the exit pupil. The resultant observed irradiance 
is the sum of the squared moduli of the three component fields, i.e., the electric 
field energy density.  

In OSLO, if the polarization ray trace operating condition is on, all point spread 
function calculations will compute the vector diffraction pattern, based on the 
vector electric field in the exit pupil of the lens. Since the diffraction integral must 
be evaluated for each Cartesian component of the electric field, the calculation 
will take at least three times as long as a scalar PSF calculation. (If the degree of 
polarization is not unity, then the integral must also be computed for the 
orthogonal incident polarization, which means that six integrals must, in total, be 
evaluated.) As mentioned above, vector diffraction effects are only noticeable for 
large numerical aperture systems, so it is usually not necessary to do the vector 
calculation for familiar, low NA systems.  

NA = 0.966 perfect lens 

As an example of focusing at high numerical apertures, we will consider a perfect 
lens with a numerical aperture of 0.966 (an image space cone half-angle of 75). 
Since this is a perfect lens with no aberration, the effects of the vector nature of 
light should be readily apparent. We enter a perfect lens with a focal length of 100 
mm, object at infinity (magnification of zero), numerical aperture of 0.966 = 
sin(75), and a single wavelength of 0.5 m.  
*LENS DATA 
Perfect Lens - NA = 0.966 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1   ELEMENT GRP        --         96.592583 AS          AIR   *  
 
  2       PERFECT    100.000000 S   96.592583 S           AIR   * PERFECT 
 
  3        --            --        1.0000e-04 S                    
 
*SURFACE NOTES 
  2    PERFECT 
 
*SURFACE TAG DATA 
  1     LMO EGR  (2 surfaces) 
  1     DRW ON 
 
*PERFECT LENS DATA 
  2     PFL   100.000000   PFM       --     
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
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   1    0.500000 
        1.000000 
 
*PARAXIAL SETUP OF LENS 
 APERTURE 
   Entrance beam radius:     96.592583    Image axial ray slope:    -0.965926 
   Object num. aperture:    9.6593e-19    F-number:                  0.517638 
   Image num. aperture:       0.965926    Working F-number:          0.517638 
 FIELD 
   Field angle:             5.7296e-05    Object height:          -1.0000e+14 
   Gaussian image height:   1.0000e-04    Chief ray ims height:    1.0000e-04 
 CONJUGATES 
   Object distance:         1.0000e+20    Srf 1 to prin. pt. 1:        --     
   Gaussian image dist.:    100.000000    Srf 2 to prin. pt. 2:        --     
   Overall lens length:         --        Total track length:      1.0000e+20 
   Paraxial magnification: -1.0000e-18    Srf 2 to image srf:      100.000000 
 OTHER DATA 
   Entrance pupil radius:    96.592583    Srf 1 to entrance pup.:      --     
   Exit pupil radius:        96.592583    Srf 2 to exit pupil:         --     
   Lagrange invariant:     -9.6593e-05    Petzval radius:          1.0000e+40 
   Effective focal length:  100.000000 
 Note: This optical system contains special surface data. 
       Calculations based on a paraxial raytrace may be invalid. 

On-axis, this is a completely rotationally symmetric system, so our intuition tells 
us that we should expect the point spread function to also be rotationally 
symmetric. Computation of the usual (scalar) point spread function confirms this. 
Because of the large numerical aperture, we need to include the effects of non-
uniform pupil amplitude, caused by the transformation from a planar wavefront to 
a spherical wavefront. We do this by using equal image space ray increments in 
spot diagram related calculations. 
*OPERATING CONDITIONS: SPOT DIAGRAM 
   Aperture divisions:       40.000000    Use Gaussian pupil apodization: Off 
   X 1/e^2 entr. irrad.:      1.000000    Y 1/e^2 entr. irrad.:      1.000000 
   Use all wavelengths in diagram:  On    P-V OPD for MTF switch:    3.000000 
   Use equal image space incrmnts.: On    Through-foc. frequency:   25.000000 
   Diffraction efficiency calcs.:  Off 
 

 

Now we want to consider the effect on the point spread function if the incident 
wave is linearly polarized. We choose the polarization to be in the x direction and 
recompute the PSF. 
*OPERATING CONDITIONS: POLARIZATION 
   Use polarization raytrace:       On    Degree of polarization:    1.000000 
   Ellipse axes ratio:          --        Y to major axis angle:    90.000000 
   Handedness of ellipse:        Right    Use 1/4 wave MgF2 coating:      Off 
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From the figure, we see that the PSF is no longer rotationally symmetric, even 
though the optical system has rotationally symmetry, except for the polarization. 
The PSF exhibits the well-known characteristic of being narrower in the azimuth 
that is perpendicular to the polarization direction. In this case, the polarization 
direction is x, so the PSF is narrower in y. This irradiance distribution has different 
effective “spot sizes” in x and y, so the polarization orientation is important when 
computing quantities such as two-point resolution for high NA systems.  

We can examine the x and y components of the point spread function by inserting 
a linear polarizer after the perfect lens. 
*LENS DATA 
Perfect Lens - NA = 0.966 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1   ELEMENT GRP        --         96.592583 AS          AIR   *  
 
  2       PERFECT        --         96.592583 S           AIR   * PERFECT 
 
  3        --        100.000000     96.592583 S           AIR   *  
 
  4        --            --        1.0000e-04 S                    
 x-axis polarizer 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  3      JA     1.000000      --          JB       --          --     
         JC       --          --          JD       --          -- 
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 y-axis polarizer 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  3      JA       --          --          JB       --          --     
         JC       --          --          JD     1.000000      -- 
 

 

A qualitative explanation of this effect has been given by Hopkins(35). With 
reference to the figure below, ABCD is an annulus of the spherical wave that is 
converging to the focus O. The incident wave is polarized in the HB direction, 
i.e., along the y-axis. The electric field contributions from A, B, C, and D are EA, 
EB, EC, and ED, respectively. EA and EC have no axial (z) component, while EB 
and ED have axial components that are opposite in direction, and thus cancel. In 
the direction of EA and EC, EB and ED have effective magnitudes EBcos� and 
EDcos�, where � is the angular half angle of ABCD. Thus, relative to the x 
direction, the amplitude of the resultant field in the y direction is diminished by 
the cos� factor. The effective amplitude in the pupil is then larger along the x-axis 
than it is along the y-axis. Since there is more energy in the outer portion of the 
pupil in x as compared to y, the diffraction spot is smaller in the x direction, i.e., 
orthogonal to the direction of the incident polarization.  

 
9. H. H. Hopkins, “Resolving power of the microscope using polarized light,” Nature 155, 275 
(1945). 
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Partial Coherence 

Offner catoptric system 

As an example of the effects of coherence on imaging, we will use a two-mirror, 
monocentric system of the type originally designed by Offner (U.S. Patent 
3,748,015). For an object placed in the plane containing the common centers of 
curvature, the imagery is 1:1 and all of the Seidel aberrations are zero. This type 
of system has been widely used in photolithographic systems. The radius of 
curvature of the large, concave mirror is twice the radius of curvature of the small, 
convex mirror. The aperture stop is located at the small mirror so this system is 
essentially telecentric. We start with the following system and use the mercury i-
line at 0.365 m.  
*LENS DATA 
Offner Catoptric System 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --        100.000000     20.000000             AIR      
 
  1   -100.000000    -50.000000     38.000000      REFL_HATCH      
 
  2    -50.000000     50.000000     10.000000 A    REFL_HATCH      
 
  3   -100.000000   -100.000000     38.000000         REFLECT      
 
  4        --            --         20.000000 S                    
 
*PARAXIAL SETUP OF LENS 
APERTURE 
   Object num. aperture:      0.170000    F-number:                    --     
FIELD 
   Gaussian image height:   -20.000000    Chief ray ims height:     20.000000 
 
*WAVELENGTHS 
CURRENT  WV1/WW1 
   1    0.365010 
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Obviously, because of the location of the secondary mirror, this system is only 
used with off-axis object points. In this nominal design, the performance is 
limited by fifth-order astigmatism. If the separation of the mirrors is changed 
slightly, a small amount of third-order astigmatism can be introduced and the 
third-order and fifth-order astigmatism can be made to balance at one object 
height. Thus, the resulting system has a single (object) zone of good correction 
and can be used as a “ring-field” system (i.e., a field of view in the shape of a 
section of an annulus or ring). In order to make this modification to the lens, we 
first enter minus thickness pickups for surfaces 2 and 3, in order to maintain the 
desired system geometry. Also, we make thicknesses 0 and 1 variable. 
*LENS DATA 
Offner Catoptric System 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --        100.000000 V   20.000000             AIR      
 
  1   -100.000000    -50.000000 V   38.000000      REFL_HATCH      
 
  2    -50.000000     50.000000 P   10.000000 A    REFL_HATCH      
 
  3   -100.000000   -100.000000 P   38.000000         REFLECT      
 
  4        --            --         20.000000 S                    
 
*PICKUPS 
  2     THM    1 
  3     THM    0 
 
*VARIABLES 
 VB   SN  CF  TYP       MIN         MAX        DAMPING      INCR        VALUE 
V 1    0   -  TH      0.100000  1.0000e+04    1.000000    0.001725   100.000000 
V 2    1   -  TH   -1.0000e+04   -0.100000    1.000000    0.001725   -50.000000 
 

We could do the optimization in several ways, but the simplest is probably to use 
OSLO’s automatic error function generation to create an error function that 
measures the RMS OPD at the selected object point. We choose to balance the 
astigmatism at a fractional object height of 0.95 (i.e., an object height of –19.0 
mm). With this field point, the result of using the error function generator is 
*RAYSET 
FPT       FBY/FY1       FBX/FY2       FBZ/FX1       YRF/FX2       XRF/WGT 
F 1       0.950000        --            --            --            --     
         -1.000000      1.000000     -1.000000      1.000000      1.000000 
RAY         TYPE          FY            FX            WGT 
R 1       Ordinary        --            --          0.041667 
R 2       Ordinary      0.525731        --          0.208333 
R 3       Ordinary      0.262866      0.455296      0.208333 
R 4       Ordinary     -0.262866      0.455296      0.208333 
R 5       Ordinary     -0.525731        --          0.208333 
R 6       Ordinary      0.850651        --          0.208333 
R 7       Ordinary      0.425325      0.736685      0.208333 
R 8       Ordinary     -0.425325      0.736685      0.208333 
R 9       Ordinary     -0.850651        --          0.208333 
R 10      Ordinary      1.000000        --          0.041667 
R 11      Ordinary      0.500000      0.866025      0.041667 
R 12      Ordinary     -0.500000      0.866025      0.041667 
R 13      Ordinary     -1.000000        --          0.041667 
 
*OPERANDS 
 OP    DEFINITION                  MODE     WGT     NAME          VALUE   %CNTRB 
O 15   "RMS"                         M    0.500000 Orms1         2.771379 100.00 
MIN ERROR:     2.771379 
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After a few iterations, the resulting system is as given below. 
*LENS DATA 
Offner Catoptric System 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS SPE   NOTE 
  0        --        100.870668 V   20.000000             AIR      
 
  1   -100.000000    -49.078862 V   38.000000      REFL_HATCH      
 
  2    -50.000000     49.078862 P   10.000000 A    REFL_HATCH      
 
  3   -100.000000   -100.870668 P   38.000000         REFLECT      
 
  4        --            --         20.023377 S 
 

The field curves indicate that the desired astigmatism balance has been achieved. 

 

 

The numerical aperture of this lens is 0.17, so the diameter of the Airy disk is 1.22 
0 / NA = 1.22 (0.365 m) / 0.17 = 2.62 m. Thus a perfect image bar width of 7 
m should be easily resolved and be suitable to demonstrate coherence effects. 
The optimized lens is essentially diffraction limited at the design field of 0.95, so 
the resulting image at this object point will be indicative of the effects of 
coherence and diffraction. 

In the partial coherence operating conditions, we define the ideal image to consist 
of two bars, each of width 7 m and separated by 14 m.  
*OPERATING CONDITIONS: PARTIAL COHERENCE 
   Effective source rad.:       --        Inner annular radius:        --     
   X shift of source:           --        Y shift of source:           --     
   X 1/e^2 of source:           --        Y 1/e^2 of source:           --     
   Number of points in image:       64    Number of clear bars in image:    2 
   Width of clear bar:        0.007000    Period of clear bars:      0.014000 
   Irrad. between bars:         --        Phase between bars:          --     
   Background irradiance:       --     
   Normalization:    Object irradiance    Use equal image space incrmnts.:Off 

We will examine the image as we change the illumination from a point effective 
source (i.e., fully coherent;  = 0) to an effective source that completely fills the 
entrance pupil ( = 1). We also examine the incoherent limit. 
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We see that as the coherence decreases, the “interference-like” ringing of the 
edges of image decreases. In photolithography, it is usually the slopes of the 
edges of the image that are of interest; higher slopes lead to smaller changes in 
linewidth with changes in exposure. As the above figures indicate, in addition to 
controlling the aberrations of the imaging lens, the illumination coherence (i.e., 
the value of ) must be considered when calculating overall system performance. 
If we look at the structure of the image for a fractional object height of 0.8 (i.e., 
an image height of 16 mm), we see the effects of the astigmatism on the coherent 
and incoherent images. 

 Coherent 

 

 Incoherent 
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Talbot effect 

A striking example of the influence of coherence upon imaging is provided by the 
Talbot effect. If a coherent field has a periodic spatial amplitude distribution, the 
propagating field exhibits self-imaging, i.e., the image replicates itself at 
prescribed longitudinal distances. Compare this to the familiar case of incoherent 
illumination, where, in general, the modulation of an image decreases as we move 
the observation plane longitudinally from focus. 

As a simple demonstration, we start with a 100 mm focal length perfect lens of 
numerical aperture 0.05 and monochromatic illumination of wavelength 0.5 m.  

 

 

We will use a perfect image that consists of an infinite pattern of equal width bars 
and spaces, with a fundamental period of 20 m. If we use an FFT size of 64 
points, Eq. (7.62) indicates that the size of the image patch for this lens is (64)(0.5 
m)/(4*0.05) = 160 m. Thus, if we specify that the ideal image has 8 or more 
bars, the ideal image is effectively an infinite square wave, of period 20 m. (The 
infinite periodicity is a result of using the FFT algorithm, which implicitly 
produces the output for one cycle of an infinite, periodic object.)  
*OPERATING CONDITIONS: PARTIAL COHERENCE 
   Effective source rad.:       --        Inner annular radius:        --     
   X shift of source:           --        Y shift of source:           --     
   X 1/e^2 of source:           --        Y 1/e^2 of source:           --     
   Number of points in image:       64    Number of clear bars in image:    8 
   Width of clear bar:        0.010000    Period of clear bars:      0.020000 
   Irrad. between bars:         --        Phase between bars:          --     
   Background irradiance:       --     
   Normalization:    Object irradiance    Use equal image space incrmnts.:Off 
 

We can now evaluate the in-focus images for both coherent and incoherent light. 
As expected, there is some ringing of the edges in the coherent image, while the 
incoherent images exhibits a decrease in modulation from the unit-modulation 
object. For an object period of p and wavelength 0, the Talbot distance is given 
by 

2

Talbot
0

p
d 


 (10.19) 

In this case, the Talbot distance is dTalbot = (0.02 mm)2/(0.0005 mm) = 0.8 mm. The 
coherent and incoherent images with focus shifts of 0.8 mm and 1.6 mm are 
shown below. In general, the coherent image replicates itself at integer multiples 
of the Talbot distance, and is also shifted laterally by one-half period if the integer 
is odd. With 0.8 mm of defocus, the incoherent image is virtually nonexistent 
(there are about 2 waves of defocus), but the coherent image is essentially 
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identical to the in-focus image, except that it is shifted laterally by one-half of a 
period. If we examine the coherent image at two Talbot distances (1.6 mm) from 
focus, we see that the coherent image is the same as the nominal, in-focus image, 
while the incoherent image is gone. 
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We can also examine the incoherent in-focus image of the square wave using the 
modulation transfer function. The image modulation of a square wave of 
frequency f0 can be computed by resolving the square wave into its Fourier (i.e., 
sine wave) components and using the MTF value for each sine wave frequency. 
The resulting square wave modulation S(f0) is given by 

       0 0 0 0

4 1 1
3 5

3 5
S f MTF f MTF f MTF f

       
  (10.20) 
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(Equation (10.20) can be found in, for example, Smith(36). For this lens, the cutoff 
frequency is 2 NA/0 = 200 cycles/mm. Since our square wave has a frequency of 
f0 = 1/0.02 mm = 50 cycles/mm, only the f0 and 3f0 terms are non-zero in Eq. 
(10.20). We need to compute the on-axis MTF with a frequency increment of 50 
cycles/mm. The number of aperture divisions in the spot diagram has been set to 
32, so that the pupil sampling is the same as the partial coherence calculations. 
*MODULATION TRANSFER FUNCTION Y 
 WAVELENGTH 1 
 NBR   FREQUENCY     MODULUS      PHASE               DIFF LIM MTF 
  1       --        1.000000      --                    1.000000 
  2    50.000000    0.684729      --                    0.684729 
  3   100.000000    0.394089      --                    0.394089 
  4   150.000000    0.147783      --                    0.147783 
  5   200.000000      --          --                      --     
CUTOFF FREQUENCY  193.654321 
 

Using the above and Eq. (10.20), we find that the square wave modulation is S(50 
cycles/mm) = (4/)(0.685 – 0.148/3) = 0.81. To compare this with the output of 
the incoherent image calculation, we print out the incoherent image irradiance 
with an image plane increment of 0.01 mm, so that the minimum and maximum 
irradiance values are displayed. 
*INCOHERENT IMAGE: MONOCHROMATIC 
 WAVELENGTH 1 
 NBR      Y      IRRADIANCE 
  1   -0.080000    0.100449 
  2   -0.070000    0.899551 
  3   -0.060000    0.100449 
  4   -0.050000    0.899551 
  5   -0.040000    0.100449 
  6   -0.030000    0.899551 
  7   -0.020000    0.100449 
  8   -0.010000    0.899551 
  9      --        0.100449 
 10    0.010000    0.899551 
 11    0.020000    0.100449 
 12    0.030000    0.899551 
 13    0.040000    0.100449 
 14    0.050000    0.899551 
 15    0.060000    0.100449 
 16    0.070000    0.899551 
 17    0.080000    0.100449 
 

Using the minimum (Imin = 0.100449) and maximum (Imax = 0.899551) irradiance 
values, the computed modulation is S = (Imax – Imin)/(Imax + Imin) = 0.80, very close to 
the square wave modulation value given above, which was computed using a 
completely different technique. 

 
10. W. J. Smith, Modern Optical Engineering, Second Edition, McGraw-Hill 1990, p. 355. 
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Array ray tracing 

Regular array 

There are many applications of lens arrays, ranging from micro-optics switching 
systems to multiple mirror telescopes. The following example shows a simple 
system comprising a 5-element linear array of lenses, set up as a regular array. 

 

 

 

The array data is entered using SPECIAL>>Surface Control>>Regular Lens 
Array. Since there is a single row of lenses, the x spacing is 0. The number of 
lenses is controlled by the aperture of the channel surface (surface 1). Only the 
vertex of each channel needs to be within the aperture of the channel surface to be 
included in the array, although here the aperture has been set to enclose the entire 
array surface. 
*LENS ARRAY DATA 
 SRF 1: 
 TYPE Regular              END SURF 3                DRAW ALL CHANNELS: Yes 
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 X SPACING      --         Y SPACING   10.000000     Y OFFSET      --     

 

The aperture of the elements themselves are determined by rectangular special 
apertures on surface 2 and 3: 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  2     SPC    20.000000 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1    -5.000000  AY2     5.000000 
 
  3     SPC    20.000000 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -5.000000  AX2     5.000000  AY1    -5.000000  AY2     5.000000 
 

The system shown here has five light sources. In OSLO, these are modeled as 
separate field points. The required lens drawing conditions (non-default only) are 
shown below. 
*CONDITIONS: LENS DRAWING 
   Drawn apertures (solid):       Full    Image space rays:         Image srf 
   Number of field points (rays):    5    DXF/IGES file view:     Unconverted 
   Fpt Frac Y Obj Frac X Obj Rays Min Pupil  Max Pupil    Offset  Fan Wvn Cfg 
    1     1.00000      --      9   -0.95000    0.95000      --     Y   1   0 
    2     1.00000      --      9    1.05000    2.95000      --     Y   1   0 
    3     1.00000      --      9    3.05000    4.95000      --     Y   1   0 
    4     1.00000      --      9   -2.95000   -1.05000      --     Y   1   0 
    5     1.00000      --      9   -4.95000   -3.05000      --     Y   1   0 
 

Since a spot diagram pertains to a single field point, the data obtained for an array 
of the type shown here may not be what is desired, and it may be preferable to 
construct custom CCL commands to carry out evaluation that is tailored to the 
system at hand. Please note that since lens arrays use rco (return coordinates)  
surfaces, paraxial analysis will not be correct. In the system here, a 3mm image 
focus shift has been added to the paraxial solve value, to make up for the 
thickness of the array elements. OSLO often automatically recalculates the 
thickness to maintain the succeeding surface location when an rco is applied or 
removed. However in this case the solve overrides the adjustment if you add or 
remove the coordinate return, so the image location is shifted with the next 
surface (the IMS thickness) manually by the user. 
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Tabular array 

This example shows a modification the preceding regular array, to make a tabular 
array. Two of the elements have been offset to illustrate the difference between 
the two types. 

 

The main surface data spreadsheet is identical to the one for the regular array. The 
difference is in the array data spreadsheet (SPECIAL>>Surface Control>>Tabular 
Lens Array), which enumerates the coordinates of the vertices of each element 
(channel) in the array. Note that a z displacement has been added to elements 2 
and 3. This is not accounted for in the above drawing, which shows rays traced to 
the nominal image surface, from a field point 10 degrees off axis. 

 

 

Array ray tracing is comparatively fast to non-sequential ray tracing, because 
surfaces are selected according to the nearest channel vertex rather than the actual 
surface. For many situations, this is a good model, but for this tabular array, it is 
not adequate for large field angles. To see this, it is worth attaching the field angle 
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to a graphic slider so that it can be adjusted by dragging while the ray trajectories 
are observed. 

In order to attach the field angle to a slider, we use the same technique used 
elsewhere in these examples, making use of the fact that the conic constant of the 
object surface has no optical function when the surface is flat. We make a slider-
wheel callback function as shown below, and put it in the private CCL directory. 
cmd Sw_callback(int cblevel, int item, int srf) 
{ 
 if (cblevel == 11) 
 { 
  stp outp off; 
  ang cc[0]; 
  stp outp on; 
 } 
 else 
  ite cblevel; 
} 
 

After recompiling the private CCL, we setup a slider-wheel window as follows. 

 

 

 

When the setup window is closed, the slider-wheel window appears, and you can 
see that at wide angles, rays do not follow their actual trajectories, because of the 
way that channels are selected. This is not a problem for narrow fields or when 
surfaces are not displaced from the channel surface, as you can verify by 
manipulating the slider. 

Note that for the slider to work properly in this example, the Fractional Y object 
height for all the field points must be set to 1, as shown in the table below. You 
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may also note that it is not possible to set the field angle to zero using the slider. 
This is a feature of OSLO, which automatically converts field angles of 0.0 to 1 
micro-degree, since 0.0 is not an allowed value for the paraxial field angle. 
*CONDITIONS: LENS DRAWING 
   Drawn apertures (solid):       Full    Image space rays:         Image srf 
   Number of field points (rays):    5    DXF/IGES file view:     Unconverted 
   Fpt Frac Y Obj Frac X Obj Rays Min Pupil  Max Pupil    Offset  Fan Wvn Cfg 
    1     1.00000      --      9   -0.95000    0.95000      --     Y   1   0 
    2     1.00000      --      9    1.05000    2.95000      --     Y   1   0 
    3     1.00000      --      9    3.05000    4.95000      --     Y   1   0 
    4     1.00000      --      9   -2.95000   -1.05000      --     Y   1   0 
    5     1.00000      --      9   -4.95000   -3.05000      --     Y   1   0 
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2D Array 

As an example of a 2D array, we show a system comprising a large number of 
small flat mirrors mounted on a parabolic substrate with a focal length of 50mm 
and a diameter of 30mm ( f/1.67). The mirrors have  1 mm width, and a center 
spacing of 1 mm. The data for the system (mirorary.len) are shown below. 
*LENS DATA 
Reg Array - Tiny Flat Mirrors 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --        1.0000e+20    8.7489e+18             AIR      
 
 AST  -100.000000        --         15.000000 A           AIR   *  
 
  2        --        -50.000000      0.707100 KX      REFLECT   *  
 
 IMS       --            --         25.000000                      
 
*CONIC AND POLYNOMIAL ASPHERIC DATA 
 SRF        CC          AD          AE          AF          AG 
  1      -1.000000      --          --          --          --     
 
*TILT/DECENTER DATA 
  2     RCO   1 
 
*LENS ARRAY DATA 
 SRF 1: 
 TYPE Regular              END SURF 2                DRAW ALL CHANNELS:  No 
 X SPACING    1.000000     Y SPACING    1.000000     Y OFFSET      --     
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   8.7489e+18 
  1     SPC    15.000000 
  2     SPC     0.707100  CHK 
 
     Special Aperture Group 0: 
     A  ATP    Rectangle  AAC     Transmit  AAN       --     
        AX1    -0.500000  AX2     0.500000  AY1    -0.500000  AY2     0.500000 
 
  3     SPC    25.000000 
 

 

Evaluating the system using a spot diagram produces results that depend strongly 
on the aperture divisions used, and the focus shift from the focal point of the 
parabolic substrate. (Since the system has only flat mirrors, it actually has an 
infinite focal length.) The figure below shows spot diagrams for various aperture 
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divisions (15, 17.5, and 20), with a focal shift of 0.1 mm. The command used was 
pls cen sym 0.1 1.0. 

 

The explanation for these curious results is that there is aliasing between the ray 
grid and the mirror grid. The overall diameter of the paraboloid is 30 mm, so 
when APDIV = 15, there is one ray that strikes the center of every other mirror. 
When APDIV = 17.5, the mirror spacing and the ray spacing are not coupled, so 
rays hit in nearly random points on the mirrors, and we see a (reversed) shadow of 
the 1 mm square mirrors. When APDIV = 20, no rays strike the center of a mirror, 
but all rays strike one of four possible locations on a mirror. This leads to the 
four-dot pattern shown above, which of course bears no similarity to the real light 
distribution. (The center pattern above gives the closest approximation to the real 
light distribution.) 

When using spot diagrams (or any type of evaluation routine) with lens arrays, it 
is well to be aware of the possibility of aliasing effects between the ray grids used 
for evaluation, and the lens array grid itself. Often the best solution to these types 
of problems is to use random ray tracing. The figure below, for example, shows 
the image distribution computed using the xsource routine (Source>>Pixelated 
Object), using a small disc object that subtends a field angle of 0.01 degrees. 
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Grating Switch 

Array ray tracing can be combined with multiconfiguration (zoom) data to handle 
a wide variety of different systems. Here, we show as an example a grating 
switch, which uses diffraction gratings to disperse a beam into several different 
channels and then recombine it for further transmission. The particular system 
shown here is a simple 5x one-dimensional switch, but the techniques used are 
also applicable to 2D arrays. The final system is shown below. 

 

The switch shown here doesn't actually do anything useful, it is just an example of 
how to set up such a system in OSLO. It consists of four 600 line/mm gratings, 5 
glass rods, and 2 lenses, arranged as shown. An input beam enters the system 
from the left, is diffracted into several orders (5 shown), redirected by a second 
grating, transmitted through various channels, and then recombined by a 
symmetrical set of gratings into an output beam that exits to the right. 

There are several steps needed to set up such a system in OSLO, some optical 
ones needed for design/evaluation, and some cosmetic ones need to draw a picture 
of the final system. An important consideration is that OSLO, being 
fundamentally a design program, does not split rays; for each input ray there is 
one output ray. In the above figure, 15 rays are traced, 3 for each channel. In order 
to handle the multichannel arrangement of the system, we use zoom data, with 
each configuration representing one channel. Although the present system has 
only 5 channels, OSLO accommodates an unlimited number of zoom 
configurations, so the potential exists to extend the method used here to dozens or 
even hundreds of channels. 

The switch shown here switches channels by diffraction into various orders. In the 
layout, we associate a diffraction order with each zoom position, ordered 0, 1, 2, -
2, -1. This is combined with array ray tracing so that each configuration uses one 
channel. Because diffraction orders are spaced according to the sines of angles, 
the various channels are not equally spaced, so a tabular array is used to define 
them. 
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In array ray tracing, each channel must be the same, but in the present system 
there is a need for one of the channels to be different from the others. This is 
accommodated by a capability in OSLO to handle what are called skip surfaces. A 
skip surface is one that redirects the ray trace to another surface (further on). For 
example, in the present system surface 4 is made a skip surface with a target of 6, 
in all configurations except cfg 2. The result is that surfaces 4 and 5 are ignored 
except in configuration 2. 

The data for the grating switch is shown in the spreadsheet below, and the special 
data listing that follows. 

 
*TILT/DECENTER DATA 
 10     RCO   3 
 
*SURFACE TAG DATA 
  1     GOR   0          GSP     0.001667   GBO   0          GDP       --     
        DRW ON 
  2     DRW ON 
  3     GOR   0          GSP     0.001667   GBO   0          GDP       --     
        DRW ON 
  4     SKP   6 
  8     SKP  10 
 11     GOR   0          GSP     0.001667   GBO   0          GDP       --     
        DRW ON 
 12     GOR   0          GSP     0.001667   GBO   0          GDP       --     
        DRW ON 
 
*LENS ARRAY DATA 
 SRF 3: 
 TYPE Tabular   END SURF 10    MAX CHANNELS 5           DRAW ALL CHANNELS: Yes 
 CH NBR    X CTR       Y CTR       Z CTR       TLA         TLB         TLC 
   1        --          --          --          --          --          --     
   2        --        1.641655      --          --          --          --     
   3        --        4.668182      --          --          --          --     
   4        --       -4.668182      --          --          --          --     
   5        --       -1.641655      --          --          --          --     
 
*CONFIGURATION DATA 
TYPE  SN   CFG  QUALF       VALUE 
GOR    1    2     0             1 
GOR    3    2     0            -1 
GOR   11    2     0            -1 
GOR   12    2     0             1 
SKP    4    2     0             0 
SKP    8    2     0             0 
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TH     3    2     0      1.250000 
TH     7    2     0      1.250000 
GOR   12    3     0             2 
GOR    1    3     0             2 
GOR   11    3     0            -2 
GOR    3    3     0            -2 
GOR    3    4     0             2 
GOR   11    4     0             2 
GOR   12    4     0            -2 
GOR    1    4     0            -2 
GOR   12    5     0            -1 
GOR    1    5     0            -1 
GOR    3    5     0             1 
GOR   11    5     0             1 

Surfaces 1 and 3 accommodate the gratings that diffract the beam into various 
orders and redirect the orders so they are parallel to the axis of the system. Since 
there is no refractive index associated with these surfaces, they need to be tagged 
(SPECIAL>>Surface Control>>General) in order to be drawn. Surface 3 also 
serves as the channel surface for the array. Surface 2 is a dummy surface in 
contact with the channel surface, used for drawing bdi data (to be discussed), and 
has no optical function. 

Surface 3 is marked as an array surface (SPECIAL>>Surface Control>>Tabular 
array), and holds the y-decentration data for each channel. In order to determine 
the data values, a chief ray is traced from the edge of the field (here defined to be 
at 1 micro-radian) using the Chf button in the text window. The required data from 
the spreadsheet buffer is copied to the clipboard using CTRL+click, and pasted 
into the appropriate cell in the tabular array spreadsheet. Note that you must 
activate an array element by clicking on the row button prior to entering data for 
it. 

Surface 4 is tagged as a skip surface, as discussed above (SPECIAL>>Surface 
Control>>General) and data for a bi-convex lens is entered on surfaces 4 and 5. 
Surfaces 6 and 7 define a BK7 glass rod that will be seen in all configurations. 
Surface 8 is tagged as a skip to surface 10, and surfaces 8 and 9 define a second 
BK7 lens like the first. 

The configuration data for the system mostly defines the requisite diffraction 
orders so that the channels are numbered 0, 1, 2, -2, -1 corresponding to cfg 1, 2, 
3, 4, 5. In addition, the skip parameter is turned off in configuration 2, and the 
thickness of surface 3 is changed in configuration 2 so that the glass rod is not 
moved. 

Surface 10 is the EAR (end-of-array) surface. Note that the array definition 
automatically places an RCO (return-coordinates) transfer to the channel surface, 
so that surface 11 (the first of the final grating surfaces) is located with respect to 
the channel surface, and hence does not require any configuration specification. 
Surface 12 contains the final grating that recombines the beams from the various 
array channels. At this point, the system is set up as shown below. 
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In order for the drawing rays to change color in configuration 2, you should set up 
your Len drawing operating conditions as shown below. 

 

The drawings show the system functioning optically as expected, with the lenses 
exerting focusing action only in configuration 2. However, for cosmetic reasons, 
the drawings are less than satisfactory, partly because only one configuration is 
shown at a time, and partly because lenses are shown in all the channels, although 
they are only active in one. In order to circumvent these problems, we need to set 
up some additional data for drawing purposes only. 

First, we can remove the extra lens drawings by marking the lens surfaces not 
drawn in the SPECIAL>>Surface Control>>General spreadsheet. Then, of course, 
the lenses disappear in configuration 2 as well, but this can be accommodated 
using bdi data. BDI data are one form of drawing data that can be attached to a 
lens surface, and allow the construction of 3D drawings that cannot be produced 
by the internal routines in OSLO. For the present system, we will only need to 
make a plan view of the system, so we can represent each lens by a single facet, 
i.e a rectangular box. There is no special bdi editor in OSLO, so bdi data is 
normally entered using the internal OSLO text editor. Since the data are a series 
of commands, the internal OSLO editor is generally preferred over an external 
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text editor, since the command lines can be selected and executed directly from 
the editor. 

The data required for the present system is shown in the figure below. It consists 
of 8 vertices defining the two rectangles, attached to and located relative to 
surface 2. Note that surface 2 is outside the array channel. The y data are 
computed as the sum of the chief ray height in cfg 2, plus or minus the lens 
aperture, and the z data are computed relative to surface 2. 

 

Once the bdi data is entered satisfactorily, the lenses should be drawn properly, 
but the problem still exists that only one configuration is shown at a time. To 
solve this, we need to overlay the drawings from all configurations. To do this, we 
turn off the Graphics Autoclear preference (shown on the default status bar), 
make a drawing in each configuration, and then turn the preference back on. It is 
easiest to do this using commands, viz. 
Stp gacl off; 
Cfg 1; pen 1; drl; pen 2; ddr; 
Cfg 2; pen 1; drl; pen 3; ddr; 
Cfg 3; pen 1; drl; pen 2; ddr; 
Cfg 4; pen 1; drl; pen 2; ddr; 
Cfg 5; pen 1; drl; pen 2; ddr; 
Stp gacl on; 
 

This should produce a drawing like the one at the beginning of this example. If 
you are nort able to reproduce this, it is possible that you have not defined your 
default drawing rays the same as here. 
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Non-sequential ray tracing 

Light pipes/fibers 

In general the term non-sequential ray tracing is applied to systems where the ray 
trace algorithm must decide not only where a ray strikes the next surface, but also 
which surface of several possibilities is the one actually intersected. A special 
case of non-sequential ray tracing occurs when a ray strikes the same surface an 
indeterminate number of times. 

OSLO (all versions) contains a special surface for handling a light pipe or fiber, in 
which rays enter a tube and repeatedly reflect from the wall until they emerge 
from the far end. Only a straight elliptical or circular tube is permitted, and the 
ends of the tube must be perpendicular to its axis. A surface may be extruded to 
form a rod by entering the command rod on at the surface. To disable this feature, 
use the command rod off. Control of this surface property is also available from 
the Special >> Surface Control >> General spreadsheet. 

An extruded surface consists of two parts: (a) the surface defined by the usual 
specifications, limited by the defined aperture boundary, and (b) the surface 
generated by pulling the aperture boundary in the z-direction by the distance 
specified by the thickness variable, th. The effect is to generate a rod shaped 
object whose cross section conforms to the aperture. If an elliptical special 
aperture is specified, this is used to define the cross-sectional shape of the rod. 
Otherwise, the circular aperture specified by the ap command is used.  

The glass specification for the surface defines the medium of the rod. Normally, 
rays are confined to the interior of the rod by total internal reflection (which may 
take place several times before the ray encounters the next surface). If a ray exits 
the rod by refraction, it refracts into the original incident medium. The rod is 
terminated by the next surface in sequence. 
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All of the usual ray trace commands are available for systems employing light 
pipes. However, for single ray tracing, only the ray data for the entrance and exit 
faces is displayed, and much of the other ray trace data (e.g., ray-intercept curves) 
is essentially meaningless because of the variable number of reflections in the 
light pipe. 

Although the light pipe routine in OSLO is a form of non-sequential ray trace, it 
differs in that it does not take into account the fact that surfaces have two sides. 
There is no way, for example, in the above trace to have light re-enter the core 
from the cladding. Light that is lost into cladding is normally blocked at the far 
end of the pipe by using a checked aperture, as shown above. 
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Dual focal length lens 

The following is intended as a simple example of non-sequential ray tracing. The 
system to be studied is a simple meniscus lens whose front surface has two 
regions having different curvature. Rays through the center of the lens encounter 
one curvature, rays through the edge another. The lens data are as follows.  
*LENS DATA 
Dual EFL lens (NS) 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE   NOTE 
  0        --        1.0000e+20    1.0000e+14             AIR      
 
  1        --            --         18.000000 AS          AIR   *  
  2     20.000000        --         10.000000             BK7 C *  
  3     40.000000        --         20.000000 X           BK7 C *  
  4     80.000000        --         20.000000             AIR   *  
  5        --        127.000000     20.000000             AIR   *  
 
  6        --            --         20.000000                      
 
*TILT/DECENTER DATA 
  2     DT    1         DCX       --       DCY       --       DCZ       --     
                        TLA       --       TLB       --       TLC       --     
  3     DT    1         DCX       --       DCY       --       DCZ     1.409325 
                        TLA       --       TLB       --       TLC       --     
  4     DT    1         DCX       --       DCY       --       DCZ     6.000000 
                        TLA       --       TLB       --       TLC       --     
  5     DT    1         DCX       --       DCY       --       DCZ    10.000000 
                        TLA       --       TLB       --       TLC       --     
 
*SURFACE TAG DATA 
  1     LMO NSS  (5 surfaces) 
  3     ELI   1 
  4     ELI   1 
  5     DRW OFF 
 
*APERTURES 
 SRF   TYPE APERTURE RADIUS 
  0     SPC   1.0000e+14 
  1     CMP    18.000000 
  2     SPC    10.000000 
  3     SPC    20.000000 
 
     Special Aperture Group 0: 
     A  ATP      Ellipse  AAC    Pass Thru  AAN       --     
        AX1   -10.000000  AX2    10.000000  AY1   -10.000000  AY2    10.000000 
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The following comments may help you to understand the data: 

Surface 2 is the central portion of the front surface. Surface 3 is the outer portion 
of the front surface, and surface 4 is the back surface. 

The central zone of the first surface has a 10 mm aperture radius and a radius of 
curvature of 20 mm. The outer zone of the first surface has a 20 mm aperture 
radius and a 40 mm radius of curvature. 

Surface 3 has a special aperture to create a hole in its center for surface 2. The 
“Pass Thru” designation makes the central portion of the surface equivalent to a 
hole. 

The glass BK7 is put on surfaces 2 and 3, because the normal action is for rays to 
refract into these surfaces in the to positive direction. In the present example, rays 
will not encounter either of these surfaces from the back side, so no special 
actions are needed. 

It is very important to ensure that the entry port and the exit port completely 
surround the non-sequential surfaces. For this lens, the center portion of the lens 
is placed in contact with the entry port, which is OK, because the sag of the 
surface is always positive. The axial thickness of the lens is 6mm, which 
determines the DCZ of surface 4. The exit port (surface 5) is placed at a distance 
of 10 mm from the entry port, to ensure that no portion of surface 4 falls outside 
the non-sequential region. The remaining DCZ (of surface 3) is determined by the 
requirement that the sags of surface 2 and 3 are identical at the edge of the central 
zone (10 mm height). The value can be found using the edge thickness (eth 2 3 10 
10) command in OSLO, which produces the required value 1.409325. 

To force the program to draw an aperture connecting surfaces 3 and 4, the 
element ID (ELI) is set to 1. 

The DRW OFF designation on surface 5 keeps the program from drawing the exit 
port. 

The data for this lens is entered as follows: 

Select File >> New, enter the file name “bifocal.len”, then enter 5 for the number 
of surfaces. Click OK to dismiss the dialog box. The surface data spreadsheet will 
appear. 

In the surface data spreadsheet, click the row button for surface 1, then the row 
button for surface 5 to select the surface range (entry and exit ports, plus 3 lens 
surfaces). 

Set up a non-sequential group using Edit >> Non-sequential Group. Click the 
View Srf radio button at the top of the spreadsheet, so you can see the surface 
data. Click the Draw On radio button so you can see the effects of your data 
entries. Enter the value 18 for the Entrance Beam Radius. 

Enter the data for the RADIUS of surfaces 2-4 as given in the listing above. 
Surface 2 is the central portion of the front surface. Surface 3 is the outer portion 
of the front surface, and surface 4 is the back surface. 



Non-sequential ray tracing 10-425 

 

Enter the data shown above for the apertures. The central zone is to have an 
aperture of 10 mm radius, and the overall lens is to have an aperture of 20 mm. 

Surface 3 has a special aperture to create a hole in its center for surface 2. Click 
the button next to the aperture of surface 3, and select Special aperture data from 
the pop-up list. Enter “1” for the number of special apertures, then enter the data 
from the above listing in the special aperture spreadsheet that pops up. The “Pass 
thru” designation makes the central portion of the surface equivalent to a hole. 

The glass BK7 is put on surfaces 2 and 3, because the normal action is for rays to 
refract into these surfaces in the to positive direction. In the present example, rays 
will not encounter either of these surfaces from the back side, so no special 
actions are needed. 

Next you need to enter the data for the surface locations, relative to the Entry port 
(surface 1). It is very important to ensure that the entry port and the exit port 
completely surround the non-sequential surfaces. For this lens, the center portion 
of the lens is placed in contact with the entry port, which is OK, because the sag 
of the surface is always positive. The axial thickness of the lens is 6 mm, which 
determines the DCZ of surface 4. The exit port (surface 5) is placed at a distance 
of 10 mm from the entry port, to ensure that no portion of surface 4 falls outside 
the non-sequential region. The remaining DCZ (of surface 3) is determined by the 
requirement that the sags of surface 2 and 3 are identical at the edge of the central 
zone (10 mm height). The value can be found using the edge thickness (eth 2 3 10 
10) command in OSLO, which produces the required value 1.409325. 

For each of the surfaces 3-5, click Special >> Local/Global Coordinates, and enter 
the appropriate DCZ data as discussed above. 

To force the program to draw an aperture connecting surfaces 3 and 4, for both 
surfaces click on Special >> Non-sequential Data, then set the element ID to 1. 

To keep the program from drawing the exit port, on surface 5, click Special >> 
Surface Control >> General, and set the Surface appearance to Not drawn. 

To show the ray trajectories, set the thickness of surface 5 to 127, as shown 
above, then click Update >> Operating Conditions >> Lens Drawings. In the 
spreadsheet, set the Image space rays button to Image Srf, set the number of field 
points to 1, set the number of rays to 15, and then click OK to dismiss the 
spreadsheet. 

At this point, if all has gone well, your Autodraw window should have a picture 
similar to the one shown above. You should now experiment by changing all the 
data a little to see what happens.  
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Corner-cube reflector 

The corner-cube reflector, a combination of three plane mirrors at right angles to 
each other, has the property that rays entering the reflector exit from the reflector 
anti-parallel to the entering rays. A beam traversing a corner cube hits all three 
mirrors, but the order differs for different parts of the beam. Accordingly, corner 
cubes must be handled using non-sequential ray tracing.  Generally, depending on 
the material and the conditions of use, a corner cube can function using total 
internal reflection, but there are reasons to "silver" the reflecting surface 
(discussed below), and the the standard corner cube prescription supplied in the 
OSLO demo library (cornercube.len) desginates the mirror surfaces as REFLECT. 

The geometry of the corner cube reflector is such that rays entering the system 
perpendicular to the entrance face hit the first mirror at an angle of incidence of 
54.73561 degrees. This makes the default drawing produced by OSLO look 
somewhat strange, as follows: 

 

The portions of the entrance face outside the circular aperture are not optically 
useful, and typically when corner cubes are fabricated they are edged so that the 
fit into a cylindrical barrel. Accordingly, the cornercube.len model uses BDI data 
to produce 3D drawings (BDI data is ignored in plan-view drawings), as follows. 
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Unlike many BDI drawings, which use only a few vertices to define rectangular 
or triangular surfaces used in prisms, the data required for the corner cube model 
is quite extensive, because the cylindrical surface is simulated by facets. A few 
items of data are shown here to show that lines that define facets are drawn if the 
vertex number is positive, but supressed if it is negative. Thus in the following 
data for polygon facet 1, lines are drawn from vertex 4 to 1, and from vertex 1 to 
2, but not from vertex 2 to 3. Regardless of whether the lines are drawn, however, 
the facet area is defined according to the PF specification, and hides the lines and 
facets behind it according to the viewing angle. 
*BOUNDARY DRAWING DATA 
 SRF 1: 
 VX NBR         X            Y            Z        COORD SURF 
    1          --           --         0.570000         1 
    2        0.866025    -0.500000    -0.132893         1 
    3        0.913545    -0.406737    -0.257040         1 
    4        0.951057    -0.309017    -0.372080         1 
    ... 
 PF NBR        VX1          VX2          VX3          VX4 
    1            1            2           -3           -1 
    2           -1           -3           -4           -1 
 

The specification of the non-sequential group for a corner-cube reflector is 
straightforward, and consists of the entrance port, the three reflecting surfaces, 
and the exit port. The other surfaces in the cornercube.len prescription are used to 
satisfy drawing requirements and are not optically active. Note that because of the 
complexity of the BDI data, it may be useful to insert the cornercube.len model in 
other systems as needed, using the Insert Lens file and Scale lens commands on 
the right-click spreadsheet menu. 

Historically, the corner-cube was one of the first applications for non-sequential 
ray tracing. According to optics folklore, a problem with double images was 
encountered when a particular optical system was being fabricated in the shop. 
The question arose as to whether these double images could be simulated using 
optical design software, so that the design could be adjusted. It turns out that the 
only design adjustment needed is to silver the reflecting faces, but as a 
pedagogical exercise, it is interesting to see what goes on when light retroreflects 
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from a corner cube. To do this requires both non-sequential and polarization ray 
tracing, so it is necessary to use OSLO Premium. 

If you illuminate a corner-cube with a small but finite incoherent source, a spot 
diagram, even a random one, will show even illumination, as shown below. 

 

This is to be expected, since a spot diagram shows only the intersection points of 
rays with the image plane, and gives no information concerning the irradiance. 
Thus spot diagrams are useful for visualizing the shape of images formed by 
optical systems with aberration. In the case of a corner cube, however, there are 
no aberrations. On the other hand, there are polarization effects that can be readily 
observed using the polarization ray trace in OSLO. 

To observe the polarization effects, you can use the cornercube.len model and 
turn on polarization ray tracing in the General operating conditions. In addition, 
you must change the REFLECT designation on the mirror surfaces to AIR. If you 
do that, then you can use the Evaluate>>Polarization>>Pupil Polarization State 
command to produce the following plot. 
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You see there are polarization effects that differ according to how light traverses 
the corner cube. Because of the unusual angle that rays intersect the mirror 
surfaces, different hexagonal sectors undergo different phase shifts that lead to the 
output polarization states shown. The arrowheads indicate the direction of rotation 
of the electric vector, showing that the output beam includes both right and left 
elliptically polarized components, when the incident beam is linearly polarized in 
the vertical direction. 

You can analyze the system in more detail using the extended source and point 
spread function features in OSLO. The figure on the next page shows the results 
of such an analysis, produced by using a polarizing element on the output surface 
as follows, here shown as a crossed (i.e. x) polarizer. To set up a parallel polarizer, 
you use JA = 0.0 and JD = 1.0. 
*POLARIZATION ELEMENT DATA 
               AMPLITUDE     PHASE              AMPLITUDE     PHASE 
  7      JA     1.000000      --          JB       --          --     
         JC       --          --          JD       --          --     
 

To produce the results on the following page, you need to set the object distance 
to 50mm for the illumination calculation, and 1e20 for the spread function 
calculation. In addition, you should set the object height slightly off axis (FBY = 
0.01) to introduce a slight amount of aberration to prevent the crossed polarization 
case from blowing up during PSF normalization (the ideal PSF for this case is 
zero on axis). 

You see that there is intensity modulation introduced by the output polarizers, but 
this is not sufficient to cause the PSF effects, which are caused by the polarization 
itself. 
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Nsobjects 

Data entry for non-sequential groups can become tedious if the group contains 
more than a few surfaces, so it is generally worthwhile to set up commands that 
will create non-sequential groups more-or-less automatically. This permits you to 
enter a group quickly by entering only the key parameters for the group in a 
diaglog box. Examples of a few non-sequential objects can be seen using the 
nsobjects CCL command, which can be accessed from the Tools>>demo library. 
The nsobjects command supplied with OSLO contains basic objects, such as a 
lens, rod, and clad fiber. 

In this example, we show how to make CCL commands for data entry. The 
method involves little or no programming, but instead uses OSLO spreadsheets to 
set up a prototype system, which then provides a template that can easily be 
converted to symbolic entry. The specific task here is to add a rectangular block 
object to the nsobjects collection. The starting point for the example is the 
rectblock.len file in the OSLO demo library, shown below. 

 

 

To see the ray paths in the block, it is helpful to attach a slider to the field angle 
using the sw_callback with the angle attached to the object surface conic constant, 
as is done elsewhere in these examples. At an angle of 56 degrees, the system 
looks as follows. 
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Although the system here is a regular block of glass that might be used as a prism, 
the same basic geometry can be used for everything from windows to light guides, 
depending on the width, height, and depth of the object. The task here is to create 
a command that generates a suitable object automatically. The approach is to edit 
the lens file with a text editor, changing the numerical values for these items into 
symbolic entries, and turning the lens file into a CCL command. The listing below 
shows the conversion that is required. Basically, an OSLO lens file is a series of 
CCL commands with literal arguments, so there is not too much to do. 

Replace the initial comment line with a cmd definition, and put the whole lens file 
inside curly backets. In setting up the command definition, you need to decide 
what arguments to use. For the present case, we need the ones shown in the listing 
below: semiwidth, semiheight, length, glass, and title (optional). 

Required: Put a semicolon at the end of each line. 

Optional: Convert the entries into parenthesized form. This is not necessary, but is 
good form. 

Optional: Define an additional variable semilength and set it equal to half the 
input length to simplify data entry. 

Optional: Bracket the code with stp outp off and stp outp on commands to eliminate 
echoing in the text output window. 

Go through the file, replacing the numeric entries by their symbolic equivalents. 
You can usually recognize the required conversion by the values, In the present 
case, the semiwidth = .5, the semiheight = 1.0, and the length = 3.0. 

 
 
 
 
 
 
 
// OSLO 6.1 3447 0 32016 
LEN NEW "Rect Block" 0 8 
EBR  1.0 
ANG  6.8922645369e-13 
DES  "OSLO" 

cmd nsblock(real Semiwidth, real Semiheight, real 
Length, char Glass[], char Title[]) 
{ 
real semilength; 
 
Stp outp off; 
semilength = 0.5*length; 
 
LEN NEW Title; 
EBR  1.0; 
ANG  6.8922645369e-13; 
DES  "OSLO"; 
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UNI  1.0 
// SRF 0 
AIR  
TH   1.0e+20 
AP  1.2029270909e+06 
NXT  // SRF 1 
AIR  
LMO NSS 
NXT  // SRF 2 
GLA BK7        
AP  1.0 
DT   1 
APN  1 
AY1 A -0.5 
AY2 A 0.5 
AX1 A -1.0 
AX2 A 1.0 
ATP A 2 
AAC A 4 
NXT  // SRF 3 
AIR  
NAC ORD PK 2 NEG 
AP  1.0 
DT   1 
DCY  0.5 
DCZ  1.5 
TLA  90.0 
APN  1 
AY1 A -1.5 
AY2 A 1.5 
AX1 A -1.0 
AX2 A 1.0 
ATP A 2 
AAC A 4 
NXT  // SRF 4 
AIR  
NAC ORD PK 2 NEG 
AP  1.0 
DT   1 
DCY  -0.5 
DCZ  1.5 
TLA  -90.0 
APN  1 
AY1 A -1.5 
AY2 A 1.5 
AX1 A -1.0 
AX2 A 1.0 
ATP A 2 
AAC A 4 
NXT  // SRF 5 
AIR  
NAC ORD PK 2 NEG 
AP  1.0 
DT   1 
DCX  1.0 
DCZ  1.5 
TLB  -90.0 
APN  1 
AY1 A -0.5 
AY2 A 0.5 
AX1 A -1.5 
AX2 A 1.5 
ATP A 2 
AAC A 4 
NXT  // SRF 6 
AIR  
NAC ORD PK 2 NEG 
AP  1.0 
DT   1 
DCX  -1.0 

UNI  1.0; 
// SRF 0 
AIR; 
TH   1.0e+20; 
AP  1.2029270909e+06; 
NXT;  // SRF 1 
AIR; 
LMO NSS; 
NXT;  // SRF 2 
GLA Glass; 
AP  1.0; 
DT   1; 
APN  1; 
AY1 A -Semiheight; 
AY2 A Semiheight; 
AX1 A -Semiwidth; 
AX2 A Semiwidth; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 3 
AIR;  
NAC ORD PK 2 NEG; 
AP  1.0; 
DT   1; 
DCY  Semiheight; 
DCZ  semilength; 
TLA  90.0; 
APN  1; 
AY1 A -semilength; 
AY2 A semilength; 
AX1 A -Semiwidth; 
AX2 A Semiwidth; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 4 
AIR;  
NAC ORD PK 2 NEG; 
AP  1.0; 
DT   1; 
DCY  -Semiheight; 
DCZ  semilength; 
TLA  -90.0; 
APN  1; 
AY1 A -semilength; 
AY2 A semilength; 
AX1 A -Semiwidth; 
AX2 A Semiwidth; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 5 
AIR;  
NAC ORD PK 2 NEG; 
AP  1.0; 
DT   1; 
DCX  Semiwidth; 
DCZ  semilength; 
TLB  -90.0; 
APN  1; 
AY1 A -Semiheight; 
AY2 A Semiheight; 
AX1 A -semilength; 
AX2 A semilength; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 6 
AIR;  
NAC ORD PK 2 NEG; 
AP  1.0; 
DT   1; 
DCX  -Semiwidth; 



10-434 Non-sequential ray tracing 

 

DCZ  1.5 
TLB  90.0 
APN  1 
AY1 A -0.5 
AY2 A 0.5 
AX1 A -1.5 
AX2 A 1.5 
ATP A 2 
AAC A 4 
NXT  // SRF 7 
AIR  
LME 
TH   0.001 
AP  1.0 
DT   1 
DCZ  3.0 
APN  1 
AY1 A -0.5 
AY2 A 0.5 
AX1 A -1.0 
AX2 A 1.0 
ATP A 2 
AAC A 4 
NXT  // SRF 8 
AIR  
TH   1.0 
APCK Off 
GPRT On 
WV 0.58756 0.48613 0.65627 
WW 1.0 1.0 1.0 
END  8 
DLVA 0 
DLHA 256 
DLAP 3 
DLNF 1 
DLNR  0 15 
DLFP  0 1.0 

DCZ  semilength; 
TLB  90.0; 
APN  1; 
AY1 A -Semiheight; 
AY2 A Semiheight; 
AX1 A -semilength; 
AX2 A semilength; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 7 
AIR;  
LME; 
TH   0.001; 
AP  1.0; 
DT   1; 
DCZ  length; 
APN  1; 
AY1 A -Semiheight; 
AY2 A Semiheight; 
AX1 A -Semiwidth; 
AX2 A Semiwidth; 
ATP A 2; 
AAC A 4; 
NXT;  // SRF 8 
AIR;  
TH   1.0; 
APCK Off; 
GPRT On; 
WV 0.58756 0.48613 0.65627; 
WW 1.0 1.0 1.0; 
END  8; 
DLVA 0; 
DLHA 256; 
DLAP 3; 
DLNF 1; 
DLNR  0 15; 
DLFP  0 1.0; 
Stp outp on; 
} 

 

After completing the above steps, save the command in a CCL file 
(myobjects.ccl) in your private directory. Run OSLO, and compile your private 
CCL using the button in the main toolbar. Assuming that you receive the 
customary message 
*CCL COMPILATION MESSAGES: 
 No errors detected 
 

The command should be ready to use. If you enter the command nsblock in the 
command line, you will be prompted for the arguments. You may find it more 
convenient to run the command by entering "arg_entry=dialog_box;nsblock, in 
which case a dialog box will be generated automatically that prompts for input 
data. 
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You have now added a command that you can use over and over, whenever you 
need a rectangular object for a non-sequential group. You may want to add it to 
the demo menu, or to a toolbar. 

Clearly, the technique used here is not restricted to non-sequential groups, but can 
be used for any type of system that is sufficiently generally used to warrant the 
modest amount of setup time required to turn it into an object. 
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Non-sequential array 

It is possible to set up entire arrays of lenses as non-sequential objects, rather than 
as arrays. For most design tasks, this is not a good way to proceed, but for 
evaluation it can be quite helpful, because it is possible to see exactly where light 
goes in passing through the system, which may not be possible with array ray 
tracing if the array has depth, as shown in the tabular array example. Here, we set 
up the tabular array as a non-sequential group to show the difference between 
non-sequential and array ray tracing. 

We consider the same tabular array as is used for the array ray trace example. It 
consists of five elements in a line, with the odd elements displaced in the z-
direction, as shown below. 

 

The procedure for setting up such a system is to use the nsobjects CCL command to 
create a single non-sequential lens, then use copy-paste to duplicate it 4 times. 
Then the global coordinates of the vertices of each group are modified so the 
lenses are properly located. Including the entry and exit ports, it takes 22 surfaces 
to specify the array. 

 

Note that the field angle for the system has been specified as 30.4 degrees; this is 
to illustrate the ray trace behavior shown in the top figure. In addition, the exit 
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port for this system is a total sphere with a radius of 40, centered on the vertex of 
the middle element. The reason for this is to ensure that rays exiting the system hit 
the exit port and are allowed to escape. 

To identify the surfaces is a complicated non-sequential group such as this one, it 
is helpful to label the surfaces, which is done here using surface notes, as shown 
below. 

 
*LENS DATA 
5x Linear Non-sequential Array 
 SRF      RADIUS      THICKNESS   APERTURE RADIUS       GLASS  SPE  NOTE 
 OBJ       --        1.0000e+20    5.8670e+19             AIR   *  
 
 AST       --            --         10.000000 A           AIR   * Entry Port 
  2     30.000000        --          5.000000             BK7 C * mid-front 
  3      5.000000        --          5.000000 X           AIR   * mid-topedg 
  4     -5.000000 P      --          5.000000 PX          AIR   * mid-botedg 
  5    -30.000000        --          5.000000             AIR   * mid-back 
  6     30.000000        --          5.000000             BK7 C * upmid-front 
  7      5.000000        --          5.000000 X           AIR   * upmid-topedg 
  8     -5.000000 P      --          5.000000 PX          AIR   * upmid-botedg 
  9    -30.000000        --          5.000000             AIR   * upmid-back 
 10     30.000000        --          5.000000             BK7 C * botmid-front 
 11      5.000000        --          5.000000 X           AIR   * botmid-topedg 
 12     -5.000000 P      --          5.000000 PX          AIR   * botmid-botedg 
 13    -30.000000        --          5.000000             AIR   * botmid-back 
 14     30.000000        --          5.000000             BK7 C * top-front 
 15      5.000000        --          5.000000 X           AIR   * top-topedg 
 16     -5.000000 P      --          5.000000 PX          AIR   * top-botedg 
 17    -30.000000        --          5.000000             AIR   * top-back 
 18     30.000000        --          5.000000             BK7 C * bot-front 
 19      5.000000        --          5.000000 X           AIR   * bot-topedg 
 20     -5.000000 P      --          5.000000 PX          AIR   * bot-botedg 
 21    -30.000000        --          5.000000             AIR   * bot-back 
 22    -40.000000        --            --                 AIR   * Exit Port 
 
 IMS   -40.000000        --         30.000000                   *  
 

In order to identify the anomalous rays in the previous lens drawing, it is helpful 
to try to identify the ray entering the system, and trace it through using either 
graphical or text output. Consider the spurious blue rays on the drawing. A plan 
view, combined with zooming ther window, shows the detail. 
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The top two blue rays, intended to go through the upper-middle lens, actually 
enter the top lens. (The lens has been set up so that the edges are polished and 
refract rather than scatter rays incident on them; other non-sequential actions 
could be imposed to absorb or reflect the rays). From the drawing, it appears that 
the rays strike the corners of the top element. In order to see exactly what 
happens, it is helpful to trace the actual rays and look at the numerical data. From 
the lens drawing operating conditions, we see that the top blue ray has a fractional 
aperture coordinate of 2.95 (based on the 30.4 degree field angle). 
 
*CONDITIONS: LENS DRAWING 
   Initial distance:            --        Final distance:              --     
   Horizontal view angle:          240    Vertical view angle:              8 
   First surface to draw:            0    Last surface to draw:             0 
   X shift of drawing:          --        Y shift of drawing:          --     
   Drawn apertures (solid):       Full    Image space rays:         Image srf 
   Rings in aperture (solid):        3    Spokes in aperture (solid):       4 
   Number of field points (rays):    5    DXF/IGES file view:     Unconverted 
   Draw aperture stop location:    Off    Hatch back side of reflectors:   On 
   Red value for shaded solid:     175    Green value for shaded solid:   185 
   Blue value for shaded solid:    250    Points for aspheric profile:     41 
   Fpt Frac Y Obj Frac X Obj Rays Min Pupil  Max Pupil    Offset  Fan Wvn Cfg 
    1     1.00000      --      9   -0.95000    0.95000      --     Y   1   0 
    2     1.00000      --      9    1.05000    2.95000      --     Y   1   0 
    3     1.00000      --      9    3.05000    4.95000      --     Y   1   0 
    4     1.00000      --      9   -2.95000   -1.05000      --     Y   1   0 
    5     1.00000      --      9   -4.95000   -3.05000      --     Y   1   0 
 

We can trace this ray by setting the field point to one and using either the Tra 
button in the text window toolbare, or the command:  
tra std glo all usr 2.95 0.0 n 1 

 

Note that we specify that ray output be provided in global coordinates. It is 
possible but not practical to use local coordinates inside a non-sequential group. 
 
*TRACE RAY - GLOBAL COORDS REL TO SURF 1 - FBY  1.00, FBX  0.00, FBZ  0.00 
 SRF        Y           X           Z           YANG        XANG        D 
  1      14.750000      --          --       30.400000      --        7.463998 
 16      15.000000      --        0.426115   55.344536 -6.4792e-16    0.494038 
 17      18.681403 -2.8778e-17    2.971008  119.617171 -180.000000    4.475400 
 14      23.539159 -5.9007e-17    0.209492   46.832682 -2.5760e-16    5.587823 
 15      25.000000 -6.5168e-17    1.579746  -46.832682  1.4540e-15    2.002911 
 17      23.734649 -3.5049e-17    2.766632 -118.864905  180.000000    1.734881 
 14      18.761999  7.1330e-17    0.025555  -56.404938  1.6847e-15    5.678094 
 16      15.000000  1.4481e-16    2.524554  -32.936309  8.7812e-16    4.516374 
  6      14.474596  1.5724e-16    3.335577  -24.356236  4.1411e-16    0.966337 
  9      13.353533  1.7514e-16    5.811974  -44.485322  4.8673e-16    2.718332 
 22     -16.657159  4.3470e-16   36.366730  -44.485322  4.8673e-16   42.827967 
 
 23      -9.321999  3.7126e-16   28.898590  -44.485322  4.8673e-16  -10.467936 
 PUPIL      FY          FX          RAY AIMING                          OPD 
          2.950000      --       CENTRAL REF RAY                   -6.1101e+04 
 

The numeric output provides the information we seek. By comparing the surface 
numbers in the output listing with the surface data listing above, we see that after 
passing through the entry port, the ray strikes the bottom edge of the top element 
(surface 16), 0.426mm behind the vertex of the element. Since the sag of the 
surface at that point (according to Lens>>Show Auxiliary Data>>Surface Sag) is 
.4196, we conclude that the ray strikes the surface 6.4 microns from the corner. 



Non-sequential ray tracing 10-439 

 

Wheel of fortune 

The Wheel of Fortune system is included as an example to illustrate that the entry 
port to a non-sequential group does not need to be physically outside the group. 
The system consists of four lenses surrounding a point source, as shown below. 

 

The coordinates data for the system is as follows. The right-hand lens is given by 
surfaces 2-3, the top lens by surface 4-5, the left-hand by 6-7, and the bottom by 
8-9. The object surface is in the center of the group. The ray-aiming mode is set to 
Extended Aperture Mode in the Setup spreadsheet, with the beam half angle set to 
180 degrees, so the source radiates into a full sphere. The exit port is a 40 mm 
radius complete sphere (designated by an aperture radius of 0.0) so that rays 
exiting at any angle will leave the system. 
*TILT/DECENTER DATA 
  2     DT    1         DCX       --       DCY       --       DCZ    20.000000 
                        TLA       --       TLB       --       TLC       --     
  3     DT    1         DCX       --       DCY       --       DCZ    25.000000 
                        TLA       --       TLB       --       TLC       --     
  4     DT    1         DCX       --       DCY    20.000000   DCZ       --     
                        TLA    90.000000   TLB       --       TLC       --     
  5     DT    1         DCX       --       DCY    25.000000   DCZ       --     
                        TLA    90.000000   TLB       --       TLC       --     
  6     DT    1         DCX       --       DCY       --       DCZ   -20.000000 
                        TLA       --       TLB   180.000000   TLC       --     
  7     DT    1         DCX       --       DCY       --       DCZ   -25.000000 
                        TLA       --       TLB   180.000000   TLC       --     
  8     DT    1         DCX       --       DCY   -20.000000   DCZ       --     
                        TLA   -90.000000   TLB       --       TLC       --     
  9     DT    1         DCX       --       DCY   -25.000000   DCZ       --     
                        TLA   -90.000000   TLB       --       TLC       --     
 10     DT    1         DCX       --       DCY       --       DCZ    40.000000 
                        TLA       --       TLB       --       TLC       --     
 

In this system, the object distance is zero (1e-20, actually), so the source is 
contained within the group. Another way to implement this sort of arrangement is 
to put the source outside, but place a mirror inside the group. In the system below, 
the entry port has been rotated by 45 degrees, the source is placed at infinity, and 
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a 10-micron radius spherical mirror is placed at the center of the system. Ray 
aiming is restored to normal (Central reference ray). 

 

Light enters the system from the left and strikes the mirror in the center, where it 
is reflected and popagated in the non-sqeuential group until it escapes through the 
exit port. It is not possible to reflect rays completely in the forward direction 
because they reflect from the mirror. By making the entrance beam radius only 
slightly smaller than the mirror radius, however, we can reflect rays at almost 
grazing incidence so they are only slightly deviated. It is helpful to attach a slider 
to the entrance beam radius to experimentally determine the proper value. This 
can be accomplished by using a short sw_callback routine attaching the ebr to 
cc[0], similar to the technique used elsewhere in these examples to manipulate the 
field angle. The resulting ebr is somewhere around .00999, as shown above. With 
this value, the plan view of the system looks like the following. 

 

In connection with this example, note that the forward-propagating rays coming 
from the tiny mirror are strange rays, in the sense of requiring an alternate surface 
intersection specification for the normal ray trace. However, there is no such thing 
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as an alternate surface intersection point in the non-sequential trace; rays find the 
correct intersection point based on the shortest optical path. 
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Roof Lens 

The roof lens is a test lens made from two convex surfaces that intersect at 
precisely 90 degrees at the aperture. The lens was cited by M. Hayford at the 1998 
Optical Design Conference as one that tested the accuracy of non-sequential ray 
trace routines, because after several reflections from the roof, rays eventually 
wander off the correct trajectory due to round-off error in the ray trace 
calculations, and the roof fails to retro-reflect as it should. 
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Thin-film coatings 

OSLO coating library 

Optical thin films have numerous scientific, technological, and commercial 
applications over a wavelength range that extends from the x-ray to the 
submillimeter regions. They can be used to shape the spectral response of the light 
transmitted and reflected by the surfaces to which they are applied. Some of the 
generic spectral filters that are made of multilayer coatings include antireflection 
coatings, neutral beam splitters, reflectors, short- and long wavelength cut-off 
filters, narrow band transmittance filters, and polarizers. To achieve these effects, 
from one to many tens of layers may be required. From the point of view of a lens 
designer the most important filter types are antireflection coatings and reflecting 
coatings. However, there may be instances where it may be of interest for lens 
designers to perform preliminary order of magnitude calculations with some of 
the other types of multilayer coatings mentioned above. For this purpose a 
number of filter designs have been added to OSLO.  

The multilayers can be constructed of dielectric layers only, or they can consist of 
a combination of both metallic and dielectric layers. With all-dielectric layer 
systems the incident light is either transmitted or reflected—there are no 
absorption losses. Furthermore, because the dispersion of the refractive indices of 
dielectric materials is relatively small, the spectral features can be tuned over a 
wide range of wave-lengths simply by scaling the thicknesses of all the layers by 
the same amount. This is true only if the new position of the spectral feature of 
interest lies within the transparency range of the coating materials. Furthermore, 
for a given angle of incidence and plane of polarization, the transmittance T and 
the reflectance R of an all-dielectric layer system are independent of the direction 
of the incident light and they obey the relation T + R = 1.0. 

If there are absorbing films in the multilayer system, some of the light incident on 
the multilayer will be absorbed . The condition T + R + A = 1.0 holds, where A 
represents the absorbtance. The scaling of the layer thicknesses in order to shift 
the features in the spectrum is no longer so simple. First, the dispersion of the 
optical constants of metals are much more pronounced than that of dielectric 
coating materials. Second, because the extinction coefficients of metals are large, 
the changes in the thicknesses of the metal layers must be much smaller. Lastly, 
whilst the transmittance of a multilayer coating with absorbing layers is 
independent of the direction of the incident light, in general this is not true for the 
reflectance and absorbtance. 

The properties of both all-dielectric and metal-dielectric layer systems depend on 
the angle of incidence and on the state of polarization of the incident light. In 
general, the spectral features of multilayer coatings shift towards shorter 
wavelengths with an increasing angle of incidence. In addition, for angles of 
incidence greater than 10 or 15 degrees, a marked polarization splitting can 
usually be observed. For unpolarized light this results in a general broadening of 
the spectral features. This has important implications for lens designers. For best 
results, any filter in which there are sharp transitions from high to low 
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transmittance or reflectance should be located within that part of a lens system in 
which the angles of incidence and the convergence angles are as small as possible. 

Coating material considerations 

The optical constants of thin films can depend on the actual process used for their 
deposition. Films produced by thermal evaporation and by conventional electron 
beam gun evaporation can be quite porous. Although heating of the substrate can 
result in a reduction of the porosity, it rarely results in completely dense films. 
The spectral features of coatings produced in this way frequently shift towards 
longer wavelengths as water vapor is adsorbed by the pores. For some 
applications it is possible to predict sufficiently accurately the changes that will 
occur on exposure of the multilayer to the atmosphere. For other, more stringent 
applications, it is necessary to produce very stable multilayer systems that do not 
age at all with time and exposure to moisture. Higher energy deposition processes, 
such as ion assisted electron beam gun evaporation, ion plating, ion sputtering or 
magnetron sputtering, yield dense coatings that meet these requirements. 
However, either the equipment is more expensive, or the deposition process is 
slower and so, as a rule, a premium has to be paid for such coatings. 

Dielectrics can be classified into soft and hard coating materials. The former can 
be deposited by thermal evaporation at relatively low temperatures and are 
frequently protected by a cemented cover glass from damage due to abrasion. 
Hard coating materials are deposited by electron beam gun evaporation, or by 
sputtering. They are much harder and are quite suitable for front surface mirrors. 

The optical properties of metals are even more sensitive to the deposition process 
than those of dielectric layers. This is especially true for partially transparent 
metal layers used in beam splitters and in certain advanced multilayer coatings. 

The conclusion from the above is that, until a deposition process is decided upon, 
it is difficult to predict what optical constants should be used for the design of the 
multilayer. It is customary to use approximate optical constants for preliminary 
designs. Although it is frequently sufficient for this purpose to use non-dispersive 
refractive indices for the dielectric layers, the dispersion of the optical constants 
of metals must be taken into account. A good source of information on the optical 
constants of metals is the “Handbook of Optical Materials” vols. I, II edited by 
Palik [1,2]. Any systems designed in this way will require only slight 
modifications of the thicknesses of the layers to allow for the discrepancy 
between calculated and experimental optical constants. 

Some sample multilayer systems 

Some of the multilayer systems presented below are based on multiples of quarter 
wave layers which are easy to monitor by optical means. These systems are best 
represented by a notation in which H and L correspond to high and low refractive 
index layers of quarter wave optical thickness, respectively. Thus, for example, 
(HL)^2 H is the same as HLHLH, which represents a five layer quarter wave 
stack. (HL)^3 (LH)^3 is the same as HLHLH2LHLHLH, which represents an 
eleven layer narrow band filter in which the central layer is a half wave layer of 
low refractive index, etc. 
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Other systems consist of layers with thicknesses that depart from quarter wave 
thicknesses significantly. The additional degrees of freedom available in such 
refined systems can be used to optimize the performance of the multilayer. The 
thicknesses of such layers are frequently monitored using quartz crystal monitors. 

The all-dielectric multilayer systems listed in the table below, with the exception 
of two systems, are constructed out of two coating materials only with non-
dispersive refractive indices 1.45 and 2.35. These values are not too far removed 
from the refractive indices of the soft coating material pair MgF2 and ZnS or from  
the hard coating material pair SiO2 and Nb2O5. The optical constants of 
aluminum were taken from Palik. Inconel alloy constants were measured at 
NRCC. The substrate and incident medium materials in all systems are BK7 glass 
or air. M in system 2 stands for a quarter wave layer of medium refractive index 
of 1.7. 

No. Name Type Layers Description 

1 AR_1 single layer MgF2 AR 
coating 

1 glass/L/air 

2 AR_2 quarter-half-quarter AR 
coating 

3 glass/M2HL/air 

3 AR_3 narrow band AR coating 2 glass/optimized/air 

4 AR_4 wide band AR coating 7 glass/optimized/air 

5 R_1 quarter wave stack 
reflector 

13 glass/(HL)^6 H/air 

6 R_2 opaque Al layer reflector 1 opaque Al /air 

7 SP_1 short wavelength pass 
filter 

17 optimized, between 
glass 

8 LP_1 long wavelength pass 
filter 

17 optimized, between 
glass 

9 BS_1 Inconel layer beam splitter 1 0.0125 µm of Ag 
cemented between two 
45 deg prisms 

10 BS_2 multilayer beam splitter 7 optimized, between 
two 45 deg prisms of 
BK7 glass 

11 NB_1 narrow band filter (1 
cavity) 

15 glass/(HL)^4 (LH)^4 
/glass 

12 NB_2 narrow band filter (2 
cavities) 

31 glass/optimized/glass 

 

A more detailed explanation of the theory of optical thin films will be found in the 
excellent book by Macleod [3]. For more information on classical and less usual 
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applications of optical thin film coatings the interested reader is referred to 
references [4,5]. 
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Chapter 11 Glossary 
 

The lens is the document 
Writing a document consists of expressing information in words, pictures, etc. that describe the 
subject matter. Designing a lens consists of expressing information in numbers, words, drawings, 
etc. that describe the lens. The essence of both is the creation of information that is expressed in 
language. A book isn't done until the information is expressed; a lens design isn't either. A word 
processor helps the author create his document; OSLO helps the optical designer create his lens. 
In the new metaphor, the lens is the document. 
In the early days of lens design, the prescription gave the curvatures, thicknesses, and glasses, plus 
the aperture, field, and wavelengths, just enough information to trace rays through it. Now, an 
overall design contains a great deal more information, including tolerances, coating specifications, 
and manufacturing details such as polishing grades, bevels, and cosmetic requirements. Although 
OSLO does not yet deal with all these aspects of a design, its data structure is able to contain 
much more than the simple lens prescription. 
To make best use of OSLO you should understand the basic nature of the data used and produced 
by the program. OSLO data can be divided into four major groups: surface data, operating 
conditions, preferences, and the Spreadsheet Buffer. A fifth group would include miscellaneous 
items such as command arguments, fixed defaults, and various temporary data used internally. 

Surface data 
Surface data include the usual lens prescription items such as radii of curvature, thicknesses, 
glasses, aspheric constants, etc. Surfaces are numbered, starting with 0 for the object surface. In a 
normal, sequential lens, the surface numbers increase monotonically in the order that rays strike 
them. 
There are four ways to enter and modify surface data. The first, and most commonly used, is the 
Surface data spreadsheet, which can be invoked from the Update menu, or from the F5 toolbar 
icon. The second is called global editing, in which the data item, surface number, and value are 
entered on the command line. The third is the internal lens editor, in which the program enters a 
mode that accepts data for a particular surface. Finally, surface data can be entered as a text file 
prepared “off-line” using any editor. Although the spreadsheet is very convenient for typical 
design sessions, the other methods each have a raison d’etre. 

Operating conditions 
Operating conditions include items that pertain to the whole lens, or describe its conditions of use. 
The stereotype operating conditions are the ones used to specify the aperture and field of view. 
OSLO includes many other operating conditions, some of which (e.g. wavelengths, error function) 
have traditionally been included as operating conditions in all optical design programs. Other 
OSLO operating conditions are new, and have been included to more completely describe the 
complete design (e.g. element drawing data), to enable consistent analysis (e.g. spot diagram 
operating conditions), or to eliminate extensive data re-entry (e.g. lens drawing operating 
conditions). 
An important thing to remember about operating conditions is that they are attached to the lens 
data, and are saved in lens files with the surface data. This simplifies the design process. If you set 
up, for example, a certain set of rays to be shown on a lens drawing, then whenever you make a 
drawing that includes the default rays, your choices for that particular lens will be used. 

Preferences 
Preferences are to be distinguished from operating conditions. Preferences are attached to the 
program, and remain the same for all lenses. Examples include items that affect the appearance of 
graphics windows, number formatting, and the like. Most preferences take effect as soon as they 
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are set, but some require that the program be restarted. These include the maximum number of 
surfaces, spot diagram rays, and wavelengths that the program can use, as well as the selection of 
fonts. Once a preference has been set, it is saved in a configuration file (*.ini) that is read on 
startup, so the settings are preserved from one session to another. 

The Spreadsheet Buffer 
The Spreadsheet Buffer is an important part of the OSLO data structure. So far as OSLO is 
concerned, the spreadsheet buffer is an output-only data structure, but it serves as the principal 
source of communication between the program and user macro commands (called star commands, 
see below). A spreadsheet buffer is attached to each text window. Whenever OSLO writes 
floating-point numeric output to the window, a copy of the output, having full internal precision, 
is placed in the spreadsheet buffer. The various buffer elements can be addressed by the SCP and 
CCL macro languages, used in data entry, or displayed in the message area by clicking on the 
number in the text window. 

Star commands 
Although OSLO appears to the casual user as an ordinary windows application, it is actually a 
combination of an application and a macro language. Some of the commands supplied with the 
program are part of the core program, while others are written in the macro language. It is not 
normally observable to the user which is which. There are two macro languages in OSLO. OSLO 
EDU contains SCP, an interpreted language. OSLO Premium also contains CCL, a compiled 
language. Both languages use C syntax. 
Macro commands written in SCP are executed by preceding the command name with an asterisk, 
hence the name “Star command”. 
Advanced users can write their own star commands and integrate them with ones supplied by 
Sinclair Optics, because the menus supplied with OSLO can be changed by the user. Since these 
commands are often required only to support special needs, they do not need to have the scope 
that internal commands do, so it is very easy to add features to the program. 

Click/Command Interface 
As mentioned above, it is possible to add star commands to OSLO. These commands can either be 
added to the menu system, or executed directly by typing the command name into the command 
line. Although many Windows programs boast of “no commands to learn”, all programs are based 
on commands. The question is whether the commands can be directly accessed by the user. OSLO 
retains the traditional command interface as an option for the user. This provides a highly efficient 
way to use the program, and the name Click/Command indicates that at any point, the user can 
choose either to enter a command, or click on an icon or menu with the mouse. 
It is possible to enter commands while a spreadsheet is open. OSLO distinguishes between 
commands and data, and carries out the appropriate action. For this reason, the cells on OSLO 
spreadsheets are called SmartCells. 

Interactive operation 
OSLO is fundamentally an interactive program. After each command, the requisite action is 
performed and the display is updated. This means, for example, that the surface data spreadsheet 
is always up to date. There are a few exceptions, mostly relating to entering optimization data, but 
for the most part OSLO is based on an interactive model. Resulting from this model are the 
concepts of a current wavelength, configuration, object point, and spot diagram. Once these 
quantities are set, they remain set until changed by the user, or by some command that resets them 
to a different value. This increases the speed and efficiency of the program. In the case of the spot 
diagram, for example, once a spot diagram has been computed, a wide range of analyses can be 
carried out without retracing the rays. 
Prominent examples of the interactive organization of the program are the so-called interactive 
design windows used in OSLO. In the interactive design windows, lens parameters are attached to 
graphic sliders. Whenever a slider is changed by the user, the lens parameter changes, and OSLO 
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updates a particular evaluation function (ray trace, spot diagram, etc.). The user senses that the 
program is responding in “real time”. 
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