Optics Software for Layout and Optimization

User Guide

Revised 4-June-2021

Tel: 978-486-0766
Fax: 978-486-0755

COPYRIGHT

The OSLO software and User Guide are Copyright © 2021 by Lambda Research Corporation. All rights reserved.

This software is provided with a single user license or with a multi-user network license. Each license may only be used by one user and on one computer at a time.

The OSLO User Guide contains proprietary information. This information as well as the rest of the User Guide may not be copied in whole or in part, or reproduced by any means, or transmitted in any form without the prior written consent of Lambda Research Corporation.

TRADEMARKS

OSLO ${ }^{\circledR}$ is a registered trademark of Lambda Research Corporation.
TracePro ${ }^{\circledR}$ is a registered trademark of Lambda Research Corporation.
Pentium ${ }^{\circledR}$ is a registered trademark of Intel, Inc.
Windows ${ }^{\circledR}$, and Microsoft ${ }^{\circledR}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Table of Contents iii
Preface 1
Chapter 1 - Your first OSLO session 2
Introduction 2
Symbols used in this chapter 2
Running OSLO 3
The user interface 3
Spherical mirror example 6
Defining the lens system data 6
Defining the lens surface data 7
Drawing the lens in the Autodraw window 8
Plotting the on axis spot diagram 9
Listing the lens surface data. 10
Saving the lens 11
Changing the aperture. 12
Drawing the lens in the graphics window, with "zooming" 13
Finding the best focal plane 14
Plotting the on axis point spread function (PSF). 15
Extending the rays in the lens drawing. 16
Calculating the off axis optical path difference (OPD) 16
Optimizing 18
Assessing the final design 20
Listing the data 20
Exiting the program 20
Conclusion 21
Chapter 2 - Configuring OSLO 22
Introduction 22
Toolbar menus 22
Main window 22
Text window 22
Graphics window. 23
The status bar. 23
Preferences 24
Designer name (dsgn) 24
ISO10110 drawing settings (adr1, adr2, adr3, edcm) 24
Graphics (gems, gacl, gfwb, glab, grax, gfbw, drra, pens) 25
Graphics alternate mode (gfam) 25
No error boxes (noeb) 25
Tangent check (tanc on) 25
Compile CCL 25
Chapter 3 - The command line 27
Arithmetic calculations. 27
OSLO commands 27
Assigning values to predefined variables 28
Printing. 29
The history button 29
Keyboard shortcuts 29
The message area 30
iv
Executing CCL command sequences 31
Alphabetic list of system data variables 32
Chapter 4 - Lens data entry 34
8 x 30 binoculars: Specification 34
Calculations 34
Choosing an eyepiece. 34
Scaling the eyepiece. 36
Choosing a catalog objective 36
Combining the objective and the eyepiece 38
Surface decenters and tilts 41
Adding a right angle prism 42
Converting the prism to a Porro prism 44
Adding a second Porro prism 45
Completing the design 46
Chapter 5-Graphical analysis 48
Introduction 48
Opening a new graphics window 48
Labeling a graphics window 48
Generating a plot 49
Saving a plot 49
Cutting and pasting a plot 49
Lens drawing 50
Drawing a lens in 2D 50
Drawing a lens in 3D 52
Drawing a lens in 3D with sliders 53
Ray intercept curves analysis 54
Ray analysis (RIC) 54
Ray intercept curves for 2D field points 54
Ray intercept curves report graphic 55
Chapter 6 - Numerical analysis 57
Introduction 57
Finding the edge rays 57
Graphical estimates 58
Numerical calculation 59
From the text window 59
From the menu headers 59
From the command line (abbreviated) 60
By executing in the Edit window 61
From the command line (in full) 61
The spreadsheet buffer 61
Clearing the text window and spreadsheet buffer 61
Reading from the spreadsheet buffer 62
Writing to the spreadsheet buffer 62
Scrolling the spreadsheet buffer 63
Chapter 7 - Slider-wheel design 64
1:1 wide angle relay 64
Introduction 64
Defining the starting point 64
Setting up the starting lens 64
Slider-wheel design with ray intercept curves 66
Plotting the MTF across the field 67
Editing the slider-wheel callback command 67
Listing of the modified slider-wheel callback CCL 69
Slider-wheel design using MTF at one frequency 70
Setting clear apertures 71
Chapter 8 - Programming 72
Introduction 72
Defining a new command: sno 72
Structure of a CCL command 74
Search CCL library: scanccl 75
Defining a new command: ctn 75
Initial version of command 75
Version with formatted output 76
Adding the glass name string 77
Adding headers and documentation 77
The text window toolbar. 79
Adding the command sno to the toolbar 79
Calling sno from the toolbar 80
Defining a new command: xmt 80
Writing a command xmt to print transmittance values 80
Converting xmt printed output to graphics 81
Preserving the text window contents 82
Scaling and drawing the axes 82
Adding standard plot commands to xmt 83
Error handling 83
Listing of complete command xmt 84
The graphics window toolbar 86
Creating a new icon for xmt 86
Adding the xmt icon to the graphics window toolbar 86
Calling xmt from the toolbar icon 87
SCP programming: *triplet 87
Load command file programming 89
Chapter 9-Optimization 90
Optimizing using Seidel aberrations 90
Setting up the starting design 90
Defining the error function 91
Description of the Aberration Operands error function 92
Creating a model glass 94
Defining the optimization variables 94
Optimization 94
Choosing a real glass type 95
Final optimization steps 96
Autofocus 96
Optimization using finite rays 98
$50 \mathrm{~mm} f / 5.6$ objective: specification 98
Finding a starting design 98
Checking for vignetting in the starting design 99
Assessing the starting design 100
Defining and validating the error function 100
Description of the GENII error function. 101
Defining the optimization variables 102
Optimization 102
Engineering aspects: edge thicknesses 103
vi
Slider-wheels with concurrent optimization on MTF 104
Adjusting lens thicknesses 104
Engineering aspects: ambiguity avoidance 105
Engineering aspects: testplate fitting 106
Rounding air spaces 107
Adjusting clear apertures 107
Chapter 10 - Tolerances and drawings 109
$50 \mathrm{~mm} / 5.6$ objective: specification 109
Defining the tolerance error function:"opcb_dmtf" 109
Defining the compensator 111
Optimizing on the compensator 111
Calculating decenter tolerances 112
Checking tolerance entries 112
Symmetrical tolerances surface calculation 112
Updating symmetrical surface tolerances 114
Asymmetric tolerances surface calculation 114
Updating asymmetric surface tolerances 115
Updating asymmetric component tolerances 115
Asymmetric tolerances calculation 115
Tolerance data listing 116
ISO 10110 component drawing 117
Setting element drawing defaults 117
Setting element material properties 117
Setting element surface properties 118
Element drawing 119
Appendix 1 - Index of lens data commands 120
Appendix 2 - Graphics reference 123
Alphabetical index 123
Tabular graphics command reference 125
Tabular graphics index 127
Graphics reference examples 129

Preface

Since its inception at the Institute of Optics at the University of Rochester, the software written by Doug Sinclair has played a key role in the teaching as well as in the performance of optical design. So OSLO, perhaps more than any other optical design software, shows signs of its origins in a teaching establishment. The flexibility of the user interface, the open source nature of much of the code, the CCL programming language which is very similar to C, and real capability of OSLO EDU, the free version of OSLO, to carry out real design tasks, make it the ideal choice for the teaching environment.
This manual has been written to supplement the current documentation for commercial users of OSLO software. Its second aim is to provide a gentle introduction to the experience of optical design for those who have only just downloaded OSLO EDU from the internet. The first chapter is written expressly for them. More experienced designers may wish to skip straight to the second chapter.

Chapter 1 - Your first OSLO session

Introduction

This chapter gives a click-by-click description of how OSLO can be used to carry out a very simple task involving synthesis, analysis, and optimization of a spherical concave mirror. It is in general applicable to all editions of OSLO, including OSLO EDU. This means that more advanced facilities, which may only be available in OSLO Standard and Premium editions, are not included.

The exercise will demonstrate the two main modes of calculation:

- the geometrical approximation, in which light is treated as a ray, or the path of a photon
- the physical mode of calculation, in which the light is treated as propagating as a wave front, and the results take account of the effects of diffraction.

Symbols used in this chapter

A left-click on the mouse is indicated by a white arrow, and a right-click by the box with the word "Right". If a drop-down menu is selected by a left-click, then it is represented by a black circle and arrow.
Step by step instructions are marked with bullet points. Instructions about what to do if things go badly wrong are in italics and labeled HELP! .

Anything typed from the keyboard (whether as a command or as an entry in a dialog box) is shown in this typeface.
Labels and headers in spreadsheets and dialog boxes are given in this typeface.
Buttons to be clicked are shown in gray
Check-boxes (called "radio buttons" in the documentation) are shown like this: ©
Messages which appear whenever the cursor hovers above an icon are shown in a shaded box. These are known as tooltips.

Tooltips
Questions and answers, representing a typical dialog between a lens designer and the customer, are given in bold type.

Running OSLO

- EITHER click on the shortcut icon on the desktop in the Windows desktop, OR click on Start - All Programs - OSLO OSLO [EDU etc] Edition...
OR locate the .exe file in C:IProgram FilesIOSLO (e.g. osloedu.exe) - in some installations the directory name is Lambda ResearchlOSLO).
- The program opens with an introductory dialog box. Click anywhere in the box to close it.
- If a message about re-building the CCL database appears, click on OK
- The "Tip of the Day" is a useful tutorial for new users. Click on Close Alternatively it can be suppressed permanently by removing the tick from the box in the bottom left corner.
- The Get_startup_option window opens.
- Choose the default option: OStart a new lens and click on OK
- The OSLO main window should now appear, similar in appearance to that shown here. We will now discuss the individual components of this window in detail.

The user interface

A number of terms are defined here, and given in bold print. At the top of the main window in the blue border is the title bar, which gives the lens identifier, the file name under which the current lens was last saved, and the edition of
 OSLO currently running.
Beneath this lies a row of menu headers, File, Lens, Evaluate, etc, each of which its own drop-down menu has. Many of the program commands can be accessed through these menus. The last of the menu headers is Help which gives access to the on-line documentation. In Windows, this can also be accessed via the F1 key on the keyboard.

Below that is a row of icons forming the main window toolbar, which give one-click access to the most frequently used control functions. The first of these is the Setup Window/Toolbar icon which gives access to a list of further groups of icons which
 can be added to the toolbar. Other icons are to Open surface data spreadsheet, Open a new lens, Open an existing lens, Save the current lens, Open the standard text editor, etc. Each icon has a description of its function which pops up as a tooltip when the cursor is placed over the icon.
At the bottom of the main window, there is a status bar which can be expanded and customized by the user. This will be described in chapter 2 .

The window which opens in the top left hand corner is called the surface data spreadsheet. This is the area where all the properties of the lens and its working conditions are defined. Entering data into this spreadsheet is described in chapter 4. Other spreadsheets are available, but only one spreadsheet can be open at a time.

HELP! If the surface data spreadsheet does not open, click on the blue lens icon on the left of the toolbar in the main window. Alternatively, select from the Lens menu header the option Surface Data Spreadsheet... Immediately above the surface data spreadsheet is the command line where OSLO commands are typed. They are executed either by pressing Enter or by clicking on the green tick:
Accept pending entry/Close spreadsheet

Online documentation for any command may be accessed by typing the command in the command line, and then pressing the yellow question mark beside it.

If no command is entered the documentation for any currently open spreadsheet is given.
Below the command line there is a message area, and on the right hand end there is the history button. The command line is described in detail in chapter 3.

There should also be a text window visible. This is where printed output is directed. Along the top of this there lays a toolbar consisting of a row of text labels, which are OSLO commands, executed by clicking. Numerical analysis is described in chapter 6 .

HELP! If the text window toolbar does not look like the one in the diagram, click on the Setup Window/Toolbar icon in the top left-hand corner of the text window, and select Standard Tools from the menu. Any or all of the toolbar groups may be selected for a text window. Either one or two, but not more, text windows can be shown at a time.

The user may create additional toolbar entries using the CCL programming language. Detailed instructions of how to do this are given in chapter on programming, chapter 8.

Also on the main screen there is at least one graphics window. This has a toolbar consisting of a row of icons. All graphical output is displayed in one of the graphics windows. Graphical analysis is discussed in chapter 5 . There is an index of OSLO graphics facilities in Appendix 2 at the end of this book.

HELP! If the graphics window toolbar does not look like the one in the diagram, click on the Setup Window/Toolbar icon on the left-hand side of the graphics window toolbar, and select

Setup Window/Toolbar

Standard Tools from the menu. Only one of the graphics window icon groups may be displayed at a time, but different graphics windows may have different groups. Up to 30 graphics windows may be created and displayed by the user at any one time. Two more may be generated automatically.
The user may generate icons in any of the graphics toolbars. This is described in chapter 8.
HELP! If you have trouble finding the text window or the graphics window, then from the Window menu header select Tile Windows. Alternatively you can type the command tile into the command line and then either click on the green tick \checkmark or press \downarrow (Enter) on the keyboard.

Spherical mirror example

The remainder of this chapter will consist of instructions on how to specify a concave spherical mirror of radius 16 mm , and then to assess its on-axis performance at apertures of $\mathrm{f} / 4$ and $\mathrm{f} / 2.3$. Finally its performance at 18° off axis will be assessed, and the stop position and image radius of curvature optimized to give the best performance over the field of view.
For clarity, each section will be prefaced by a question from a "customer," given in bold type.

Question: Does a spherical mirror working at $\mathrm{f} / 4$ give a "diffraction limited" image at its focus when used with a $\mathbf{2} \mathbf{~ m m}$ diameter parallel axial beam of green light?

Defining the lens system data

The working conditions of the lens (such as units, paraxial setup data, wavelengths and field points) are defined by entries in the surface data spreadsheet above the double line.

On the surface data spreadsheet:

1. Left-click with the mouse on Draw Off to open the Autodraw window The label on the button changes to Draw On while the Autodraw window is active.
2. Add the lens identifier (up to 32 characters): Lens: Spherical mirror Click once on the green tick.

HELP! If you were to choose a different name for the lens identifier, and the first word of the name happened to be a valid OSLO command words (such as $\mathbf{S p e}$), the name would be
rejected and the relevant command executed instead. To avoid this, the title might be enclosed in quotation marks: e.g. "spe".

The default value of Ent beam radius is 1.0 mm , the default primary wavelength is $0.58756 \mu \mathrm{~m}$ (the green helium d-line), and the default units are mm, so for this exercise these do not need to be changed. Also at this stage it is only necessary to assess the mirror on axis, so the field angle does not need to be changed from the default value of 1 microradian.

Defining the lens surface data

Turning now to the data below the double line, the first line (labeled OBJ) refers to the object space, numbered 0 . A parallel beam is the default condition for a new lens. So the
THICKNESS - that is the object distance - is infinity (in OSLO, that means 10^{20}, written $1.0000 e+20$ lens units). Nothing has to be changed on this line since in the object space a medium (GLASS) of AIR is also the default. The object radius $(1.0000 \mathrm{e}+14)$ is calculated from the field angle by the program, and is not specified by the user.

On the second line for surface 1 (AST):
3. Because the aperture is " $\mathrm{f} / 4$ " the focal length must be 4 times the beam diameter of 2 mm , and the focal length is half the radius of curvature. Change the RADIUS to a value of $\mathbf{- 1 6}$ (mm). Since this is measured from the surface to its center, a negative radius implies a surface concave to the incoming beam.
4. Click on the gray button next to AIR under GLASS and select Reflect (hatch) (or Reflect - the only difference being the appearance of the drawing).
5. Change the THICKNESS from 0.000000 to: - 8 (mm). This is the separation from surface 1 to surface 2 . It is negative because after reflection the light travels in the opposite direction to the local z-axis.
6. Once again, click on the green tick (\checkmark) to confirm the changes.

Note that for surface 1, the APERTURE RADIUS (1.000000) has AS in the gray box next to it. A means that this surface is the aperture stop. \mathbf{S} means that the size of the surface is governed by a "paraxial solve," which means that it will be adjusted to accommodate (approximately) both axial and off-axis beams without truncation.

On the third line, which corresponds to the image (IMS) a RADIUS of 0.0 means that the image is plane. Once again its size is the default - it is adjusted using a "paraxial solve." The box for the next space (THICKNESS) will used for a defocus value, but is zero at present. The box showing the medium after the image (GLASS) is of course blank.

There is no need to close the surface data spreadsheet before starting the next section.

Drawing the lens in the Autodraw window

In the main window:

- Click on the Lens menu header to open the menu list shown.
- Select the last item, Lens Drawing Conditions .

The Lens Drawing Conditions spreadsheet will appear. This is the spreadsheet where the overall appearance of lens system drawings is determined.

In the Lens Drawing Conaltions spreadsheet:

- After Image space rays: select Draw rays to image surface.
- The table at the bottom determines what rays will be displayed. In the column headed Rays type on the first line 11 for the number of rays to be drawn for the first (on axis) field point - for which Frac $\mathbf{Y} \mathbf{O b j} \mathbf{= 0 . 0 0 0 0 0}$. These rays will be drawn with a green pen.
- Leave everything else unchanged, and close with the green tick \checkmark.

The Autodraw window should now have the appearance shown in the diagram, provided the surface data spreadsheet is open.

HELP! The Autodraw window may be hidden behind one of the others. If this happens to be the case, from the Window menu header select Tile Windows

Plotting the on axis spot diagram

A spot diagram is a map of the pattern of rays incident on the image from a single object point, using the "geometrical approximation" which ignores the wave nature of light.

- From the Evaluate menu header select:

Spot Diagram

- Single spot diagram.
- In the Print or plot spot diagram spreadsheet, click on three radio buttons as shown:
\bigcirc Plot spot diagram.
Plot ray intersection points as:
O Symbols
Show Airy disc in plot:
Oyes
- Leave the other entries as defaults; the axial $(\mathbf{F B Y}=\mathbf{0}, \mathrm{FBX}=0)$ is the default so there is no need to use the Set Object Point button.
- Click on OK

The colored symbols in this diagram represent the distribution in the image plane of rays which evenly fill the pupil from a single point on axis. The three colors represent the three default wavelengths. The black circle represents the first minimum of the Airy disc, which is the intensity in the image of a perfect lens of the same aperture, in monochromatic light of the default central wavelength of $0.58756 \mu \mathrm{~m}$.
The most important aspect of the diagram is that all the rays fall within this circle. This is one of
 the criteria by which the assertion can be made:
Answer: Yes, the image quality at the focal point is "diffraction limited" - i.e. limited by the wave nature of light and not by aberrations.

HELP! Once again, if you have trouble finding the graphics window, from the Window menu header select Tile Windows or type the command
 tile into the command line.

- Close the surface data spreadsheet by clicking on the green tick \checkmark.

Listing the lens surface data

- Click on the Len header in the text window to list radii, thicknesses, apertures, glass types and surface notes:

*LENS DATA						
Spherical mirror						
SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS	SPE	NOTE
OBJ	--	$1.0000 \mathrm{e}+20$	$1.0000 \mathrm{e}+14$	AIR		
AST	-16.000000	-8.000000	1.000000	AS	REFL_HATCH	
IMS	--	--	$8.0000 e-06 ~ S$			

- Click on Rin to list the indices and thermal expansion coefficients:

*REFRACTIVE INDICES						
SRF	GLASS/CATALOG	RN1	RN2	RN3	VNBR	TCE
0	AIR	1.000000	1.000000	1.000000	--	--
1	REFL_HATCH	1.000000	1.000000	1.000000	--	--
2	IMAGE SURFACE					

- Click on Ape to list apertures and any special apertures.
*APERTURES
SRF TYPE APERTURE RADIUS
SPC $1.0000 \mathrm{e}+14$
CMP $\quad 1.000000$

CMP 8.0000e-06

- Click on Wav to give the wavelengths and the spectral weighting factors on each.

*WAVELENGTHS

CURRENT	WV1/WW1	WV2/WW2	WV3/WW3
1	0.587560	0.486130	0.656270
	1.000000	1.000000	1.000000

- Click on Pxc to list the focal length and some of the operating conditions.
*PARAXIAL CONSTANTS

Effective focal length:	-8.000000	Lateral magnification:	$\mathbf{- 8 . 0 0 0 0 e - 2 0}$
Numerical aperture:	0.125000	Gaussian image height:	$\mathbf{8 . 0 0 0 0 e - 0 6}$
Working F-number:	4.000000	Petzval radius:	-8.000000

Lagrange invariant: -1.0000e-06
HELP! There are occasions when the text output gets turned off inadvertently. This is most likely to occur if a CCL command is interrupted before it has had time to complete its task. If nothing appears in the text window when text output is expected, look at the first panel on the status bar at the bottom of the main window. If it reads Text output: Off, right click within the text window, and select the last menu entry: Set Text Output On.

Saving the lens

To create a new folder and save the lens in it:

- From the File menu header select Save Lens as ...
- Of the two buttons labeled Library Directories at the bottom of the Save Lens As window, click on Private
- At the top of the window, click on the icon:

- Type the name for the new folder: User_Guide and click on Open
- Under File name type: spherical_mirror

- Click on Save to save the lens with the file name spherical_mirror.len
Note that OSLO is case insensitive, so this file cannot coexist with another file called, for example, SPHERICAL_MIRROR.len
- Close the surface data spreadsheet with the green tick \checkmark
- The lens will be stored in the private lens directory e.g. C:IProgram FilesIOSLOIEDU64|privatellen in the newly created IUser_Guide subdirectory. The file is in ASCII format and contains the following text:
// OSLO 6.4 $39660 \quad 016046$
LEN NEW "Spherical mirror" - 82

EBR 1.0
ANG 0.0000572957795
DES "OSLO"
UNI 1.0
// SRF 0
AIR
TH $\quad 1.0 \mathrm{e}+20$
AP $9.9999999995 \mathrm{e}+13$
NXT // SRF 1
RFH
RD -16.0
TH -8.0
NXT // SRF 2
AIR
WV 0.58756 0.48613 0.65627
WW 1.01 .01 .0
END 2
DLRS 3
DLNR 011
An explanation of these commands will be found in Appendix 1.

Changing the aperture

Question: If the aperture of the spherical mirror is increased to 3.44 mm is it still "diffraction limited" at the new aperture?

- In the surface data spreadsheet increase the entrance beam radius from 1 mm to 1.72 mm .
- Confirm with the green tick \checkmark.

Now recalculate the spot diagram:

- Right-click anywhere inside the graphics window containing the spot diagram plotted previously.
- Select Update window using current data:
to create the diagram shown at right.
Because the aperture has increased, the spot diagram is bigger (because of greater aberrations) and the Airy disc is smaller (it is inversely proportional to the aperture). Most of the rays therefore now lie outside the Airy disc circle.

Answer:
 No, it is far from diffraction limited.

Drawing the lens in the graphics window, with "zooming"

To draw the lens system in a graphics window:

- From the Lens menu header select
Lens Drawing ...

- System

- Accepting all the defaults click on OK

Alternatively,

- Click on the first icon in the graphics window standard toolbar for Draw system (2D plan view).
- Select Plan View ...

To view the paths of rays near the focus at a higher magnification:

- On the graphics window, left-
 click-and-drag around the focus as shown below.
- Left click twice within the graphics window to return to the full frame image.

Note that the zooming action will work on all graphics windows except the Autodraw window.

Clearly a better focal plane can be chosen, a short distance to the right of the current one.

Finding the best focal plane

Question: At this new aperture, where should the focal plane be chosen to give the best image quality for green light on axis?
This can be found most quickly using the "autofocus" facility in the surface data spreadsheet, one of a number of built-in optimization functions.

- Open the surface data spreadsheet.
- Click on the gray button next to the thickness for the image surface (surface IMS).
- Select Autofocus - minimize RMS OPD ... \bullet On-axis (monochromatic)

In this context, RMS OPD refers to the root mean square "optical path difference" (or wave aberration). This autofocus action has the effect of finding the focal plane which minimizes the RMS OPD and entering the necessary displacement as the thickness for the image space. The thickness for the space preceding the image space is left unchanged.

Listing the lens data - click on the Len header in the text window - gives the extent of defocus needed:

The value listed for the defocus, shown as the thickness at the image plane, is 0.023809 mm . To get the actual distance from the mirror to the image it is necessary to add the defocus value to the nominal distance of -8 mm .
This is the only case in OSLO where an entry in the thickness column of the surface data spreadsheet for a surface affects the axial position of that
 surface rather than the surface which follows.

Answer: The best focus at an aperture of $f / 2.33$ is at $7.976 \mathbf{~ m m}$ from the mirror.

Plotting the on axis point spread function (PSF)

Question: Is the image "diffraction limited" at the new focal plane?
The evaluations carried out hitherto only show approximations to the actual distribution of light in the image of a point source, since a spot diagram takes no account of diffraction.

To plot the true distribution of light in the image of a monochromatic point source, that is to say, the point spread function:

- From the Evaluate menu header select:

Spread Function

 -Plot PSF Map/Contour.In the Sprd window which opens:

- Click on the radio button

O Gray scale map

- Click on the radio button

O Monochromatic

- Type in 0.01 for the Size of patch on image surface.
- Click on the radio button:
© Normalize to peak of PSF
- Click on the radio button:

O Direct integration

- Type in 128 for Number of lines/points in drawing
and click on $\mathbf{O K}$

Note that the first bright ring around the central maximum can just be seen. Note also the figure at the top of the scale on the right: $\mathbf{0 . 8 1 2 3}$. This figure is called the "Strehl ratio," which is the intensity at the central peak of the image
 of a point source, normalized to that of the Airy diffraction pattern of an ideal lens. The Maréchal criterion states that if the Strehl ratio exceeds 0.8 , a lens system may be described as "diffraction limited".
Answer: Yes, the image is diffraction limited on axis at the new focal plane.

Extending the rays in the lens drawing

- Open the Lens Drawing Conditions spreadsheet by clicking on the icon in the main window toolbar.

- Close the spreadsheet with the green tick \checkmark.

Calculating the off axis optical path difference (OPD)

Question: What is the maximum OPD at full field for a semi-field angle of $\mathbf{1 8}^{\circ}$ (total field angle 36°)?

- Open the surface data spreadsheet.
- Enter $\mathbf{1 8 . 0} \mathbf{0}$ degrees as the (semi-field) Field angle
- Left click on the gray SRF button for surface $\mathbf{1}$ (AST) to highlight the whole row.
- Right click to bring up the menu of options.
- Select Insert before to insert a new surface as surface 1.

- Under APERTURE RADIUS for the new surface 1, click on the gray button.
- Select Aperture stop (A)

The aperture stop indication (AST) on the gray button under SRF will now move to surface 1 , which at the moment is in contact with surface 2.

Note that the aberrations of the rays in the off-axis beam (drawn in blue) are so large that they can easily be seen in the lens drawing.
To calculate the optical path difference, or wave aberration, over the whole pupil for three field points (on axis, 0.7 field and full field):

- From the Evaluate menu header select:

Wavefront - Report graphic... and in the dialog box which opens:

- Enter $\mathbf{1 2 8}$ as the Number of lines
- \quad Select \bigcirc Reference ray intersection
- Click on OK

Note the peak-to-valley figure of 37.05 wavelengths under the map for the full field wave aberration.

Answer: The axial performance is better than the standard criterion of a quarter of a wavelength for the diffraction limit, but at full field off axis the maximum OPD is 37 wavelengths.

P-V 3705 RNS 7722

Optimizing

The aperture stop is the limiting aperture of the axial beam. Its longitudinal position determines the beam which is selected to form the off-axis image, and if the field is large, this can have a significant effect on image quality.

Also the image has been assessed only over a plane surface - this is of course the usual convention. For this exercise, however, we will investigate the benefits of allowing the image to become curved.
Question: Where should the stop be placed, and what curvature of the image is needed, to obtain the best performance over the whole field?
The answer to this question will demonstrate slider wheel optimization, one of the most useful features of OSLO.

- Close the surface data spreadsheet.
- Open the Slider-wheel Setup spreadsheet, by clicking on the icon on the main window header.

The entries above the line define the contents of the window(s) which will be displayed during slider-wheel optimization.

- Select \bigcirc OPD (optical path difference, another name for wavefront aberration)
- SelectO All points

Entries below the line determine which parameters will be adjusted with slider-wheels:

- Leave the default of $\mathbf{2}$ for the Number of sliders (up to 32 can be defined at any one time).
- On the first line, enter 1 under Surf and type th in the box under Item. Alternatively click on the box and select Thickness (TH) from the menu of options.
- On the second line, enter $\mathbf{3}$ under Surf and type cv under Item.
- Click on the green tick \checkmark to close the Sliderwheel Setup spreadsheet.

The two graphics window which open, GW31 and GW32,

```
Curvature (CV)
Curvature pickup multiplier (CVM)
Conic constant (CC)
Thickness (TH)
X decentration (DCX)
Y decentration (DCY)
Z decentration (DCZ)
Alpha tilt angle (TLA)
Beta tilt angle (TLB)
Gamma tilt angle (TLC)
Tilt vertex offset in x (TOX)
Tilt vertex offset in y (TOY)
Tilt vertex offset in z (TOZ)
```

are specific to slider-wheel optimization. The scrollbar at the right of each slider wheel track can be used to adjust the step increment of the slider-
wheel motion. Changing the step size also has the effect of centralizing the slider-wheel in the track.

- Watching the lens drawing in GW 32, and the plots of the optical path difference in GW 31, move the upper slider to the extreme right ($\mathbf{t h} \mathbf{1 = 1 0}$) and the lower slider to the extreme left (cv $3=\mathbf{- 0 . 1}$).
- Once again, open the Slider-wheel Setup spreadsheet, by clicking on the icon. However this time just close it again immediately. This has the effect of centralizing the two slider-wheels and re-drawing both windows with different scales.

Although the OPD graphs give no indication of scale, it can be seen that the performance is much improved.

- Repeat the sequence once more until the best result is given. This should be when TH $1=16.0 \mathrm{~mm}$ and CV $3=-0.125$ mm^{-1}

Answer: The aperture
stop must be at the centre of curvature of the mirror, and the image surface must be a sphere with its centre at the aperture stop.

Assessing the final design

To evaluate the optical path difference of the new system, once again:

- From the Evaluate menu header select:

$$
\text { Wavefront }>\text { Report graphic.. } \quad \text { Rpt_wvf } \quad \text { X }
$$

and in the dialog box which opens:

- Enter 128 as the Number of lines
- Select \bigcirc Reference ray intersection
- Click on OK

The peak-to-valley wave aberration at the edge of the field is less than a quarter wavelength, so the lens is diffraction limited over the whole (curved) field.

Listing the data

To list the correct prescription of the final design, the image separation needs to be adjusted.
 In the command line:
\bullet Enter the command: th 2-7.976 (note the spaces after th and after 2) SRF 2:
TH -7.976000

- Enter the command: th $\mathbf{3} \mathbf{0} ; \mathbf{r t g}$ to give the final listing (again note the spaces): SRF 3:
TH
*LENS DATA
Spherical mirror

Exiting the program

- From the File menu header select Exit. If any more changes have been made a message label will give a warning to save the lens, otherwise those changes will be lost.
- Click on No and the program terminates.

Conclusion

This introduction shows that OSLO commands can be accessed from the menu headers, from the text window headers, from icons or entered directly into the command line. Commands can also be combined into programs in the languages SCL or CCL, as will be shown in chapter 8.

Command names are important for accessing the documentation in the on-line help. Here are some of the commands that have been used (either explicitly or via the menus and icons) in this chapter:

file_new	Opens a new lens file
uoc drl	Updates lens drawing conditions
pls	Plots spot diagram
len	Lists lens data
save	Saves lens
drl	Draws lens
auf	Autofocus
sprd	Plots the point spread function
$\mathbf{l s e}$	Opens the surface data spreadsheet
rpt_wvf	Plots wavefront map at 3 field points
swe	Opens the slider-wheel spreadsheet
th	Changes a thickness
rtg	Lists radii/thicknesses/glass types
exit	Terminates OSLO.

To obtain a full list of commands:

- From the Help menu header select OSLO Help F1
- Select the Contents tab and click on Command
 Reference. The commands are listed in the alphabetic sub-directories shown here.

Chapter 2 －Configuring OSLO

Introduction

Some ways in which the user interface can be adapted will be demonstrated in this section，． It is recommended that these are implemented before proceeding with the remainder of the exercises in this user guide．

Toolbar menus

This section shows how the toolbars in the main window，the text window，and the graphics window may be populated with icons／tools．

Main window

On first use of the program，bring up the full range of icons into the main window toolbar：
－On the left of the main window toolbar，click on the blue and red window Setup Window／Toolbar icon．
－In the drop－down menu which appears click on Optimization Tools．
－Repeat for all the other items in the menu（not all the toolbars listed will be available in Light or EDU versions）
－Click on Set Toolbars／Row．．．and，if it is not already 3，enter 3.

Text window

Click on the blue and red window Setup Window／Toolbar icon on the left of the text window header．
－In the drop－down menu which appears click on Lens Data Tools．
－Repeat for all the other items in the menu．
－Click on Set Toolbars／Row．．．and enter $\mathbf{3}$ for Maximum number of toolbars on first row．
－Click on Switch text windows to open a second text window， if desired．It will have the same toolbar choices as the first．Only two text windows may be opened at a time．

File Lens Evaluate Optimi
田0图运（10）
Tile windows
New graphics window
Switch text windows
SS right－click actions．．．
Set Toolbars／Row．．．
\checkmark Standard Tools
\checkmark Optimization Tools
\checkmark Tolerancing
\checkmark Gaussian Beams
\checkmark Extended Sources \checkmark Zoom
\checkmark Advanced Analysis

Graphics window

Each graphics window supports only a single toolbar, but up to 31 additional graphics windows may be opened, each with its own choice of toolbar.

- From the Window menu header select:

Graphics New

- In the header of the graphics window which opens, click on the Setup Window/Toolbar icon.
- Select one of the toolbar options.
- Repeat twice more to open a total of four graphics windows. The current one always has a dark blue bar at the top and an asterisk after the title; the header bars of the others are light blue.

The status bar

The status bar extends across the bottom of the main window for its full width. The following is a suggestion - there are many other possibilities.

- Click twice on the status bar, or from the Window menu header select Status Bar...

- Leave the parameters for the first three fields unchanged.
- Set the parameters for fields 4 to 8 as follows:

4. Focal length
5. Working F-number
6. Lateral magnification
7. Angular magnification
8. Gaussian image height

For each field, click on the tab on the right hand side of the field, and then select the option from the dropdown menu. This facility is
 especially useful for keeping an eye on paraxial quantities during optimization.

- Click on OK to close the window.

It is not advisable to set more than eight entries as the status bar is limited to 127 characters.

Preferences

Preferences are parameters which control many of the functions of the program operation, regardless of what lens is currently open. Status bar settings and preferences, once set, are preserved after exiting the program. They are stored in a text file called oslo.ini in the directory /private. This may be read with a text editor, but it must not be altered.

Preferences may be displayed using the show_preference command - e.g.
shp dsgn
or incorporated into print statements - e.g.

```
printf("Current lens directory is %s\n",str_pref(cdir)).
```

- Before starting to define preferences, ensure that the surface data spreadsheet is closed.

Designer name (dsgn)

Several of the graphics windows include a space where the designer's name is listed. The default for new lenses is OSLO. To change it:

- From the File menu header select Preferences \downarrow Set Preference...
- From the gray list, select Designer
- On the prompt Enter string preference type [your_name] (with a maximum of 10 characters, no spaces) into the command line
- Click on the green tick.

Alternatively, just type stp dsgn "[your_name]" in the command line and click on the green tick $\quad \checkmark$ Note that this will not affect the current lens in storage, but only new lenses created after the change.

ISO10110 drawing settings (adr1, adr2, adr3, edcm)

On ISO 10110 drawings there is a space for three lines of standard information, which normally consists of your company's name and address:

- From the File menu header select Preferences Set Preference...
- Select Address1
- Type [your_company_name] (maximum of 36 characters) in the command line under Enter string preference:
- Altematively, in the command line type: stp adr1 "your_company_name".
- Close with the green tick
- Similarly for Address2 and Address3
e.g. stp adr2 "your_street_address"
stp adr3 "your_town"
Commas may be specified instead of decimal points on ISO 10110 drawings:
- From the File menu header select Preferences \downarrow Set Preference...
- Select Element_drawing_commas
- Select On under Select Boolean preference:

Graphics (gems, gacl, gfwb, glab, grax, gfbw, drra, pens)

Many of the preferences control the appearance of graphics output. For example, when cutting and pasting graphics into Windows, the scale is generally too big for convenience. A better scale is given if the gems preference is set to $\mathbf{O n}$:

- From the File menu header select Preferences Set Preference...
- Select Graphics_emf_sizing
- Select On under Select boolean preference:

Several other graphics preferences are collected together for easy access:

- From the File menu header select Preferences Preference groups... \downarrow Graphics
- Modify the entries in the popup box shown in the illustration as required.
- Click on OK.

Graphics alternate mode (gfam)

If the aspect ratio of exported graphics is reversed (landscape <> portrait) then look to see if gfam on
(Graphics_alternate_mode On) has inadvertently been set. If so:

- Enter the command: stp gfam off

Set graphics preference			X
Automatically clear graphics windows - On C Off			
Use white background in graphics windows - On C Off			
Use labels on graphicsC On COff			
Draw axes on plots - On C Off			
Draw graphics in black and white C On C Off			
$\begin{aligned} & \text { Draw ray direction arows } \\ & \subset \mathrm{On} \text { Off } \end{aligned}$			
0.500000	Ray arow length in lens units		
$1.0000 \mathrm{e}-10$	Minimum scale for graphics		
abcdefgh	Pen sequence control word		
OK	Cancel	Help	

- Close with the green tick \checkmark

No error boxes (noeb)

Whenever an error message box appears, it needs to be cleared immediately by clicking on OK. This can be a problem on occasions, such as during slider-wheel optimization.

It is possible for the user to suppress these error boxes permanently. If desired:

- From the File menu header select Preferences \downarrow Set
 Preference...
- Select No_error_boxes
- Under Select boolean preference: select On

Tangent check (tanc on)

- Enter the command tanc on in the command line. This will turn on the facility which permits rays to be drawn to highly aspheric surfaces, such as the one illustrated here.
- Close with the green tick \checkmark

Compile CCL

To avoid potential problems, it is a good idea to compile all CCL files before starting to use the program for serious work. To do this:
－From the Tools menu header select Compile CCL ．．．
－In response to Select compile access：choose Public．
－In response to Select compile option：choose All．
－In response to Enter ccl opts：leave the default entry unchanged－e．g．：
-D _OSLO_EDU_ -D _OSLO_LIGHT_ -D OPENGL_GRAPHICS
－Close with the green tick $\sqrt{ }$
－Check that the public CCL directory has compiled without error．


```
囟 Len Soe Rin Ade Wav Pxc Abr Mra Chf Tra Sod Ref Fan Sod Auf Var Nmo llow Slv Pko Ade 长 Pxt Chr Sei Fif
Ref bot chf too skw Sos Wvf Mtf Psf Srf Pmm
*CCL COMPILATION MESSAGES:
No errors detected
```

－Repeat for the Private directory，or（not for users of OSLO EDU version）click on the icon to＂Compile all private CCL＂．
－Once again confirm that the No errors detected message has appeared in the current text window．
If an error message is given，then it will be necessary to correct，suppress or delete the file whose name is shown．For example，the error message：

```
\overline{\underline{\underline{#}}\mathrm{ TWW 1*}}\mathrm{ *}
祭 Len Spe Rin Ade Wav Pxc Abr Mra Chf Tra Sod Ref Fan Sod Auf Var r
Ref bot chf tod skw Sos Wvf Mtf Psf Sif Cmm
*CCL COMPILATION MESSAGES:
eval_ctn_version2.cc1 9: Duplicate procedure definition
```

indicates the error occurs on line 9 of the file eval＿ctn＿Version2．ccl in the private／ccl directory．Further details are given in chapter 8.

Chapter 3 - The command line

Arithmetic calculations

Simple arithmetic expressions can be evaluated with the result given in the message bar.

- If the surface data spreadsheet is open, close it by clicking on the green tick \checkmark.
- Type $\boldsymbol{\operatorname { c o s }}(\mathbf{3 0 *} \mathbf{d r})$ and close with Enter or the green tick \checkmark

- Enter atan2(sqrt(3),1)/dr

The following table gives all the arithmetical functions available in OSLO EDU:
Mathematical: pow (power), exp, log, log10, sqrt, j0, j1 (Bessel functions)

Trigonometry (all angles are in radians):
sin, cos, tan, asin, acos, atan2
Rounding and limits:
fabs, rint, r2int, round, min, max, floor, ceil
Random numbers:
rand (uniform), grand (Gaussian with zero mean)

OSLO commands

The main purpose of the command line is to execute OSLO commands.

- Enter file_open and close with the green tick \checkmark
- If the message Save changes to current lens file? appears, click on No.
- In the Open lens file window which opens, under Library directories at the bottom, click on Private.
- Click on trip.len
- Click on Open

- If the surface data spreadsheet opens, close it with the green tick \checkmark.

Multiple commands are stacked with semicolons. For example, if we require to calculate the "sag" of the first surface of the triplet (that is, the distance measured along the axis from the plane through the axial point to the plane through the edge of the clear aperture):

- Enter rtg 1 1;sag 16.5

Commands can also be issued in a way that initiates a dialog for subsequent parameters:

- Enter sag ?
- In the command window, in reply to the prompt Enter surface number: enter 1
- In reply to the prompt Enter y: enter $\mathbf{6 . 5}$

- In reply to Enter \mathbf{x} : leave the default value $\mathbf{0}$
- Close with the green tick
*SURFACE SAG AND SURFACE NORMAL SURFACE 1

Y	X	$Z(S A G)$	NVL	NVK	NVM
6.500000	--	1.018527	-0.305882	--	0.952069

Assigning values to predefined variables

Values can be allocated, using the command line, to predefined variables. Predefined
 pre-defined are seven real arrays with indices 0-1999, ua [] ... za [] and three string arrays of 256 characters astr, bstr, cstr. There are also two predefined constants, $\mathbf{d r}$ (degrees to radians conversion factor), on $(=1)$, $\mathbf{o f f}(=0)$ and $\mathbf{p i}$. All are case-insensitive.

Allocations remain until OSLO is closed and restarted.
For example we can calculate the z ("sag") value listed above:

- Enter $r=21.25 ; y=6.5 ; z=r-r * \cos (\operatorname{asin}(y / r))$
- Enter \mathbf{z}.

Result $=1.0185269938148$
Here the value of z which appears in the message area is the "sag" of the previous example.
Take care if you use $\mathbf{c}, \mathbf{f}, \mathbf{o}, \mathbf{r}$ or \mathbf{v} as they are also OSLO command words. $\mathbf{p i}$ is π, but it is also an OSLO command. So do not enter pi on its own, but rather include it in an arithmetic expression.

- Enter: +pi

Result = 3.1415926535898
Take care when arithmetical calculations are carried out while any spreadsheet is open. The results of calculations will, if valid, be used as the contents of the cell which is currently highlighted.

Printing

Results of printing appear in the current text window:

- Enter: prt At height y sag is z

At height 6.500000 sag is 1.018527
For more formal presentation, printed output can be formatted. This command uses the formatted print command printf to print the volume of the "cap" enclosed by surface 1 .

- Enter: aprintf("Volume=\% .3f cu.mm.\n",pi*z**2*(r-z/3))
volume $68.149 \mathrm{cu} . \mathrm{mm}$.
The first argument is a format string. In it, \% . $\mathbf{3 f}$ is a format specification for the double precision numeric value; the space after the \% reserves a space for a minus sign (if any), $\mathbf{3}$ gives 3 places after the decimal point and \mathbf{f} is the conversion character for floating point format. Other characters in a format string are printed unmodified, until the final $\backslash \mathbf{n}$ which outputs a new line.

The history button

Previous commands can be called up, for repeating a command, or correcting it.

- Click on the history button at the end of the command line.
- Alternatively, press Shift-
 F4. This is known in the documentation as a keyboard shortcut; some others are listed below.
- Enter: prh to list the last 40 entries in the history buffer.

Keyboard shortcuts

F1
Open the online help

Ctrl+N

Open a new lens
Ctrl+O
Open an existing lens
Ctrl+S
Save the lens in its current file
In the command line,
Ctrl+X Cut selected text

CtrI+C Copy selected text
CtrI+V Paste selected text
Shift+F4 Show the history buffer
Ctrl+PgUp Scroll through the history (Ctrl+PgDn to scroll back)
In the text editor,
CtrI+E Execute the selected text
Ctrl+G Go to the indicated line number
Ctrl+Z Undo the last edit
Alt+F3 Find text (F3 to find again)
$\mathbf{C t r l}+\mathbf{R} \quad$ Replace text (Ctrl-T to replace again)
In a spreadsheet,
Shift-spacebar Insert a new line before the current line

The message area

The message area under the command line can be used for formatted output. For example to display a string preference:

- Enter:
message("Private dir: \%s",str_pref(prid))

Private dir: C:\Program Files\osLo\Prm64\private

The message area is where error messages can be printed. The message command also converts error numbers to strings:

- Enter: sop 900
- Click on OK in the error box.

- Enter: errno

Result = -3152

- Different versions of $\backslash O S L O$ have different error numbers. To decode an error number, enter: message

errno Again, click on OK in the error box before proceeding.

Executing CCL command sequences

Valid CCL command sequences which use the pre-defined variables listed above, can be executed within the command line. The total length of the command string must not exceed 255 characters.

- Enter:
prt lid;for(i=0;i<=ims;i++)prt cv[i] th[i] rn[i][1]
with the result:

DEMO TRIPLET		
--	$1.0000 \mathrm{e}+20$	1.000000
0.047059	2.000000	1.620410
-0.006303	6.000000	1.000000
-0.049383	1.000000	1.616592
0.051813	6.000000	1.000000
0.007080	2.000000	1.620410
-0.057854	42.950000	1.000000
--	--	1.000000

Here the count variable, \mathbf{i}, is a pre-defined integer.
The system data variables lid (the lens identifier), cv[i] (the surface curvature, that is, the reciprocal of the radius), th [i] (the separation from surface i to surface $i+1$) and $r n[i][1]$ (the refractive index in the space after surface i at the first wavelength) are all examples of system data variables which can either be printed, or used in arithmetic expressions or CCL programs. A list of such variables is given in the next section.
A system data variable such as th cannot, however, be changed by a simple variable assignment statement such as $\mathbf{t h}[3]=2.0$. An attempt to do this will give the error message:
Input error
Protected variable 'th' may not be changed
Rather, it must be changed using the dedicated command which has the same name as the variable. For example:

- Enterth 3 1.05; rtg

A new image surface may also be defined temporarily in this way:

- Enter ims 3;rtg

The remaining surfaces are unaffected, but they will be lost unless the lens is restored before the lens is saved again:

- Enter ims 7;rtg

Other commands can be used to change the lens - e.g. the 10th system note, used as a label in the public lens database:

- Enter sno10 TRIPLET;opc sno
*CONDITIONS: SYSTEM NOTES
10: TRIPLET
A list of lens update commands is given in Appendix 1.

Alphabetic list of system data variables

The following is a partial list of the system data variables. To obtain a complete list of all variables exported from OSLO:

- From the Help menu header select OSLO Help F1
- Under the Contents tab select Programming \downarrow Accessing Data -CCL Global Data

aac	special aperture action	cvpksn	curvature pickup surf
aan	special aperture angle	cvtyp	curvature type
ad	aspheric coefficient in r^{4}	cVX	toric curvature
ae	aspheric coefficient in r^{6}	dct	decenter tol
af	aspheric coefficient in r^{8}	dcx	x decentration (local)
afo	afocal flag	dcy	y decentration (local)
ag	aspheric coefficient in r^{10}	dcz	z decentration
agn	special aperture group	des	designer name
amo	aberration mode	df	diffractive surf coefficients
ang	field angle	dfcsn	diffractive surf pickup
ap	apertures	doe	diffractive surf type
apchk	aperture checking flag	dor	diffraction order
appksn	aperture pickup surface	drw	surf drawing option
apspec	aperture spec: ebr, nao, etc.	dt	decenter-tilt order flag
aptyp	aperture type	dth	grin step size
as0,as1..	aspheric surf coefficients	dwv	design wo (diffractive surf)
asi	alternate surf intersection flag	dxt	x-decenter tol
asp	aspheric surf type	dzt	axial surf shift tol
ast	aperture stop surf	ebr	entrance beam radius
atp	special aperture type	errno	message nbr for last error
avx1	special ap. x vertex 1	evza	image evaluation coord. system
avx2	special ap. x vertex 2	fcc	Fresnel surf substrate conic
avx3	special ap. x vertex 3	fcv	Fresnel surf substrate curvature
avx4	special ap. x vertex 4	fldspec	field spec: obh, ang, etc.
avy1	special ap. y vertex 1	fno	image space working f-number
avy2	special ap. y vertex 2	frn	Fresnel surf flag
avy3	special ap. y vertex 3	gc	global coord. ref. surf number
avy4	special ap. y vertex 4	gcs	global coord. reference surf
ax1	special ap. ax1	gdt	gradient index medium type
ax2	special ap. ax2	gih	Gaussian image height
ay1	special ap. ay1	glpksn	glass pickup surf
ay2	special ap. ay2	gltyp	glass type
bcr	use base coord. for coord	gmz	gradium blank thickness
ben	tilt and bend flag	gnz	gradium coefficient
caa	component aper alpha tilt tol	gor	grating order
cab	component aper beta tilt tol	goz	gradium offset into blank
cc	conic constant	gra	gradium coefficient
cca	component coc alpha tilt tol	grb	gradium coefficient
ccb	component coc beta tilt tol	grc	gradium coefficient
cct	conic constant tol	grd	gradium coefficient
cdx	component x -decenter tol	grpcode	group code
cdy	component y-decenter tol	grptype	group type
cns	cone slope	gsp	grating spacing
curwav	current wv number (base 1)	gwv	gradium dispersion data ref.
cv	curvature	hor	hologram diffraction order
cvdat	curvature solve/pickup datum	hv1	hologram obj. real/virtual
cvmult	curvature pickup datum	hv2	hologram ref. real/virtual

hwv	hologram construction w	slc	Sellmeier gradium coefficient
$\mathrm{hx1}$	hologram object x coord.	spl	no. of radial spline surf zone
$\mathrm{h} \times 2$	hologram reference x coord.	splpts	number of spline points
hy1	hologram object y coord.	spt	spherical form tol
hy2	hologram reference y coord.	srftyp	surf type
hz1	hologram object z coord.	ss	radial spline slope
hz2	hologram reference z coord.	tat	tla tilt tol
ims	image surf number	tbt	tlb tilt tol
ims_1	image surf number minus one	tce	thermal coefft of expansion
irt	irregularity tol	tct	tlc tilt tol
Idp	pen for lens drawings	tem	system temperature (deg C)
lensym	lens symmetry flag	th	thickness
lid	lens identifier	thdat	thickness solve/pickup datum
nao	object space numerical ap.	thmult	thickness pickup datum
nap	image space numerical ap.	thpksn1	thickness pickup surf
nr1	grin coefficient in r^{2}	thpksn2	thickness pickup surf
nr2	grin coefficient in r^{4}	tht	thickness tol
nr3	grin coefficient in z^{6}	thtyp	thickness type
nr4	grin coefficient in z^{8}	tir	total internal reflection flag
numsap	number of special apertures	tla	tilt about (local) -x axis (degs)
numw	number of wavelengths	tlb	tilt about (local) -y axis (degs)
nz1	grin coefficient in z	tlc	tilt about (local) +z axis (degs)
nz2	grin coefficient in z^{2}	tlt	tilt tolerance
nz3	grin coefficient in z^{3}	toric	toric type
nz4	grin coefficient in z^{4}	tox	offset of tilt vertex in x
obh	object height	toy	offset of tilt vertex in y
pfl	perfect lens focal length	toz	offset of tilt vertex in z
pfm	perfect lens magnification	trr_fbx	fractional x object coord
pre	system pressure (atm)	trr_fby	fractional y object coord.
puk	image space axial ray slope	trr_fbz	fractional z object coord.
rco	coord. return surf number	trr_fds	field point data
rd	radius of curvature	trr_fpt	field point number
rdt	radius tolerance	trr_fxrf	reference surf x coord.
rdx	toric radius of curvature	trr_fyrf	reference surf y coord.
rfs	reference surf	ttun	tilt tolerance units
rn	refractive indices	twl	tol fringe wavelength
rnt	refractive index tol	txyc	couple x to y tols
rod	extruded surf spec	uni	number of mm in current units
rotsym	rotational symmetry flag	varnbr	next variable number
rtf	radius from test glass file	vnt	Abbe V-number tol
sasd	source astigmatic distance	wav	current wavelength number
sh	radial spline height	Wv	wavelengths
ska	Sellmeier gradium coefficient	ww	wavelength weights
skb	Sellmeier gradium coefficient	zr	Zernike phase surf coefficients
skc	Sellmeier gradium coefficient	zrt	Zernike srf reference ray trace
sla	Sellmeier gradium coefficient		
slb	Sellmeier gradium coefficient		

- Also in the online Help facility, under the Contents tab select

Programming - Accessing Data $>$ Other Data to find the definitions of the following read-only variables:

beg_selection	cfg	current_pen	cursnbr	end_selection
fptnbr	gfx_window	glass_name	lensym	maxcfg
nbr_pens	numw	oprnbr	raynbr	sdsnbr
srfssopen	ssb	surface_note	system_note	txt_window
varnbr	wav			

Chapter 4 - Lens data entry

8×30 binoculars: Specification

The task which will be used to demonstrate lens data input is the problem of modeling the binoculars shown in the photographs, with 8 x magnification, a 30 mm diameter entrance pupil, and a field of view of 6°. Measurements give an overall length from the front of the objective to the back of the eyepiece of 103 mm . The distance from the front objective to the eyepiece mounting plate is 73 mm , and the
 offset between the optical axis of the objective and the optical axis of the eyepiece is 28 mm.

Calculations

First of all we will calculate the sizes of the Porro prisms. Since the offset between the two optical axes is 28 mm , the path perpendicular to the axis of the binoculars must be 20 mm in each prism. The total glass pass in each prism must therefore be 40 mm , and the total glass path in the two prisms (shown here in an opened-out-view) 80 mm .

The glass which is most commonly used for prisms in the better quality binoculars is Schott BaK4, which has a refractive index of 1.57 . The prism path length of 80 mm will then have an "air equivalent" path length of 80/1.57 = 51 mm . This needs to be added to the physical length (103 mm) to give a total air equivalent optical path from back to front of 154 mm . Now, making an allowance of 19 mm for the finite thicknesses of both
 eyepiece and objective gives a path between the principal planes, or equivalent thin lenses, of 135 mm . So, to obtain the desired magnification of x8, the focal lengths required are 120 mm for the objective and 15 mm for the eyepiece.

Choosing an eyepiece

The eyepiece in most common use in prismatic binoculars is the Kellner. This consists of a plano-convex single element lens, with a cemented doublet near the eye. An eyepiece suitable for this application can be found in the book "Optical Design For Visual Systems" by Bruce H. Walker.

Users of OSLO Premium:

- Close the surface data spreadsheet.
- From the File menu, select Lens database,
- Select Public.
- In the window that opens, click on LENS ID and choose Sort Up.
- Using the scroll bar on the right find the lens with LENS ID "Kellner Eyepiece" As a check, the designer is shown as bhw/WA, the image surface number is 7 .
- Click on this line to call up the lens. The aberration curves are drawn automatically, and the listing is given in the text window when Prescription is selected.

- Open the surface data spreadsheet, and click on the gray Wavelength button.
- Right click to get the choice of pre-defined wavelengths, and select d, F and C respectively for the three wavelengths.
- In the text window click on Wav
*WAVELENGTHS
CURRENT WV1/W
10.5875

1. 00000

WV2/WW2	WV3/WW3
0.486133	0.656273
1.000000	1.000000

Users of OSLO EDU:

- From the menu header, choose File > New lens.
- Leave the file name as untitled, leave Custom lens as the option, and enter $\mathbf{6}$ as the number of surfaces.

- Fill in the surface data spreadsheet entries as shown. Check the Efl value to confirm that the data entries are correct.

All users:

Note that the eyepiece has an object at infinity and an image at a finite distance. In other words, we are tracing the rays from the eye to the intermediate image, in the reverse direction of travel of the light. Surface 1 is defined as the aperture stop.

Scaling the eyepiece

The eyepiece must now be scaled to give the required focal length of 15 mm :

- In the surface data spreadsheet, click on Draw Off to open the Autodraw window (at which point Draw Off becomes Draw On).
- After Lens: assign a title: Kellner Eyepiece F=15 mm
- Right click on any of the surface buttons on the left, and choose Scale Lens \downarrow Scale To New Focal Length ...
- Insert 15 (this lens is already specified in the default units of mm).
- Left click on the gray button to the right of the thickness column in the IMS row and select "Variable(V)".
- Click on OK.
- List the lens by clicking on Len in the
 text window.

- Save the eyepiece in the private/len/User_guide directory with the name bino_ep.len.

Choosing a catalog objective

Rather than design an objective from scratch, the task will be to locate a suitable lens in the lens manufacturers' catalogs provided with the program. The focal length required is about 120 mm . While the entrance pupil diameter is 30 mm , allowance must be made for mounting, say 3 mm on the radius (larger than on an internal lens because of the need to provide a seal against moisture).

- Click on the third icon on the main window toolbar, which is the symbol for a new lens.
- In the dialog box which opens, click on OK.
- In the surface data spreadsheet which opens, after Lens: assign a title (e.g. Objective)
- Change Ent beam radius to $\mathbf{1 5} \mathrm{mm}$.
- Change Field angle to $\mathbf{3}$ degrees.
- Left click on the gray surface button in the first column for surface 2 (IMS) to select the surface.
- Right click.
- From the drop-down menu, choose the option Insert Catalog Lens...

In the window which appears, make the following selections:

- First, at the bottom of the screen, for Catalog: select NEWPORT-LEN
- To find a cemented doublet, click on the button for Lens types © Cem Dblts
- Leave default Sort By OEFL.
- Enter the Central EFL (focal length), 120 mm and $+/$ - Range 5 mm
- Enter the Central Dia, 36 mm and + -Range 5 mm .

- Select the lens NPACO74 with a focal length of $\mathbf{1 2 5} \mathbf{~ m m}$. The figure gives an idea of what you may see but catalog lenses can change over time due to supplier changing their inventory. You can select other doublets for this example with similar focal length.
- Click on the green tick, and the window will close.
- Click on the gray button Group at the top of the surface data spreadsheet to show the individual surfaces.
- Delete the non-functional first surface: Left click on the gray Srf button to select the line, right click on the gray button to create the pull-down menu, and select Delete. The aperture stop indicator (AST) on the surface number button will move to the first surface of the doublet.
- Set the image distance to the paraxial image distance by clicking on the gray button in the cell for the thickness of surface number 3 (the back focal distance). Select Solve (S) > Axial ray height, and after Enter solve value type 0 . The thickness value becomes 118.249113. An \mathbf{S} will appear on the gray button next to this, indicating the presence of a paraxial "solve." What this means is that as long as the lens is rotationally symmetric and we are operating where paraxial optics is reasonable, then the distance to the next surface (in this case the image surface) will be adjusted so that the height of the paraxial marginal ray at the next surface is zero. In other words, the image will always be at the paraxial focus.
- If your text window does not have Slv available as an option, click on the left Setup Window/Toolbar button and select "Lens Data Tools". Then in the text window, click on Slv to confirm this definition.

*SOLVES

3 PY

- Save the lens in the private/len/User_guide directory with the name bino_obj.len
- In the text window, click on Len to list the lens.
*LENS DATA
Objective

SRF	RADIUS		THICKNESS		APERTURE RADIUS	GLASS	SPE	NOTE
OBJ	--		1.0000e+20		$5.2408 \mathrm{e}+18$	AIR		
AST	87.780000	F	9.200000	F	19.050000 AF	BAFN10	F	
2	-52.752000	F	3.200000	F	19.050000 F	SF10	F	
3	-484.254000	F	118.249113	S	19.050000 F	AIR		

IMS -- -- 6.552484 S

- Check the lens prescription against the manufacturer's published catalog.

Combining the objective and the eyepiece

The first task is to combine objective and eyepiece without the prisms.

Users of OSLO EDU:

OSLO EDU can handle the number of surfaces after merging. However, the merging process OSLO uses with another lens file temporarily exceeds the ten-surface limit. So, a different way to combine must be used then the one seen next for OSLO Premium users. Note that inserting a lens file does work for OSLO EDU, these instructions are merely to overcome the surface limitation. OSLO Premium users can also use the method shown here for OSLO EDU users.

- Open the file with the eyepiece, bino_ep.
- Open the surface data spreadsheet.
- With the surface data spreadsheet open, select the data for surfaces 1 to 6 (1 is marked AST) by left clicking and dragging in the surface data spreadsheet.
- Click the button on the upper right corresponding to "Copy selected rows to the ss clipboard".
- Open the file with the objective, bino_obj.
- If necessary, open the surface data spreadsheet.
- If necessary, click on Draw Off to open the Autodraw window.
- Change the title to Objective and eyepiece.
- Left click on the IMS gray button in the surface data spreadsheet to select that row.
- In the upper right left click on the button corresponding to Paste ss clipboard above the first selected row.

Users of OSLO Premium:

- Ensure the file with the objective, bino_obj is open.
- Open the surface data spreadsheet.
- If necessary, click on Draw Off to open the Autodraw window.
- Change the title to Objective and eyepiece
- Left click on the surface button for the image surface (IMS). This will select surface 4, indicated by a bold surround.

- Right click on the gray button IMS, under SRF, to bring up the options menu.
- Choose Insert Lens File ...
- In the Merge lens file window, find the eyepiece file bino_ep and click on Open.
At this stage, of course, the eyepiece is now the wrong way round.
- Select the seven surfaces of the eyepiece
 and the exit pupil (numbered 4 to IMS)
- Right click anywhere in this group.
- Select Reverse
- Click on Gen at the top of the surface data spreadsheet, and change Evaluation mode to Afocal. In afocal mode ray aberrations will be angular rather than transverse linear. Afocal mode does not consider the image surface thickness, which is disregarded.
Change the exit pupil (surface 10) aperture radius to 15/8
- Click on surface 10 Special gray button. Select Surface Note (N) and change the note to Exit pupil. Also under the surface 10 Special button, select Surface control $(F)>$ General Change Surface appearance in lens drawing: to Drawn, and change the Pen number to 4 (i.e. red).
- Save the file with the name bino_obj_ep.len
- Click on Len in the text window header.
Objective and eyepiece

SRF	RADIUS		THICKNESS		APERTURE RADIUS	GLASS	SPE	NOTE
OBJ	--		$1.0000 \mathrm{e}+20$		$5.2408 \mathrm{e}+18$	AIR		
AST	87.780000	F	9.200000	F	19.050000 AF	BAFN10	F	
2	-52.752000	F	3. 200000	F	19.050000 F	SF10	F	
3	-484.254000	F	118.249113	S	19.050000 F	AIR		
4	--		4.133458		2.616880	AIR		
5	--		3.216699		7.505630	BAK2	C	
6	-12.598736		11.955396		7.505630	AIR		
7	10.668717		4.288931		4.288931	BAK2	C	
8	-7.988135		1.072233		4.288931	F4	C	
9	-82.025813		2.734194		4.288931	AIR		

IMS -
--
1.875000

* Exit Pupil
- Open the surface data spreadsheet and find the Autodraw window.

Surface decenters and tilts

Before modeling the prisms, we will look at how tilted and decentered surfaces are defined.

The gray button under Special in the surface data spreadsheet includes the option Coordinates where all this is found.

The default sequence is Decenter, then tilt in which case the sequence of displacements is:

1. Decenter by DCX along X axis, by DCY along Y axis, and by DCZ along Z axis, all in system units.
2. Tilt anticlockwise about the new X axis through an angle TLA (degrees)
3. Tilt anticlockwise about the new Y axis through an angle TLB (degrees)
4. Tilt clockwise about the new Z axis through an angle TLC (degrees).

The tilts are shown in the diagram above. If the Tilt, then decenter option is chosen, the order is reversed.

The effect of decentering or tilting a surface is also to decenter or tilt not only the surface and its local coordinate axes, but also all the subsequent surfaces in the system.

To tilt only a component or group of surfaces, on the first surface apply the tilt and select the option Use base coordinate system for coordinate returns to this surface: YES. On the last surface, select Coordinate return: YES and Return to surface: [first surface number].
To tilt a single surface, apply the tilt, then select Coordinate return: YES, Return to surface: [default value, the same surface number] and Use base coordinate system for coordinate returns to this surface: YES.

Adding a right angle prism

The task is to model a simple 90° prism. The measurement of the external dimensions of the binoculars, allowing 3 mm for the case, suggests that the apex of the first prism (20 mm deep) will be 70 mm behind the front surface of the objective (thickness 12.4 mm), leaving an air space of 70-12.4-20 $=37.6 \mathrm{~mm}$ between the rear of the objective and the prism.

- Open the surface data spreadsheet.
- Change the lens title to Objective prism eyepiece
- Change the thickness for surface 3 to $\mathbf{3 7}$. 6. The solve flag (S) disappears.
- Now add an extra surface before surface 4: Left click on the gray surface button for surface 4 , and then either right click on the same button and select Insert before, or use the shortcut Shift-space.

Users of OSLO EDU will not be able to add the extra surface to the straight-through binocular, since it will cause the surface count limit (10) to be exceeded. However, starting with the file consisting of the objective alone (bino_obj) the exercise of adding the first prism can proceed as described here.

- Change the thickness for the new surface 4 to $\mathbf{1 0} \mathbf{~ m m}$.
- Under the gray button in the column labeled Aperture Radius for this surface (surface 4), select Special Aperture Data (X). Leave the Ap Id: as 0. Change the shape to Rectangle, keep the Action as Transmit, leave the Group: as 0 , and set the semiaperture dimensions to:

$$
X \min =-10 X \max =10 Y \min =-10 \quad Y \max =10 \text { Angle }=0.0
$$

- Change the medium for surface 4 from air to glass: Click on the gray GLASS button, select Catalog > Schott > N-BAK4. (For some versions of OSLO the current Schott catalog will be in the directory be Schott 2004 rather than Schott).
- Select the entire row of surface 4 . Then right click, selecting Copy. Otherwise right click on the
 copy icon on the right of the spreadsheet, shown in the diagram.
- Click on the gray surface button for surface 5. Right click and select Paste. Otherwise right click the paste icon. The new surface is added before the one highlighted.

- Once more, click on the gray surface button for surface 5, right click and select Paste.
- Change the Thickness for surface 5 to $\mathbf{- 1 0}$.
- Under the Aperture Radius gray button for surface 5, select Special Aperture Data and set:

$$
Y \min =-14.14 Y \max =14.14
$$

leaving everything else in this dialog box unchanged.

- From the gray button under Glass for surface 5, select Reflect (hatch).
- Under Glass for surface 6, type AIR
- To change the thickness for surface 6 to an axial ray height solve, click on the gray button next to thickness for surface 6, and select Solve (S) > Axial ray height, and after Enter solve value type 0 .
- Under Special for surface 5, select Coordinates (C). Set TLA $=-45$, and Tilt and Bend: Yes. Leave everything else as default.
In most cases, tilting a surface rotates the coordinate system of the airspace after that surface, and all subsequent surfaces, through the same angle. However if Tilt and Bend is specified, the rotation is through twice this angle, corresponding to the law of reflection.

- In the text window, click on Ape to list the special aperture
 data for the three surfaces of the prism.
*APERTURES
SRF TYPE APERTURE RADIUS
4 CMP 12.022663
Special Aperture Group 0:
0 ATP Rectangle AAC AX1 -10.000000 AX2 10.000000 AY1 -10.000000 AY2 10.000000

5 CMP 11.590322
Special Aperture Group 0:

0	ATP	Rectangle	AAC	Transmit	AAN	--	
AX1	-10.000000	AX2	10.000000	AY1	-14.140000	AY2	14.140000

Special Aperture Group 0: 0 ATP Rectangle AAC $\begin{array}{lrrrrrr}\text { AX1 } & -10.000000 & \text { AX2 } & 10.000000 & \text { AY1 } & -10.000000 & \text { AY2 } \\ 10.000000\end{array}$

- Click on Len to list the lens data. Note that the three solved aperture radius values seen on the top-level spreadsheet for surfaces 4,5 and 6 remain unchanged by the definition of special apertures (X); these values are ignored.

- Click on Spe to list the surface notes, the coordinate (tilt) data and the surface tag (pen color etc.) data:

```
*SURFACE NOTES
    13 Exit pupil
*TILT/DECENTER DATA 
```

The eyepiece is incorrectly modeled since the signs of all curvatures and thicknesses should be inverted. For the time being, however, we will ignore this and proceed to the next stage.

Converting the prism to a Porro prism

The Porro prism has two reflecting surfaces at right angles to each other.

- Select the entire row of surface 5 . Then right click, selecting Copy.
- Click on the gray surface button for surface 5. Right click and select Paste.

- Using the surface data spreadsheet, change the thickness for surface 5 to $\mathbf{- 2 0} \mathbf{~ m m}$, and the thickness for surface 6 to $\mathbf{1 0} \mathbf{~ m m}$.
- Save with the name bino_porro.len.
- In the text window click on Len and Spe.

*LENS DATA
Objective prism eyepiece

SRF	RADIUS		THICKNESS		APERTURE RADIUS	GLASS	SPE	NOTE
OBJ	--		$1.0000 \mathrm{e}+20$		$5.2408 \mathrm{e}+18$	AIR		
AST	87.780000	F	9.200000	F	19.050000 AF	BAFN10	F	
2	-52.752000	F	3.200000	F	19.050000 F	SF10	F	

2	-52.752000 F	3.200000 F
3	-484.254000 F	37.600000
4		

4	--	10.000000
6	--	-20.000000
7	--	10.000000
		55.152366 S

8	--	4.133458
9	--	3.216699
10	-12.598736	11.955396
11	10.668717	4.288931
12	-7.988135	1.072233
13	-82.025813	2.734194
TMS	\ldots	

*SURFACE NOTES
14 Exit Pupil
*TILT/DECENTER DATA

5	DT	1	DCX
	BEN		TLA
6	DT	1	DCX
	BEN		TLA
*SURFACE TAG DATA			
1	LMO	LE	faces)
14	DRW	N	
	LDP	4	

Adding a second Porro prism

We will now add the second Porro prism. Note that users of OSLO EDU will have reached the 10 -surface limit even without the eyepiece, and will have to delete the objective (surfaces 1 to 3) to complete this section, modifying the surface numbering accordingly.

- In the surface data spreadsheet, select surfaces 4-7.
- Right click, selecting Copy.
- Click on surface 8 to highlight the whole surface, rightclick, and select Paste.
- Under Thickness for surface 7, enter 0. This automatically deletes the thickness solve on that surface.

- The aperture of surface 12 is not sufficiently large. Convert it to a solved aperture by just setting the Aperture Radius for surface 8 to 0 . The solved value (6.552484) replaces it immediately.
- Surface 18 is not at the true exit pupil. Click on the gray button under Thickness for surface 17, and select Solves (S) > Chief ray height... and enter 0.

Completing the design

The model does not include the 90° rotation about the optical axis of the second prism relative to the first.

- To rotate the second prism Z axis through an angle of 90°, under Special for surface 8, select Coordinates (C), and set the tilt angle about the z-axis, TLC = 90 (degrees).
- Change the lens title to: Binoculars complete.
- Save with the file name bino_complete.len
- Enter the commands: drl;drr 0;drr 1 to draw in 2 dimensions.

The full prescription is obtained by clicking on Len Spe and Ape in the text window.

*LENS DATA										
SRF	RADIUS	THICKNESS	S APERTURE RADIUS				GLASS		SPE	NOTE
OBJ	--	1.0000e+20		5.2408	8e+18			AIR		
AST	87.780000 F	9.200000	0 F	19.05	50000	AF		BAFN10	F *	
2	-52.752000 F	3.200000	0 F	19.05	50000	F		SF10	F	
3	-484.254000 F	37.600000		19.05	50000	F		AIR		
4	--	10.000000		12.02	22663	SX		N-BAK4	C	
5	--	-20.000000		11.5	90322	SX	REFL	_HATCH	*	
6	--	10.000000		10.7	25639	SX	REFL	_HATCH	*	
7	--	- -		10.29	93298	SX		AIR		
8	--	10.000000		10.29	93298	SX		N-BAK4	C	
9	--	-20.000000		9.8	60957	SX	REFL	_HATCH	*	
10	--	10.000000		8.99	96274	SX	REFL	_HATCH	*	
11	--	29.655619	9 S	8.5	63933	SX		AIR		
12	--	4.133458		6.55	52484	S		AIR		
13	--	3.216699		7.5	05630			BAK2	C	
14	-12.598736	11.955396		7.5	05630			AIR		
15	10.668717	4.288931		4.28	88931			BAK2	C	
16	-7.988135	1. 072233		4.28	88931			F4	C	
17	-82.025813	5.649290	0 S	4.28	88931			AIR		
IMS	--	--		1.8	75000					Exit Pupil
*SURFACE NOTES										
18	Exit Pupil									
*TILT/DECENTER DATA										
5	DT 1	DCX		--	DCY		--		DCZ	--
	BEN	TLA -	-45.	. 000000	TLB		--		TLC	--
6	DT 1	DCX		--	DCY		--		DCZ	--
	BEN	TLA -	-45.	. 000000	TLB		--		TLC	--
8	DT 1	DCX		--	DCY		--		DCZ	--
		TLA		--	TLB		--		TLC	90.000000
9	DT 1	DCX		--	DCY		--		DCZ	--
	BEN	TLA -	-45.	. 000000	TLB		--		TLC	--
10	DT 1	DCX		--	DCY		--		DCZ	--
	BEN	TLA -	-45.	. 000000	TLB		--		TLC	--

*SURFACE TAG DATA										
*SURFACE TAG DATA ${ }^{\text {a }}$ (3 surfaces)										
18		DRW	ON							
LDP 4										
*APERTURES										
SRF	TYPE APERTURE RADIUS									
0		SPC	$5.2408 \mathrm{e}+18$							
1		FIX	19.050000							
2		FIX	19.050000							
3 4	FIX		19.050000							
Special Aperture Group 0:								AY2	10.000000	
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-10.000000			
5		CMP	11.590322							
	Special			Aperture Group 0:						
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-14.142136	AY2	14.142136	
6	CMP		10.725639							
	Special Aperture Group 0:									
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-14.142136	AY2	14.142136	
7		CMP	10.293298							
	Special Aperture Group 0:									
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-10.000000	AY2	10.000000	
8		CMP	10.293298							
	Special Aperture Group 0:0 ATP Rectangle AAC									
						Transmit	AAN	--		
		AX1	-10.000000	AX2	10.000000	AY1	-10.000000	AY2	10.000000	
9		CMP	9.860957							
	Special Aperture Group 0:									
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-14.142136	AY2	14.142136	
10		CMP	8.996274							
Special Aperture Group 0:										
	0	ATP	Rectangle	AAC	Transmit	AAN	--			
		AX1	-10.000000	AX2	10.000000	AY1	-14.142136	AY2	14.142136	
11	CMP		8.563933							
Special Aperture Group 0:0 ATP Rectangle AAC										
					Transmit	AAN	--			
AX1			-10.000000	AX2	10.000000	AY1	-10.000000	AY2	10.000000	
12		CMP	6.552484							
13		SPC	7.505630							
14		SPC	7.505630							
15		SPC	4.288931							
16		SPC	4.288931							
17		SPC	4.288931							
18		SPC	1.875000							

Chapter 5-Graphical analysis

Introduction

In general, the graphics facilities in OSLO are of the most frequently generated using the icons in the toolbars of the individual graphic windows. Some facilities, however, can only be accessed from the menu headers, and some only by calling up CCL commands from the command line.

A comprehensive catalog of the graphics facilities will be found in the Graphics Reference in the appendix at the end, together with instructions as to how each may be accessed. In this chapter only lens drawing and ray intercept coordinate reports will be discussed in detail.

Opening a new graphics window

This exercise shows how a new graphics window can be opened in the top left corner of the main window, just under the command window.

- From the main window select the Window menu header.
- Choose Graphics > Open and type the following responses into the command window:

Enter graphics window number: 0

Enter window width: 320
End to window height: 300
Enter window x: 0
Enter window y: 120

Note that the new window has a dark blue title bar, containing the letters GW 2 *. GW means that it is a graphics window with no updateable content. The * symbol means that it is the current window for graphical output. The coordinate system defines $\mathrm{x}=0, \mathrm{y}=0$ as the top left corner, and the command window covers the area $x=0$ to $600, y=0$ to 100 . The point $x=960$ (1420 for wide screens), $y=710$ is the bottom right position which can be seen without scrolling.

Labeling a graphics window

- From the main window select the Window menu header.
- Choose Graphics > Title... and type the following response into the command window:
- Enter window title: Colors.

The title appears in the blue bar at the top of the window. In practice graphics windows are titled automatically by the graphics command associated with the relevant icon in the graphics window.

Generating a plot

- Select the Tools menu header.
- Choose Plotting toolkit > Colors and Pens.

This executes the CCL command colors, which is stored in the file graph_tools.ccl in the public/ccl directory. It shows the pen numbering used in graphics plots.

Notice that the letters in the title bar have now changed to UW, meaning that the graphics window is updateable.

Saving a plot

- Right click on the window and choose

Save As ...

- Save the file in any format. The size of the file stored will differ according to the format chosen. For comparison, the file sizes for the Colors and Pens graphic are shown:

Windows bitmap	BMP	164 kB
Compressed bitmap	RLE	29 kB
HP-GL format	HGL	29 kB
Windows metafile	WMF	118 kB
Placeable Windows metafile	WMF	118 kB
Enhanced Windows metafile	EMF	182 kB

Cutting and pasting a plot

- Right click on the window and choose Copy to Clipboard.
- Open a Word document or PowerPoint presentation, right click, and choose Paste.
- If there are problems with the size of the image pasted into the new application, look again at the Graphics Preferences in Chapter 2.

Update window using current data
Re-calculate using new parameters...
Zoom In
Zoom Out
Zoom Out (Full)
Set Zoom Center
Print
Copy to Clipboard
Save As...
Lock
Remove Toolbar
Clear Window

Lens drawing

Drawing a lens in 2D

This exercise will demonstrate some of the 2D drawing options, using the standard triplet lens as an example.

- Click on the Open Lens icon in the main window toolbar.

- Open the file in the Private directory, trip.len
- In the graphics window, click on the Setup Window/Toolbar icon.

- Select the Lens Drawing toolbar.

- Click on the Draw system (2D) icon.

This gives a lens drawing including rays as the default. The corresponding icon in the Standard Tools toolbar gives the option of a 2D (plan) drawing without rays.
Various options to enhance this drawing will now be shown.

- Click, in the main window toolbar on the icon shown here for Edit Lens

Drawing Conditions.

- On the fifth line, against Image space rays: select Draw rays to image surface. The button then reads Image srf
- From the menu header Select File > Preferences > Preference groups > Graphics... and choose from the menu Use labels on graphics. Select Off.
- Open the surface data spreadsheet.

- Click on the gray button under Special for surface 7 (IMS).
- Select Surface Control (F) > General
- On the second line, against Surface appearance in lens drawings: select Drawn. Set the Pen number for surface in lens drawings as 3
 (blue).
- Close both spreadsheets.
- Once again click on the Draw system (2D) icon to draw the lens.

- Click again on the icon in the main window toolbar for Edit Lens Drawing Conditions.
In the ray drawing table at the foot of the spreadsheet, change the three values of the Frac. Y Obj (FBY) to 0.0, -1.0, +1.0 respectively. Also change the number
of rays in the second fan (Rays) from $\mathbf{0}$ to 3, Min pupil to -0.4, and Max pupil to 0.4.
In this spreadsheet, for each successive ray fan (where the number of rays plotted is non-zero) the pen colors cycle through the sequence:

1. Green
2. Blue
3. Red
4. Light-Blue
5. Orange
6. Violet
7. Yellow
8. Black

- Close the Edit Lens Drawing Conditions spreadsheet.
- From the Lens menu header, select Show Operating Conditions .. > Lens Drawing

- Draw the lens in two dimensions by clicking on the icon for Draw system (2D).

Drawing a lens in 3D

- Open the Edit Lens Drawing Conditions spreadsheet again.
- On the fifth line, for Apertures: change Quadrant to Full apertures.

ㅡㅡㅍㅡㅡ․ For Number of ray fans in lens drawings enter 6, then scroll down to enter the three new fans with $\mathbf{F r a c} \mathbf{X} \mathbf{O b j}=\mathbf{0 . 0 ,} \mathbf{- 1 . 0}, \mathbf{1 . 0}$ respectively. For the three fans, specify 5, $\mathbf{3}$ and $\mathbf{3}$ rays and for the last two fans, change Min pupil to -0.4, and Max pupil to 0.4.

- Select the radio button for $\mathbf{F X}$ for the last three fans.
- Close the Edit Lens Drawing Conditions spreadsheet.
- To list these values, from the Lens menu header, select Show Operating Conditions > Lens Drawing.

Click on the icon for Draw system (3D solid model).

Drawing a lens in 3D with sliders

- Click on the icon for Draw system (3D w/slider)
- Select Shaded solid.

- It may be necessary to extend the slider bars to make the slider tracks visible.
- Adjust the sliders according to the following table:

Vertical view angle	Horizontal view angle	Description	Example
30°	$240{ }^{\circ}$	Default	,
30°	330°	Isometric	\%
0°	$270{ }^{\circ}$	Y - Z (2D plan view)	\#-
90°	$270{ }^{\circ}$	X - Z	+ +7
0°	360°	$\mathrm{X}-\mathrm{Y}$ view from image	ϕ

If the lens is saved with a particular 3D view in force, the values of the view angles will be stored with the lens and used in subsequent 3D drawings. The horizontal and vertical view angles may also be set in the Edit Lens Drawing Conditions spreadsheet.

Ray intercept curves analysis

The importance of these curves for diagnosis of aberration problems cannot be overstated, so a detailed description will be given here of this analysis. The lens used for the graphs in this section is the objective of the binoculars modeled in chapter 3.

Ray analysis (RIC)

- In the graphics window, click on the Setup Window/Toolbar icon.
- Select the Ray Analysis toolbar.
- Click on the icon for RIC Plot. This gives a set of curves representing the transverse ray aberrations for the default field point, which is on axis (FBY $=0.0$). The left hand graph gives the plot of transverse ray aberrations (DY) in the meridional section (the $\mathrm{Y}-\mathrm{Z}$ section) at different heights (FY) in the pupil. The right hand graph gives the same information in the orthogonal plane that is, DX as a function of FX. The three curves are colored according to the wavelengths, which, in the visible
 at least, are representative provided the order in which the wavelengths are defined is middle-short-long corresponding to green-blue-red.
If the system is defined as afocal (see under the Gen button in the surface data spreadsheet) the aberrations are angular values DYA and DXA, expressed as direction tangents.

Ray intercept curves for 2D field points

Users of OSLO EDU and OSLO Light should skip this section

- Click on the icon for RIC vs Field Points.

This gives the graphs laid out in two dimensions according to the relative field coordinates FBX, FBY. In this case, three graphs are given for the three field points defined for this lens, which are (reading from the bottom) $\mathrm{FBY}=$ 0.0 (on axis), $\mathrm{FBY}=0.7$ and FBY $=1.0$ (edge of field). The left-hand column gives DY as a function of FY, the right-hand column plots DX against FX.

Ray intercept curves report graphic

- Click on the icon for RIC Report Graphic. This icon also appears on the Standard Tools toolbar. The analysis results are shown as 6 graphs
 within the same window, plus a 2D lens drawing.

1. The left-hand group (unlabeled) gives the same ray intercept curves for three field points as the ray intercept curves for 2D field points.
This set of curves gives the relationship between the ray aberrations and their radial position in the pupil. If more than three wavelengths are specified, up to 12 sets of curves will be drawn, with different symbols as well as different colors to distinguish them.
Most of the other information in the report (apart from distortion) can be deduced from these curves.
A designer can use these curves as a diagnostic tool to analyze the different types of aberration. This analysis is important, since different aberrations require different measures for their correction. However these graphs do have limitations. For example, they do not indicate the aberrations of rays in the four quadrants between the two orthogonal planes.

The astigmatism curves give the variation of paraxial focus across the field for the meridional section (the Y-Z section, labeled T) and the sagittal section (the X-Z section, labeled S). Results are only shown for the mean wavelength. This curve can be plotted as a stand-alone, either monochromatically or in 3 colors, using the menu header:

- Evaluate $>$ Ray fans $>$ Single field point ...
- At the top, select Field sags.
- Choose either Monochromatic or Polychromatic.
- Click on OK.

3. The three curves for longitudinal spherical aberration give the movement of the focal point along the axis for different radii in the pupil, for the axial image point only, corresponding to the three wavelengths.

The curves for chromatic focal shift represent the axial beam paraxial longitudinal focal variation with wavelength over the range 0.4 to $0.7 \mu \mathrm{~m}$ - or over a different range if other

wavelengths are specified. Alternatively, for OSLO Standard and OSLO Premium users, this curve can be plotted as a stand-alone, in slightly different format, using the menu header:

- Evaluate > Ray fans > Other ray analysis ...
- From the menu select Chromatic focal shift...
- Enter a wavelength range (or zeros for default).
- Click on OK.

4. Longitudinal spherical aberration curves indicate the errors in focus DZ of the axial beam as a function of the pupil height DY. Curves are given for the three specified wavelengths. The graph is plotted on its own via the menu header:

- Evaluate > Ray fans > Single field point ...
- At the top, choose Longitudinal spherical...
- Click on OK.

5. The curve for distortion shows the departure from the paraxial magnification as a function of field height. The distortion graph can be plotted alone in a different format using the menu header:

- Evaluate > Ray fans > Single field point ...
- At the top, choose Distortion
- Choose either Monochromatic or

Polychromatic.

- Insert a value for the aberration scale (in \%).
- Click on OK.

The plots obtained from OSLO EDU and OSLO Light are different from the one shown here.
6. The curve for lateral color shows the difference between the heights of the red and green rays, and between the blue and green rays, as a function of field height. The graph is not available as a standalone.

To control all the aberration scales, the RIC report graphic command may be called from the main menu header.

- From the Evaluate menu header select Other ray analysis>Report Graphic..:
- Fill in the spreadsheet with the required values. The value of the abscissa scale is omitted as it only applies to graphs where curves are plotted against h-tan U rather than DY.
- Click on OK.

Chapter 6 - Numerical analysis

Introduction

This chapter deals with the text window and the spreadsheet buffer which lies under it. In order to illustrate the methods of numerical analysis, a simple task concerning the demonstration triplet lens supplied with the program will be carried out:

For the triplet lens supplied with the program, calculate the transverse ray aberration of the outermost ray transmitted at the edge of the third component at the edge of the field, at the central (green) wavelength.
Also estimate the transmittance at the extreme field, as a percentage of the axial transmittance.
The transverse ray aberration of an off-axis ray in the meridional section is the distance from the point where this ray intersects the image plane, to the intersection point of the pupil ray. This is shown in the diagram.

Before we can begin the task we need to locate the edge ray concerned in terms of its relative pupil height coordinate FY.

Finding the edge rays

- Open the lens in the private directory trip. len. Alternatively it will be found in the public directory as /public/demo/LT/demotrip.len.
- In the text window, click on Ape to list the apertures. The indication CHK for surfaces 1 and 6 means that in the ray analysis which follows the rays which lie outside these checked apertures will be obstructed. (Checked clear apertures are indicated by a \mathbf{K} in the Clear Aperture Radii column of the surface data spreadsheet).

*APERTURES				
SRF	TYPE	APERTURE RADIUS		
0	SPC	$3.6397 \mathrm{e}+19$		
1	SPC	6.500000	CHK	
2	PKP	6.500000		
3	SPC	5.000000		
4	SPC	5.000000		
5	SPC	6.500000		
6	SPC	6.500000	CHK	
7	CMP	18.170326		

- In the graphics window, click on the Setup Window/Toolbar icon, and select the Lens Drawing menu.
- Click on the icon for View Ray Fans (2D) - Interactive.
- To define the point in the field as the edge of the field, set the slider-wheel for Frac Y Obj to 1.0, and leave the slider-wheel for Frac X Obj at 0.0.

- Adjust the slider-wheels for Min pupil and Max pupil until the extreme rays of the bundle just pass through the first and last surfaces respectively.
- Note the values of the fractional pupil height for these edge rays: -0.43 and +0.61 . The latter is the value of FY needed for this problem.

Instead of this procedure, users of OSLO Standard and OSLO Premium may use a quicker method for carrying out vignetting analysis:

- From the Optimize menu header, select: Support routines $>$ Vignetting > Vignetting analysis.
- Check Copy vignetting data to field point set? No
- Leave the Maximum pupil position to test at $\mathbf{5 . 0}$
- Click on OK.

*VIGNETTING	FACTORS				FY2	FXMAX
FPT	CFG	FBY	FBX	FY1	FY2	
1	0	--	-	-1.040001	1.040001	1.040001
2	0	0.700000	-	-0.637293	0.810585	0.990811
3	0	1.00000	--	-0.431105	0.612924	0.901827

Graphical estimates

- From the Evaluate menu header select: Ray fans > Single field point ... and, leaving all the default values unchanged, click on Set object point at the foot of the spreadsheet.
- In the Set object point spreadsheet, set Fractional coordinates of object point to $\mathrm{FBY}=1.00 \mathrm{FBX}=0.00 \mathrm{FBZ}=$ 0.00 .
- Close both spreadsheets, and note from the graph that the value of the transverse ray
 aberration required is about -0.015 mm . (To confirm the units, from the Lens menu header, select: Show operating conditions > General)
- Click on the Plot report graphics wavefront analysis icon on the standard toolbar to get the pupil maps, and note that the area of the edge-of-field map is about 50% of the area of the on-axis map.
So we can conclude that the transverse ray aberration of the edge ray is about $\mathrm{DY}=-0.015$ mm ; the transmission at this field point is about 50\%.

Numerical calculation

From the text window

- In the text window, trace the pupil ray (the ray through the centre of the aperture stop) from the edge of the object, by clicking on Chf.
- Then to trace a fan of rays in the meridional (Y) section, click on Fan. Set the Minimum coordinate to be $\mathbf{- 0 . 4 3}$, the Maximum coordinate to be 0.61 , and Number of rays to be 2, and leave all other options as default values.
- Note the value of DY (transverse ray aberration in lens units) for the edge ray transmitted:

| *TRACE FAN - FBY | 1.00, FBX | 0.00, FBZ | 0.00 | | DY | DX |
| ---: | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| RAY | FY | FRAC RFS | DYA | DXA | DY | |
| 1 | 0.610000 | 0.530358 | -0.071477 | -- | $\underline{-0.013268}$ | -- |
| 2 | -0.430000 | -0.353777 | 0.052849 | -- | 0.055365 | -- |

- Click on Spd in the text window.
- Note the value of the per cent weighted ray transmission:
*SPOT DIAGRAM - FBY 1.00, FBX 0.00, FBZ 0.00 - POLYCHROMATIC
APDIV 17.030000
wav weights:
WW1 WW
1.000000
$\begin{array}{rrr}\text { NUMBER OF RAYS TRACED: } & 1.0000 \\ \text { WV1 } & \text { WV2 } & \text { WV3 }\end{array}$
$\begin{array}{lll}\text { WV1 } & \text { WV2 } & \text { WV3 } \\ 104 & 104 & 104\end{array}$
PER CENT WEIGHTED RAY TRANSMISSION: 44.827586
*SPOT SIZES
GEO RMS Y GEO RMS X GEO RMS R DIFFR LIMIT CENTY CENTX
*WAVEFRONT RS
WAVELENGTH 1
PKVAL OPD RMS OPD STREHL RATIO RSY RSX RSZ
The conclusion then is that the transverse ray aberration of the edge ray is:
$\mathrm{DY}=-0.013268 \mathrm{~mm}$,
and the transmission at this field point is:
44.8\%
of the on-axis value, excluding the transmittances of optical materials and coatings.

From the menu headers

- From the Evaluate menu header select: Ray fans > Single field point ... and choose the Command: Print Y ray-fan.
- Set Minimum fractional y-component of pupil coordinate (FY) $=-.43$, and Maximum fractional y-component of pupil coordinate $(\mathrm{FY})=+.61$. Set the Number of rays in fan to the minimum value of $\mathbf{3}$.
- Leaving all the other default values unchanged, do not close the dialog box, but click on Set object point at the foot of the spreadsheet.
- In the Set object point spreadsheet, leave the specification as Direct entry Set Fractional coordinates of object point to FBY $=1.00$ FBX $=0.00$ FBZ $=$ 0.00 .
- Close the Set object point spreadsheet with the green tick, and click on OK in the Trace fans of rays through lens dialog box:

*TRACE	FAN - FBY	1.00, FBX	0.00, FBZ	0.00			
RAY	FY	FRAC RFS	DYA	DXA	DY	DX	DZ
1	0.610000	0.530358	-0.071477	--	-0.013268	--	- -
2	0.090000	0.075914	-0.010854	--	-0.009257	--	--
3	-0.430000	-0.353777	0.052849	--	0.055365	--	--

- From the Evaluate menu header select: Spot diagram > Single spot diagram...
- Select Spot diagram Data and click on OK (the earlier Set Object Point command is still valid).

```
*SPOT DIAGRAM - FBY 1.00, FBX 0.00, FBZ 0.00 - POLYCHROMATIC
APDIV 17.030000
WAV WEIGHTS:
    WW1 WW2 WW3
        1.000000 1.000000 1.000000
NUMBER OF RAYS TRACED:
    WV1 WV2 WV3
    104.000000 104.000000 104.000000
PER CENT WEIGHTED RAY TRANSMISSION: 44.827586
SPOT DIAGRAM SYMMETRY: 1.000000

\section*{From the command line (abbreviated)}
- In the command line, type the following:
sop \(100 ; t r f\) y \(2-.43\). \(61 ; s p d 200\)
and click on the green tick, or press Enter on the keyboard.


The new value for the transmission (43.9\%) is more accurate than the earlier result since a finer grid of rays (200 rings, not 17.03, in the pupil) was defined by the spd command.

\section*{By executing in the Edit window}
- From the Window menu header select: Editor > Open or click the icon.
- Use the history button to call up the last line executed:
sop \(100 ; \operatorname{trf}\) y \(2-.43\). 61;spd 200
- Copy and paste it into the Text editor window.
- Highlight it with the cursor (or press Ctrl-A), and press Ctrl-E. Results are the same.

\section*{From the command line (in full)}
- In the command line, one might perhaps type the following:
\[
\begin{aligned}
& \text { set_object_point }(1.0,0.0,0.0,0.0,0.0,1) \\
& \text { trace_fan(y, 2, }-0.43,0.61) \\
& \text { spot_diagram(chr, none, 200) }
\end{aligned}
\]

These forms of the commands are used to make programs self-documenting. The short forms are more useful for command line entry.

\section*{The spreadsheet buffer}

The spreadsheet buffer is an array of numerical storage cells, with 1999 rows numbered as in Microsoft Excel, which underlies each text window. The spreadsheet buffer is used for conveying the results of numerical OSLO calculations to variables in CCL commands, so it is important to understand how it works.

\section*{Clearing the text window and spreadsheet buffer}

There are three ways to do this:
- EITHER right click anywhere in the text window and select Clear window and SS buffer
- OR, from the Window menu header, select: Text > Reset.
- OR, in the command line, Enter twr (or textwin_reset)

To clear the spreadsheet buffer without affecting the printed output in the text window:
- In the command line, enter sbr (or ssbuf_reset)

\section*{Reading from the spreadsheet buffer}
- In the text editor window, change the first entry so the whole line looks like this: sbr;sop \(100 ; t r f\) y 2 -. 43 . 61;spd 200
- Highlight the line with the cursor, and press CtrI-E.
- Watching the message area under the command line, click on the text window output to confirm the following spreadsheet cell allocations:


Note that integers and headers are not included in the spreadsheet buffer.
- Click on the two numerical results indicated, and note the cell coordinates and values given in the message area as follows:
\[
\begin{aligned}
& e 4=-0.0132683238458 \\
& a 8=43.909889270714
\end{aligned}
\]

Note also that these results are full precision (to 14 digits).

\section*{Writing to the spreadsheet buffer}
- In the text editor window, add the command for formatted printing:
aprintf("DY = \% 6.6f Trans = \%4.1f \%\%\n",e4,a8)
giving the following output:

DY = -0.013268 Trans = 43.9 \%
Note that the contents of cells of the spreadsheet buffer can also be accessed using the real array ssb (row, column ). For example, e4 becomes ssb(4,5) and \(\mathbf{a 8}\) becomes ssb(8,1).
The command aprintf places the two values in the spreadsheet buffer, still at full precision, even though they are printed with fewer places ( 6 and 1 respectively) after the decimal point. Note in particular that the cells are filled even if printing is turned off.
- Click on these results to confirm this:
\[
\begin{aligned}
& \text { a11 }=-0.0132683238458 \\
& \text { b11 }=43.909889270714
\end{aligned}
\]

\section*{Scrolling the spreadsheet buffer}

This section should be omitted at the first reading, as it describes a feature used only in advanced programming.
- Type in the command line: sbrow and press Enter

Result = 12
This is the row number of the next row to be written to in the spreadsheet buffer. The command sbr (ssbuf_reset) remaps the spreadsheet row whose number is the first argument, with the row number of the second argument. So to renumber the lines so that any new output is written to row 1 rather than row 12 :
- In the text editor window, change the first entry so the whole line looks like this: sbr 12 1;sop \(100 ;\) trf y 2 -. 43 . 61;spd 200
- Highlight it with the cursor, and press Ctrl-E.

Note that the row numbers are the same as before, but this time the rows which had been previously written are preserved, and numbered up to 1999.

We can restore the line numbering by using the sbr command with a negative index:
- In the command line type: sbr -12 0

The effect of this is illustrated in the table. The next row to be written to (in other words, the
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
Initial row \\
numbering
\end{tabular} & \begin{tabular}{c} 
a-column \\
Values
\end{tabular} & \begin{tabular}{c} 
After \\
sbr 12 1
\end{tabular} & \begin{tabular}{c} 
After \\
sbr -12 0 0
\end{tabular} \\
\hline \(\mathbf{1}\) & 1.000 & 1989 & \(\mathbf{1}\) \\
\hline 2 & 0.000 & 1990 & 2 \\
\hline 3 & 18.264 & 1991 & 3 \\
\hline 4 & 0.61 & 1992 & 4 \\
\hline 5 & -0.43 & 1993 & 5 \\
\hline 6 & 200.0 & 1994 & 6 \\
\hline 7 & 1.000 & 1995 & 7 \\
\hline 8 & 43.9 & 1996 & 8 \\
\hline 9 & .02088 & 1997 & 9 \\
\hline 10 & 2.71 & 1998 & 10 \\
\hline 11 & -0.013268 & 1999 & 11 \\
\hline \(12^{*}\) & & \(\mathbf{1}^{*}\) & \(12^{*}\) \\
\hline 13 & & 2 & 13 \\
\hline
\end{tabular} value of the read-only variable sbrow) is marked with an asterisk in each case.

\section*{Chapter 7-Slider-wheel design}

\section*{1:1 wide angle relay}

\section*{Introduction}

The slider-wheel facility is a powerful tool, which allows the user to control any system variable while watching its effect on any numeric parameter or graphic display. In this chapter there will be an illustration of how slider-wheels alone can be used to complete a design task.

The requirement is for a four-element unity magnification relay. The object has a diagonal of 600 mm . The object to image distance is 451 mm . The distortion must be less than \(0.1 \%\) and the design criterion is that the lowest value over the field of the modulation transfer function at 1.0 cycles \(/ \mathrm{mm}\) must be greater than 0.4 . The wavelengths to be used for the MTF calculation are the usual three \((0.58756 \mu \mathrm{~m}, 0.48613 \mu \mathrm{~m}\) and \(0.65627 \mu \mathrm{~m})\), weighted equally.

\section*{Defining the starting point}

Clearly a symmetrical design is called for. In the public lens database (OSLO Standard and Premium only) there is an objective lens designed by Roossinov which will be used as the basis for the design of a relay lens. This has the title ROOSSINOV 56DEGHFOV F/8.3 USP2,516,724. It is nearly symmetrical and it has 13 surfaces. The design below has been adapted and simplified from this for use with all versions of OSLO.


\section*{Setting up the starting lens}
- From the menu select File \(>\) New lens and choose a custom lens with 5 surfaces.
- In the surface data spreadsheet, change the lens title to x1 relay.
- Click on the gray button under Aperture Radius for surface 5, and select Aperture Stop (A) to move the aperture stop to surface 5.
- Fill in the lens parameters as shown in the diagram below. The values for Aperture Radius may be omitted, as these will be adjusted using aperture radius solves - that is to say, the aperture will be set at the value equal to the arithmetical sum of the paraxial marginal and pupil ray heights. This is such an extreme field angle lens that the results look
 unrealistic at first, but this can be corrected later.

- In the Setup spreadsheet, enter the Object NA as 0.03 and the Object height as \(\mathbf{3 0 0} \mathrm{mm}\). Close the Setup spreadsheet.
- Select surfaces 1 to 4 , right click and choose Copy.
- Select surface 6 (IMS), right click and select Paste
- Select surfaces 6 to 9 , right click and choose Reverse.
- Change the thickness for surface 5 to \(\mathbf{0 . 5}\) and for surface 9 to \(\mathbf{1 5 5}\).
- In the Aperture radius column some are already Solves. Change the remaining apertures (surfaces 6 to 9 ) to Solve (S) by setting them to zero.
- Under Radius, click on the gray button for surface 9, choose Minus curvature pickup, and on the prompt Enter pickup source surface, enter 1. Press Enter twice more. Define a similar minus curvature pickup for surface 8 from surface 2 , for surface 7 from surface 3 and for surface 6 from surface 4 .
- Enter the command \(\mathbf{c t g}\) to list the lens with curvatures:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{x*LENS DATA} \\
\hline \multicolumn{9}{|l|}{x1 relay} \\
\hline SRF & CURVATURE & & THICKNESS & \multicolumn{2}{|l|}{APERTURE RADIUS} & GLASS & \multirow[t]{2}{*}{SPE} & \multirow[t]{2}{*}{NOTE} \\
\hline OBJ & -- & & 155.000000 & 300.000000 & & AIR & & \\
\hline 1 & 0.018182 & & 3.000000 & 55.000000 & S & F1 & C & \\
\hline 2 & 0.030303 & & 50.000000 & 33.000000 & S & AIR & & \\
\hline 3 & 0.015873 & & 17.000000 & 20.735891 & S & SK4 & C & \\
\hline 4 & 0.002252 & & 0.500000 & 8.295530 & S & AIR & & \\
\hline AST & -- & & 0.500000 & 7.775659 & AS & AIR & & \\
\hline 6 & -0.002252 & P & 17.000000 & 8.294476 & S & SK4 & C & \\
\hline 7 & -0.015873 & P & 50.000000 & 20.712585 & S & AIR & & \\
\hline 8 & -0.030303 & P & 3. 000000 & 33.000000 & S & F1 & C & \\
\hline 9 & -0.018182 & P & 155.000000 & 55.000000 & S & AIR & & \\
\hline IMS & -- & & -- & 300.541968 & & & & \\
\hline
\end{tabular}
- Click on Gen in the Surface data spreadsheet to open the General conditions spreadsheet.
- Under Ray aiming mode, select Wide angle mode.
- Close the General conditions spreadsheet.
- Change the Lens drawing conditions to draw 3 rays for each of the field points FBY \(=0\), FBY \(=-1\), FBY \(=+1\).

The lens drawing should now appear as shown in the diagram.


\section*{Slider-wheel design with ray intercept curves}
- Open the Slider-wheel Setup spreadsheet by clicking on the icon in the main window toolbar.
- Select Ray-intercept, All points, Number of sliders \(=4\), and define sliders on surfaces 1,2,3,4 for the curvature (cv).
- Close the Slider-wheel Setup spreadsheet.


At this point the four sliders and two graphics windows, GW31 and GW 32 should become visible. If not, try using the Tile command, or open and close the Slider-wheel spreadsheet again.
- The default step size is too large. Click on the lower scroll button at the right-hand end of each slider-wheel to bring the Step to 1e-05.
- Adjust the sliders to improve the performance as far as possible.
- Once the aberrations are too small to discern at the default aberration plotting scale, reopen the Slider-wheel Setup spreadsheet and close it again immediately. The aberrations will be redrawn with a new scale, and the slider-wheels re-centered in their tracks. The step size will still need to be changed, however.
- If a slider reaches the endstop, change the step to recenter it. Note that the
 graphics zoom feature works on both windows, and the zoom settings are preserved during slider operation.

One possible solution, for example, is


CV \(1=0.018822\) (RD 1 \(=53.130 \mathrm{~mm})\)
CV \(2=0.030683(\) RD \(2=32.591 \mathrm{~mm})\)
CV \(3=.015523\) (RD \(3=64.420 \mathrm{~mm}\) )
CV \(4=.002462\) (RD \(4=406.13 \mathrm{~mm}\) )

\section*{Plotting the MTF across the field}
- From the Evaluate menu header select Transfer Function > MTF vs field
- Enter three frequencies in units of cycles per mm 1.0, 2.0, and 3.0.
This plots the modulation transfer function at all points in the field for the three spatial frequencies. In the example shown here, the upper (green) curve, which shhows the MTF at 1 cycle per mm, still falls well below the desired 0.4 level over part of the field of view.


\section*{Editing the slider-wheel callback command}

In order to use the slider-wheels to optimize the MTF across the whole field, it will be necessary first to make a small modification to one of the CCL commands in the /private/ccl directory. Some users may prefer to skip this exercise and return to it once the next chapter on programming has been covered.
- Open the text editor either by clicking on the icon, from the menu header Window > Editor > Open or typing the command ewo.

- In the Text editor window, click on File > Open.
- At the bottom of the window which opens, after Library Directories: click on Private.
- Of the files which have a green icon (*.ccl files) select
my_swcallback.ccl and click on Open.


This file contains a single command
```

cmd Sw_callback(int cblevel, int item, int srf)

```
- Go to line 36 of the file (Ctrl-G or Edit > Goto Line, and enter 36).
- After the last break; and before the line default: add the lines:
```

case 14:
uda; // User guide
break;

```

When typing this entry you must take care that the first line ends with a colon (: ), and the second and the third with a semicolon (;). On the second line anything following the // is treated as a comment.

- In the text editor window (not the main window) click on File > Save. Compilation should be automatic, and the message in the text window should be:

\section*{*CCL COMPILATION MESSAGES: No errors detected}

To explain, if the slider-wheel callback CCL is enabled by the user, then the command Sw_callback is called whenever a slider-wheel is moved. When this happens, the value of the integer argument called Level is passed to the CCL command, where it appears as the integer cblevel. This determines which action to be taken by the callback command.

If the sw_callback CCL function is invoked with a value of Level between 1 and 9 , that number of cycles of optimization (iterations) is performed. If Level is 11 , then the sliderwheel controls field angle, and if Level is 13 it controls entrance beam radius. The option Level = 13 is used in one of the tutorials.
As a result of the change, if the sw_callback CCL function is invoked with a value of Level equal to 14 , then a single command uda will be executed. This command (update_all in long form) has the effect of updating the graphics in all open updateable windows (i.e. those marked UW).
All this occurs within the switch statement, with different outcomes according to the value of cblevel, the switch parameter.
The listing of the modified CCL command is given below.

\section*{Listing of the modified slider-wheel callback CCL}
\(/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\) * with slider-wheel windows. It is meant to be extended by users as needs arise. The
* callback uses the "cblevel" parameter to designate a particular action. The user then *
* enters the appropriate number in the slider-wheel Setup window in the cell marked
* "Level". The value of "Level" is passed to this command as "cblevel" and determines
* the task to be performed.
\#define SW_MAXITERS 10
\#define SW_ANGSLIDER 11
\#define SW_DIFFRACTDBLT 12
\#define SW_EBRSLIDER 13
cmd Sw_callback(int cblevel, int item, int srf)
\{
switch (cblevel)
\{
case SW_ANGSLIDER:
stp outp off;
ang cc[0];
stp outp on;
break;
case SW_DIFFRACTDBLT:
sprintf(str1, "ocm18\%+f\n", -cc[0]);
o 4 str1;
ite 2;
break;
case SW_EBRSLIDER:
stp outp off;
ebr cc[0];
stp outp on;
break;
case 14:
uda;//User guide
break;
default:
if (cblevel > 0 \&\& cblevel < SW_MAXITERS)
ite cblevel;
uda;
\}
else
\{
beep;
msg("Callback not implemented.");
\(\}\)
\}
\}...

\section*{Slider-wheel design using MTF at one frequency}
- Plot the MTF curves at the spatial frequencies of 1,2 , and 3 cycles \(/ \mathrm{mm}\) as before.
- Open the slider-wheel spreadsheet.
- Set up the slider-wheels as before, but this time click on Enable sw_callback CCL function.
- Enter Level as 14.
- Enter the Setup name x1_relay and click on the Save setup button.


This slider-wheel setup (the slider wheel definitions and the other data) is now saved in a file x1_relay.osw, which is stored in the directory .../private/bin/osw/
- Close the slider-wheel setup spreadsheet.
- On each slider-wheel change the step size to \(1 \mathrm{e}-05\) as before (these values are not stored in the slider-wheel data).
- Adjust the curvatures to maximize the MTF at 1 cycle/mm over the whole field.

One possible solution, illustrated here, is:
\[
\begin{aligned}
& \text { CV } 1=0.01778(\text { RD 1 }=56.237 \mathrm{~mm}) \\
& \text { CV } 2=0.03090(\text { RD } 2=32.359 \mathrm{~mm}) \\
& \text { CV } 3=.01585(\text { RD } 3=63.079 \mathrm{~mm}) \\
& \text { CV } 4=.002312(\text { RD } 4=432.48 \mathrm{~mm})
\end{aligned}
\]

The smallest MTF value for this design is 0.42 . This completes the design ask.


This example illustrates in microcosm how even a problem with clearly defined objectives and only 4 variables can have a large number of solutions, all meeting the requirements but differing in subtle ways.

Setting clear apertures
The apertures at present are based on paraxial ray "solves." To complete the design, the clear aperture values must be set in accord with real ray, not paraxial ray, requirements.

- From the Optimize menu header select Support routines > Vignetting > Set apertures.
- Leaving all the choices as defaults, click on OK.
\begin{tabular}{ccc} 
*APERTURES & & \\
SRF & TYPE & APERTURE RADIUS \\
0 & SPC & 300.000000 \\
1 & SPC & 44.200000 \\
2 & SPC & 32.000000 \\
3 & SPC & 15.800000 \\
4 & SPC & 8.360000 \\
5 & SPC & 7.950000 \\
6 & SPC & 8.360000 \\
7 & SPC & 15.800000 \\
8 & SPC & 32.000000 \\
9 & SPC & 44.300000 \\
10 & CMP & 300.550935
\end{tabular}
- If the slider-wheel spreadsheet is re-opened after the lens is saved, the previous setup will have been deleted from it. It can be retrieved by clicking in the Setup name window and right-clicking on x1_relay.osw from the list presented.
- Finally, enter the command pld mon to confirm that the level of distortion in the design is indeed very low.


\section*{Chapter 8 - Programming}

\section*{Introduction}

This chapter will include the basics of how to create a new command producing textual output, and how to include that command as one of the options in the text window header menu. Next there will be how to create a new graphics command, and how to create an icon for this in one of the graphics window headers. Finally there will be a brief review of the SCP and CMD languages.
To illustrate these, it is helpful to have a standard lens in storage.
- Click on the icon for Open an existing lens. If the warning message appears ... Save changes to current lens file? Click on No.

- At the bottom of the window which opens, after Library Directories: click on Public.
- Select demo > edu and then click on demotrip.len.
- Click on Open.

\section*{Defining a new command: sno}

In the surface data spreadsheet, the button labeled Notes gives access to the first 5 lines of the user-defined commentary which is stored with each lens. This consists of up to 10 lines, but the 6th is reserved for some optimization parameters, and the 10th for the public database lens class.

The standard OSLO command for listing the system notes is opc sno. There is no facility for calling this from the text window toolbar. This section shows how a new command, sno, which lists the system notes, can be written. Then the procedure for adding a label Sno to the text window (Standard Tools) toolbar will be given, so that the system notes (up to 10 lines of documentation stored with each lens) can be listed with a single click.
- First, try out the command from the keyboard. Type the command opc sno

\section*{*CONDITIONS: SYSTEM NOTES}

1: This Cooke triplet is used throughout the OSLO documentation as an example. : It is a minor variation on a lens designed by hand by R. Kingslake (see "Lens Design Fundamentals", pp286-295, Academic Press 1978, ISBN 0-12-408650-1), who used nothing more than a hand calculator! The Cooke triplet was invented by 5: Dennis Taylor in 1893, and is still very widely used as a low-cost objective. 10: COOKE TRIPLET

CCL commands are stored in ASCII, and may be created either using the OSLO standard text editor or using Notepad++®. Only the use of the first will be described in this chapter.

To create the new command:
- If the icon for Open the standard text editor appears on the main window taskbar, click on it. Otherwise from the Window menu header select Editor > Open. Alternatively type the command ewo in the
 command line,
- In the editor window, select File > New and type:
cmd sno(void)
\{
operating_conds(sno);
\}
Note that there is no punctuation after (void), and there is a semicolon (;) after the single line command.

- Highlight the last three lines with the cursor and press CtrI-E to check that the program has been entered correctly.
- There are only two menu options in the editor window header. Choose File > Save as... , click on the gray button labeled Private at the bottom, and choose File type: CCL files (*.ccl,*.ccx,*.h).
- Enter File name eval_sno and click on Save.
- Compilation takes place automatically:
```

*CCL COMPILATION MESSAGES:

```
No errors detected
should be the message which appears in the text window.
- Enter the new command in the command line: sno
- In the text editor window, add the documentation as
```

// hlp: <P>SNO</P>

```
// hlp: <P> Prints the system notes.</P>
```

{
operating_conds(sno);
}

```
- In the editor window header, (not the main window) click on File > Save. The compilation message will appear again:
```

*CCL compilation messages:
No errors detected

```

Each command definition in the private/ccl directory must be unique, so do not attempt to save the command sno again in a *.ccl file of another name. The error message will be:
*CCL COMPILATION MESSAGES:
eval_sno2.ccl 2: Duplicate procedure definition
and this error will persist until the duplicate procedure definition is removed.

\section*{Structure of a CCL command}

CCL commands can be created by the user to automate sequences of actions, and to carry out calculations and plots specific to a user's requirements. They are stored as ASCII text in the directory .../private/ccl (not a sub-directory) and must be compiled before use.

The simplest CCL command can have the structure:
```

cmd command_name1()
{
0SLO_command1;
0SLO_command2;
...etc...
}

```

This is stored in a file demo_anyfilename.ccl. (Prefixes of user-written command files should ideally be restricted to demo_, eval_, graph_ and optim_). It is compiled using the icon (or, in the case of OSLO EDU where the icon is not displayed) the menu sequence Tools > Compile CCL >Private, or the command ccl.

It is executed using the call:
command_name
For example, the CCL file containing the program;
cmd hallo(void)
\{
printf("Hallo world\n");
\}
may be stored as my_first.ccl, compiled, and then called using the command:
hallo
This is described in detail in Help > OSLO Help > Contents > Programming > CCL Programming > Using CCL.

With formal parameters, or arguments, the structure of a CCL command might become:
```

real argument_name1;
int argument_name2;
cmd command_name(real argument_name1,int argument_name2)
{
OSLO_command1(argument_name1,argument_name2);
OSLO_command2(argument_name1,argument_name2);
}
This is compiled and then executed using (for example) either free format:
command_name 1.01
or the more formal version, often used within CCL code:
command_name(1.0,1);

```

In this case the two global variables argument_name1 and argument_name2 might be used by another CCL command.

Local variables may also be declared. Take, for example, the CCL command:
```

 real argument_name1;
 int argument_name2;
 cmd command_name(real argument_name1,int argument_name2)
 {
 real local_variable1;
 int local_variable2;
 local_variable1=3.0;
 local_variable2=4;
 print(argument_name1,argument_name2,local_variable1,loca
 l_variable2);
}
If this is called using the command
command_name 1.02
the output is:
$1.000000 \quad 2.000000 \quad 4$

```

\section*{Search CCL library: scanccl}

Assume that eval_sno.ccl has been added to the privatelccl directory, as described above.
- From the menu header select Tools > Search CCL library ...
- Under Directory to browse select the option Private
- Select the default option Sort functions by filename and click on OK.
** 8 functions are defined in the private directory:**
** C:\Program Files\OSLO\EDU64\private/ccl/
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE & FCTN NAME & ARGUM & NTS LINE & DEFINITION FILE \\
\hline cmd & sno & & 5 & eval_sno.ccl \\
\hline \multirow[t]{4}{*}{cmd} & sw_callback & & 15 & my_swcallback.ccl \\
\hline & & int & cblevel & \\
\hline & & int & item & \\
\hline & & int & srf & \\
\hline \multirow[t]{4}{*}{cmd} & tlex_1 & & 18 & dbtutorial.ccl \\
\hline & & real & tl__radi & ius1 \\
\hline & & real & tl__radi & ius2 \\
\hline & & real & tl__refr & ractive_index \\
\hline
\end{tabular}

The new command sno appears as the first entry in the list of function names; also given are the number of lines in the command, and the name of the file in which it was defined.

\section*{Defining a new command: ctn}

The next new CCL command is an extension of one which appeared in chapter 3.

\section*{Initial version of command}
- From the Window menu header select: Editor > Open, or type the command ewo in the command line, or click on the main window toolbar icon.

- Type in the following line:
```

for(i=0;i<=ims;i++)aprt cv[i] th[i] rn[i][1];

```
- Split it into two lines and surround with curly brackets.
- Highlight the whole window (CtrI-A) and execute (Ctrl-E).
The following appears in the active text window:
\begin{tabular}{rrr}
-- & \(1.0000 \mathrm{e}+20\) & 1.000000 \\
0.047059 & 2.000000 & 1.620410 \\
-0.006303 & 6.000000 & 1.000000 \\
-0.049383 & 1.000000 & 1.616592 \\
0.051813 & 6.000000 & 1.000000 \\
0.007080 & 2.000000 & 1.620410 \\
-0.057854 & 42.950000 & 1.000000 \\
-- & -- & 1.000000
\end{tabular}
- Add a line at the beginning:
cmd \(\operatorname{ctn}\) ()

- In the Text Editor window click on File > Save as...
- Ensure first that the bottom window reads Save as type: CCL files.
- Click on Library Directories Private.
- For File name type eval_ctn
- Click on Save.
- Look in the text window. There should be a message
*CCL COMPILATION MESSAGES:
No errors detected
If the message appears:
*CCL COMPILATION MESSAGES:
eval_ctn.ccl 2: Duplicate procedure definition
then there is already a file with extension .ccl in the private/ccl directory containing the line cmd ctn ( )Locate it and delete it, or change its extension to .ccx. It may be impossible to do this if file extensions are hidden. If so, it is necessary to change the Windows file viewing settings. Under My Computer > Tools > Folder options > View tab > Advanced Settings > Hide extensions for known file types: Uncheck.
If there is another compilation error, check the listing carefully, especially the one semicolon and the three different types of bracket:
```

cmd ctn()
{
for(i=0;i<=ims;i++)
aprt cv[i] th[i] rn[i][1];
}
Extra lines and spaces are not a problem.

```
- Once compilation is successful, in the command line enter ctn. The output should be as before.

\section*{Version with formatted output}
- Change the aprt print statement to:
aprintf("\%3i \%12.8f \%9.4g \%.6f\n",i,cv[i],th[i],rn[i][1]);

\section*{Here, each format specification begins with a \(\%\) sign:}

The format specifier \%3i requires that the integer \(i\) is to be printed with a field width of 3 , right justified within this width.
The format \(\% 12.8 \mathrm{f}\) gives a minimum field width for \(\mathrm{cv}[\mathrm{i}]\) of 12 characters, with 8 digits printed after the decimal point.

The format \(\% 9.4 \mathrm{~g}\) prints th[i] in decimal notation with 4 significant figures, but in exponential form if it is 10000 or more, or less than 0.00001 .

The format \(\% .6\) f requires n[i] to be printed with 6 digits after the decimal point, and no minimum field width.
- Save and execute, giving:
\begin{tabular}{rr}
0.00000000 & \(1 e+201.000000\) \\
0.04705882 & 21.620410 \\
-0.00630318 & 61.000000 \\
-0.04938272 & 11.616592 \\
0.05181347 & 61.000000 \\
0.00707965 & 21.620410 \\
-0.05785363 & 42.951 .000000
\end{tabular}

\section*{Adding the glass name string}

Glass name strings are not directly accessible. However, the command get_glass_name(i) copies the name of the glass for the ith surface into a read-only string glass_name (See under Help > OSLO Help > Contents > Programming > Accessing Data > Other Data > Data Functions).
- Add an extra pair of curly brackets after the for statement, and insert:
get_glass_name(i);
- Change the print statement to (on a single line):
aprintf("\%3i \%12.8f \%9.4g \%.8s \%.6f\n"
,i,cv[i],th[i],glass_name,rn[i][1]);
The format \%.8s requires the glass_name string to be printed with a maximum of 8 characters.
- List the complete command:
```

cmd ctn()
print(" SRF CV TH GLASS RN");
for(i=0;i<=ims;i++)
{
get_glass_name(i);
aprintf("%3i %12.8f %9.4g %.8s %.6f\n",i,cv[i],th[i],glass_name,rn[i][1]);
}
}

```

\section*{Adding headers and documentation}

The following conventions have been established by previous writers of OSLO macros, and they are worth observing:
1. Each CCL file opens with a set of three or more comment lines giving the author, date, and any update information. e.g.
```

// Written by [Your initials] [Date]

```
//
2. All documentation for a CCL command is given in HTML format between the header and the body, commented out and preceded by hlp. For example:
```

// hlp: <P>Lists curvature, thickness, glass type and refractive index.</P>

```
3. No default system variables are ever used, so that, for example, the command sequence
```

i=92;ctn;prt i

```
must always give the same result. So declare all variables as local variables within the command: e.g.
```

int i;

```

Of course these can have any name chosen arbitrarily, but by keeping to the default variable names, the Ctrl-E execution of selections of code within the text editor window can still proceed, provided the declaration int i; itself is not highlighted.
4. Commands which give just printed output are echoed, preceded by a star, in upper case. e.g.
```

print("*CTN");

```

Making these changes, the final version of the command becomes:
```

潅 Text Editor - eval_ctn.ccl
File Edit
// written by [your initials] [date]
cmd ctn()
// h1p: <P> Lists curvatures thickness glass and refractive index</P>
{nt i;
print("*CTN");
print("SRF CV TH GLASS RN");
for(i=0;i<ims;i++)
get_glass_name(i);
aprintf("%3i %12.8f %9.4g %.8s %.6f\n",i,cv[i],th[i],glass_name,rn[i][1]);
}

```

The output from a call of the command \(\mathbf{c t n}\) is:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{*CTN} \\
\hline SRF & CV & TH & GLASS & RN \\
\hline 0 & 0.00000000 & 1e+20 & AIR & 1. 000000 \\
\hline 1 & 0.04705882 & 2 & SK16 & 1.620410 \\
\hline 2 & -0.00630318 & 6 & AIR & 1.000000 \\
\hline 3 & -0.04938272 & 1 & F4 & 1.616592 \\
\hline 4 & 0.05181347 & 6 & AIR & 1.000000 \\
\hline 5 & 0.00707965 & 2 & SK16 & 1.620410 \\
\hline 6 & -0.05785363 & 42.95 & AIR & 1.000000 \\
\hline
\end{tabular}

\section*{The text window toolbar}

Commands which generate only printed output are by convention placed in the text window toolbar. The format for a text window toolbar is: menu toolbar_number
«
"Label, tooltip_label" = "command",
"Label2,tooltip_label2" = "command2",
\}
where the first Label (by convention having only 3 or 4 letters) is what appears on the toolbar, the second, tooltip_label, is more detailed, and only appears in a creamcolored box when the cursor hovers over the first label. The command may be either CCL or OSLO command(s). The toolbar_number is toolbar50 for the Standard Tools text window toolbar.

\section*{Adding the command sno to the toolbar}
- Still in the Text Editor window, select File > Open and look in the Private CCL directory. Open the file a_menu.ccl.
- (If there is no file private/ccl/a_menu.ccl, open the file /public/ccl/a_menu.ccl, and save it as private/ccl/a_menu.ccl)
- Go to line 1339 of this file (CtrI-G and enter 1339 in the dialog box). This should give the entries for:
menu toolbar 50
- After the line:
"Len, Lens data" = "prt_len",
add the line (note the comma before the comment):
"Sno,System note" = "sno",//[your initials][date]
- Compile again by saving the file:
*CCL COMPILATION MESSAGES:
No errors detected


\section*{Calling sno from the toolbar}
- Click on Sno in the text window toolbar. If it is not visible, ensure that the Standard Tools menu has been selected.

Once again the output is:

\section*{*CONDITIONS: SYSTEM NOTES}

1: This Cooke triplet is used
throughout the OSLO documentation as an example.


2: It is a minor variation on a lens designed by hand by R. Kingslake (see "Lens 3: Design Fundamentals", pp286-295, Academic Press 1978, ISBN 0-12-408650-1), who 4: used nothing more than a hand calculator! The Cooke triplet was invented by 5: Dennis Taylor in 1893, and is still very widely used as a low-cost objective.
10: COOKE TRIPLET

\section*{Defining a new command: xmt}

In this exercise a command xmt will be created which plots a graph showing the transmission fal1-off across the field arising from vignetting. (The effect of coatings and of the internal transmission of optical materials, available in OSLO Premium, is not included in this analysis).
The command will be modified to prevent errors occurring when no rays are transmitted, or when the chief ray fails. This will demonstrate the use of an error handler.
Then a new icon will be created, and placed in the Spot Diagram menu of the graphics window toolbar to enable the new command to be called with a single click.

\section*{Writing a command xmt to print transmittance values}

- Open the lens file /public/demo/EDU/ demotrip.Ien
- In the Text Editor window, open a new file and type the following in a single line:
```

sbr;sop 0 0 0;spd 44;sop 1 0 0;spd 44

```
- Highlight with the cursor, press Ctrl-E and click on the two values of PERCENT WEIGHTED RAY TRANSMISSION (100.00 and 43.324607) which appear in the text window. Note the coordinates of the two spreadsheet cells (a6, a14).
- In the text editor, add a second line containing a print command.
prt a6, a14;
- Highlight both lines and press Ctrl-E to confirm the correct values have been printed.
- The transmission curve is to be plotted at 50 points over a range of value of FBY from 0.0 to 1.0. Introducing the pre-defined integer \(i\) as a variable to count through these points, and we can generate all the results using a for loop:
```

sbr;
for(i=0;i<51;i++)
{
sop i*.02 0 0;
spd 44;
}

```

To extract the relevant values from the spreadsheet, and print them as a neat table, we must switch off printed output with stp(outp, off) and extract the transmission values from the spreadsheet. The spreadsheet cell number of the transmission value of the \((i+1)\) th field point is \(a(6+8 i)\) or, as a CCL formula, \(\mathbf{s s b}(\mathbf{6 + 8} \mathbf{i} \mathbf{i} \mathbf{1})\). Introducing the double precision predefined variables \(x\) (the value of FBY) and \(y\) (the \% transmission), we can use these in a print statement to create the necessary table: prt \(\mathbf{x , y}\); This statement will produce visible output despite the fact that the preference stp(outp,off); has been called, provided prt and not aprt is used for printing.
Predefined variables are used at this stage because the Ctrl-E compilation method is incompatible with either local or global variables.
- So change the program to:
```

stp(outp,off);
sbr;
for(i=0;i<51;i++)
{
x=i*0.02;
sop(x,0,0);
spd(44);
y=ssb(6+8*i,1);
prt(x,y);
}
stp(outp,on);

```
- Highlight it all and execute with Ctrl-E to generate the entire list of 51 values giving the percentage transmission across the field:
-- 100.000000
\(0.020000 \quad 100.000000\)
0.040000100 .000000
...etc
\(0.960000 \quad 47.120419\)
\(0.980000 \quad 45.811518\)
1.00000043 .324607

\section*{Converting xmt printed output to graphics}

The text window spreadsheet is used as the vehicle for transferring the printed data into plot commands.
- At the beginning, add the command gwr ; (graphic window reset) to clear the window and define the dimensions of the plot area to be in the range \(\mathrm{x}=0\)... \(1, \mathrm{y}=0\)... 1 .
- Also before the first calculation, add the plot command, moveto(0,1)- most lenses will have \(100 \%\) transmission on axis.

- Add pen (3) to plot in dark blue.
- Delete the print statement.
- Insert the main plot command, lineto( \(\mathbf{x}, \mathrm{y} / \mathbf{1 0 0}\) ) ; where the /100 scales the y values to keep them within the range \(0 \ldots 1\).
- At the end, add gshow; to ensure that the plot output is drawn immediately and not held in a buffer. It may still be necessary to click on the window to have the graph drawn in full.
```

stp(outp,off);
sbr;
gwr;
moveto(0,1);
pen(3);
for(i=0;i<51;i++)
{
x=1*0.02;
sop(x,0,0);
spd(44);
y=ssb(6+8*i,1);
lineto(x,y/100);
}
stp(outp,on);
gshow;

```


\section*{Preserving the text window contents}
- In the second line, replace the sbr command by the two lines:
```

k=sbrow;

```
sbr(k,1);
- On the third last line, insert the line:
sbr(-k,0);

Here \(\mathbf{k}\), a predefined integer variable, has been used to keep the value of sbrow, the index of the first unwritten row of the spreadsheet.

\section*{Scaling and drawing the axes}
- After the gwr command, add the following commands to re-scale the window as illustrated in the diagram, and to draw the axes around the graph: .
window(-0.2,1.2,-35,110);

- Finally surround the whole procedure with curly brackets, add the line \(\mathbf{c m d} \mathrm{xmt}\) ( ) at the top, and save in file private/ccl/graph_xmt.ccl.
- Note that up to this point only predefined variables have been used (integers \(\mathbf{i}, \mathbf{k}\) double precision real \(\mathbf{x}, \mathbf{y}\) ). Thus it is possible to highlight and execute part of, or the whole command (excluding the \(\mathbf{c m d}\) xmt ( ) header itself) using CtrI-E. This is helpful for locating errors.

The listing of the command is as follows:
cmd xmt()
```

 {
 stp(outp,off);
 k=sbrow;
 sbr(k,1);
 gwr;
 window(-0.2,1.2,-35,110);
 moveto(0,0);
 lineto(1,0);
 lineto(1,100);
 lineto(0,100);
 lineto(0,0);
 moveto(0,100);
 pen(3);
 for(i=0;i<51;i++)
 {
 x=i*0.02;
 sop(x,0,0);
 spd(44);
 y=ssb(6+8*i,1);
 lineto(x,y);
 }
 sbr(-k,0);
 stp(outp,on);
 gshow;
 }

```

\section*{Adding standard plot commands to xmt}
- Add the pre-processor command at the top of the file:
\#include "../../public/ccl/inc/gendefs.h"
- This makes it possible to call the two commonly used graphics commands: SAVE_DISPLAY_PREFS;
and RESTORE_DISPLAY_PREFS;
- Following the convention already established, the captions will drawn using the command sequence:
if (char_pref(glab)) draw_title_block(str1, str2, str3);
where the code for draw_title_block(str1, str2, str3) ; can be found in the CCL file public/CCL/graph_tools.ccl

\section*{Error handling}
- Open the surface data spreadsheet and change the field angle to \(\mathbf{3 0}\) degrees.
- Call the xmt procedure. The command will fail when the transmission falls to zero with an error message as shown.
The remedy is to add an error handling procedure to reset the error flag to zero. This will be called from xmt whenever an error occurs. If a procedure invokes a second procedure, then either
 the second must precede the first, or it needs to be declared:
- Add the line at the top, the prototype declaration (note that this one is followed by a semicolon):
cmd xmt_error_handler();
- Declare an integer global variable xmt_err to carry the error status between the prcedures.
- Add the error handler command xmt_error_handler at the end.
- The error handler can now be called. Before the window command, add the line: install_error_handler("xmt_error_handler"); and at the end add the command to restore the original (default) error handler:
install_error_handler("prefs");
By adding the error handling precautions to the plotting routine, it is possible to prevent the execution of the spot diagram command if the chief ray has not been traced successfully and to continue execution of the command with the transmission value set to zero if no rays have been transmitted in the spot diagram. .

\section*{Listing of complete command xmt}
- Convert the predefined variables to locally defined variables, \(\mathbf{i}\) becomes iplt, \(x\) becomes xplt, \(\mathbf{y}\) becomes \(\mathbf{y p l t}\), and \(\mathbf{k}\) becomes ssb_row_sav.
- Add comments, documentation, ticks and captions etc as shown below.
- Save and compile. The whole procedure now looks like this:
\(1 /\)
// Written by [your name] [date]
//
\#include "../../public/ccl/inc/gendefs.h"
int xmt_err;//global variable
cmd xmt(void);
cmd xmt_error_handler(void);
cmd xmt(void)
// hlp: <P>XMT</P>
// hlp: <P>Plots the fall in transmission as a function of field
// hlp: arising from central obstructions and vignetting. It does not
// hlp: include the effects of coatings or Fresnel reflections.</P>
// hlp: <P>This CCL command also illustrates how a custom error
// hlp: handler prevents reference ray failures terminating execution
// hlp: of a CCL command; by setting errno=0 within the error handler
// hlp: it permits continued execution of the CCL command even after
// hlp: what would otherwise be a fatal error. </P>
static int ssb_row_sav,iplt;
static real xplt,yplt;
static char str1[80],str2[80],str3[80];
SAVE_DISPLAY_PREFS;//as defined in gendefs.h
set_preference(output_text, off);//switches off text output ssb_row_sav = sbrow;//saves row after last row written to in SSB ssbuf_reset(ssb_row_sav, 1);//initialises spreadsheet buffer graphwin_reset;//clears graphics window
install_error_handler("xmt_error_handler");// see below window(-0.2, 1.2, -35, 110);//xmin xmax ymin ymax
moveto(0, 0);// draw x-axis (range 0...1)
lineto(1, 0);
for (iplt = 1; iplt <11; iplt++)
\{moveto(iplt*0.1, 0);//draw x-axis ticks
linerel(0, -2);\}
moverel(-0.2,-10);
label("Rel.Obj.Ht.");//label x-axis
moveto(0, 0);// draw y-axis (range 0...100)
lineto(0, 100);
for (iplt = 1; iplt <11; iplt++)
\{
moveto(0,iplt*10);//draw y-axis ticks
linerel(-0.02,0.0);
\}
moverel(-0.1,0);
label("\%s", "100\%");//label y-axis
moveto(0,100);// plot transmission curve
pen(2);//green
for (iplt = 0; iplt <51; iplt++)
\{
xplt=iplt*0.02;// xplt=Relative object height (FBY)
yplt=0;
xmt_err=0;
set_object_point(xplt,0.0,0.0);
if (xmt_err==0)// i.e. If sop succeeded ...
\{
spot_diagram(44);
if(xmt_err==0)//'.. and spd succeeded ...
yplt=ssb(6+8*iplt,1);//..set yplt ...
\}// ... else yplt remains zero.
lineto(xplt,yplt);
\}
message("");// clears message area
install_error_handler("prefs");// default - see asyst_ccl.ccl
ssbuf_reset(-ssb_row_sav, 0);//restores ss buffer row numbering set_preference(output_text, on);//switches text output back on
pen(1);// black
if (char_pref(glab))// only if preference graphics_labels ON ...
\{
sprintf(str1, "Field angle \%.4f", 180*ang/pi);
sprintf(str2,"Object height \%.6g",obh);
sprintf(str3,"TRANSMITTANCE VS FIELD");
draw_title_block(str1,str2,str3);//see public/graph_tools.ccl \}
gshow;//clears graphics buffer, forces display of graphics RESTORE_DISPLAY_PREFS;
\}
```

cmd xmt_error_handler(void)
{
xmt_err=errno;
errno = 0;//clears error to permit CCL execution to continue
}

```

\section*{The graphics window toolbar}

Commands which generate graphical output are generally called from icons on one of the graphics window toolbars. The format for a graphics window toolbar is:
menu toolbar_number
!
"bitmap_file, tooltip_label" = "gwt \"window_title\"; gwe \"command\";", \}
where bitmap_file.bmp is the name of a bitmap file containing the icon, and stored in the folder IPrm64/bin/bma. Once again, tooltip_label appears in a cream-colored box when the cursor hovers over the icon. The window_title (up to 48 characters) will appear in the blue title bar of the updatable graphics window.

\section*{Creating a new icon for \(\underline{\text { xmt }}\)}
- Using the computer file listing facility, locate the redundant blank icon blank1.bmp, which is the first file in the directory \(/[P r m 64] / b i n / b m a\) This is a file \(16 \times 15\) pixels (all gray) with a palette of 16 colors, plotted at a resolution of 96 pixels per inch.
- Copy it to the same directory, and rename it an_xmt.bmp
- If time permits, modify the image pixel by pixel as shown, using a program such as Microsoft Paint \({ }^{\circledR}\), and store it with the same name.

blank1.bmp

an_xmt.bmp

\section*{Adding the xmt icon to the graphics window toolbar}

In a_menu.ccl, the toolbar number is 34 for the Spot Diagram Analysis graphics window.
- Open the Text Editor window, select File > Open and look in the Private CCL directory. Open the file a_menu.ccl.
- Locate toolbar 34. Go to line 1241 of this file (Ctrl-G and enter 1241 in the dialog box). On this line (or one nearby) should be the entries for the toolbar menu:
```

menu toolbar34 // Spot Diagram Analysis

```
```

menu toolbar34 // Spot Diagram Analysis
{ "rpt_spd, Plot report graphics spot diagram analysis" = "gwe \"rpt_spd:rpt_spd\";",
"plt_spd2d,Spot Diagram vs. All field points" = "gwt \"Spot Diagram vs. field points\";gwe \"spd2D 0.0 0.0:spd2D\
\#endif "plt_spd, Plot Spot Diagram" = "gwt \"Spot Diagram Analysis\";gwe \"pls cen spt 0.0 0.0:calc_spot
\#plt_spd, Plot Spot Diagram" Spot Diagram"
lol
"separate2,",
= ""wht \"Beam Footprint\";gwe \"footprt 1.001 sdad 1:footprt\"",
After the line:
"plt_spd_fld,Plot RMS Spot Size/OPD vs. Field" = "gwt \"RMS Spot Size vs.
Field\";gwe \"spsopd:spsopd\"",

```
add the following, all on one line (note the comma before the comment):
"an_xmt,Plot transmittance vs. Field" = "gwt \"Transmittance vs. Field\";gwe \"xmt\";", // [your name] [date]
- Save a_menu.ccl.
- Check that compilation is successful:
*CCL COMPILATION MESSAGES:
No errors detected

\section*{Calling xmt from the toolbar icon}
- Ensure that the lens in store is the standard triplet with 30 degrees as the semi-field angle.
- Open a new graphics window.
- Click on the Setup Window/Toolbar icon, and select the Spot Diagram menu.
- Click on the xmt icon shown above.


\section*{SCP programming: *triplet}

SCP ("star command program") is the old macro language of OSLO, still supported but largely replaced by CCL. An SCP command consists of a text file whose name is the same as the command name, and whose first line is *[cmd_name] without a semicolon. All the other lines are commands ending with semicolons, and the file named cmd_name.scp must be stored in the directory /private/scp. The command is not compiled, so errors are not detected until the commands are executed.

To call an SCP command, type * [cmd_name] into the command line.
- Open the text editor window.
- Click on File > New
- Type the following lines:
*triplet
open len pri len trip.len \(n\);
gwo 23203000 100;
rpt_ric ray 0.1 010.20 .11 . 005;
gwo 3320300320 100;
rpt_tfr 100.0;
gwo 4320300640 100;
rpt_spd 500.030 .2 n;
gwo 53203000400 ;
rpt_psf "128" 64 chr . 25 aut . 12 . 06;
The first line must begin with a * and have no semicolon after it. The first gwo command opens a new graphics window, GW2, which is 320 units wide and 300 high in the top left corner of the window, just under the command window. Three more windows are defined in the same way.
- Except for the very first line, the entries may be tested during entry by highlighting them with the cursor and pressing Ctrl-E.
- In the text editor window, click on File > Save as ...
- Change File type to SCP.
- Click on PRIVATE to store the command in /private/scp/
- Enter file name as triplet.scp. The file name must be the same as the command name, and only one command is permitted per file. Note that no compilation takes place, so there is no checking for errors before execution.
- This command opens the triplet stored in the private lens directory on installation, and plots the ray intersection coordinates, the MTF, the spot diagram and the point spread function at three field point. Parameters for each of these commands are chosen to suit the lens.
- To call this SCP command, type:
*triplet

including the initial asterisk.
Some examples of SCP commands are given in the directory Ipublic/scp.

\section*{Load command file programming}

This is available only in OSLO Standard and Premium versions.
The command lcmd opens a text file and executes the OSLO commands in sequence. Unlike CCL and SCP files, the location of the file is quite arbitrary, so this programming language has the advantage that the files can be stored with the lenses. Semicolons at the end of each line are optional, but including them makes it easier to check the command file while it is being developed, using Ctrl-E in the text editor window.
- Open the text editor and type:
```

//triplet [your name] [date]
open len pri len trip.len n;
gwo 2 320 300 0 100;
rpt_ric ray 0.1 0 1 0.2 0.1 1 .005;
gwo 3 320 300 320 100;
rpt_tfr 100.0;
gwo 4 320 300 640 100;
rpt_spd 50 0.0 3 0.2 n;
gwo 5 320 300 0 400;
rpt_psf "128" 64 chr . 25 aut .12 .06;

```
- In the text editor window, click on File > Save as ...
- Store it as a text file in the private/len directory with type .txt and with the name triplet.cmd.
- To execute, type in the command line lcmd, search in the privatellen directory for the command file triplet.cmd, and click on Open to execute.

\section*{Chapter 9-Optimization}

\section*{Optimizing using Seidel aberrations}

According to Seidel aberration theory, a thin cemented doublet of a specified pair of glass types (one crown, one flint) may in general be corrected exactly for only two of the three coefficients for primary axial chromatic aberration (PAC), spherical aberration (SA3), and coma (CMA3). Using one real and one fictitious glass, however, an exact solution can always be found.
This exercise will show how to find, using Seidel aberrations alone, the nearest glass in the Schott catalog to combine with Schott N-BAK4 making a cemented doublet of a focal length 150 mm , and aperture ratio \(\mathrm{f} / 6.3\).

\section*{Setting up the starting design}
- Open a new lens surface spreadsheet.
- Select the image surface. Click on the gray SRF button, right click, and choose Insert catalog lens.
- Select the EDMUND catalog, and look for a O cemented doublet focal length \(\mathbf{1 5 0} \mathbf{~ m m}\) diameter \(\mathbf{2 5}\) mm .
- If \(+/-1 \mathrm{~mm}\) ranges are chosen there is only one result. The Edmund catalog number for this lens is EACH32494. The glass types used in this lens are Schott BK7 for the crown and Schott SF5 for the flint.
- Set the entrance beam radius to be 150/2/6. 3 mm .
\begin{tabular}{l} 
Catalog Lens Database \\
\hline
\end{tabular}
- Set the semi field angle to \(\mathbf{1}^{\circ}\).
- Set wavelength weights \(1.0(0.58756 \mu \mathrm{~m}) 0.4(0.48613 \mu \mathrm{~m})\), \(0.6(0.65627 \mu \mathrm{~m})\).
- Delete the extra surface, by clicking on the gray SRF button for surface AST, right click, and choose Delete.
- We need to be able to alter surfaces 12 and 3. Click on the gray SRF button for surface 1 (AST), right click, and choose Ungroup.
- Set the image distance at the paraxial back focal point (under thickness for surface 3, select Solves \((\mathbf{S})>\) Axial ray height \(>\) Solve value = 0.0).
- Listing the lens at this stage gives:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{*LENS DATA} \\
\hline \multicolumn{7}{|l|}{Doublet f/6.3 150 mm} \\
\hline SRF & RADIUS & THICKNESS & APERTURE RADIUS & GLASS & SPE & NOTE \\
\hline OBJ & -- & 1.0000e+20 & \(1.7455 \mathrm{e}+18\) & AIR & & \\
\hline AST & 91.370000 & 5.700000 & 12.500000 A & BK7 & C & \\
\hline 2 & -66.210000 & 2. 200000 & 12.500000 & SF5 & c & \\
\hline 3 & -197.710000 & 146.149598 & 12.500000 & AIR & & \\
\hline IMS & -- & -- & 2.618244 S & & & \\
\hline
\end{tabular}

\section*{Defining the error function}
- First, close all open spreadsheets (this is important).
- Calculate the angle for the marginal axial ray angle at the image for an \(f / 6.3\) beam: Type into the command window 0.5/6.3 and record the result:

\section*{Result \(\mathbf{=} \mathbf{0 . 0 7 9 3 6 5 0 7 9 3 6 5 1}\)}
- From the Optimize menu header, select Generate error function> Aberration operands
- Then, in the operands data editor which opens, set non-zero weights for just the four operands listed below:
\begin{tabular}{ccccl}
\hline OPERAND & MODE & WEIGHT & NAME & \multicolumn{1}{c}{ DEFINITION } \\
\hline 2 & MIN & 1.0 & PU & OCM2+0.07937 \\
5 & MIN & 1.0 & PAC & OCM5 \\
9 & MIN & 1.0 & SA3 & OCM9 \\
10 & MIN & 9.0 & CMA3 & OCM10 \\
\hline
\end{tabular}

For each operand, the MODE is MIN (minimization) rather than CON (constraint) which is equivalent to an infinite weight. (The latter is rarely of value). The WEIGHT gives the relative importance of each operand, and here coma has (arbitrarily) been given higher weight than the other two aberrations. The NAME is for information only, and has no effect on the optimization process. The DEFINITION is a string ocm followed by the element number of the optimization common matrix, Ocm[], that contains the value of the relevant operand calculated by the optimization CCL callback procedure opcb_abs. This string may include one arithmetical operand and one constant.
For example, operand 2, sets the non-zero target value for PU (the axial ray angle in image space) to be equal to -0.07937 . The entrance beam radius is fixed, so that, by controlling the value of PU in the image space, the focal length of the lens will be controlled to be at or near 150 mm since the optimization will seek to reduce the operand PU-0.07937 to zero. Of course defining operand 21 (EFL) as OCM21-150.0, and assigning it a non-zero weight, would have had the same effect.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{罣 Operands Data Editor} & \(\square\) & ] 2 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{}} & & \multirow[t]{3}{*}{} \\
\hline & & & & \(\checkmark\) & \\
\hline & & & & & \\
\hline OP MODE & WGT & NAME & DEFINITION & & \(\wedge\) \\
\hline 1 Min & 0.000000 & PY & OCM1 & & \\
\hline 2 min & 1.000000 & PU & OCM2+0.07937 & & \\
\hline 3 Min & 0.000000 & PYC & OCM3 & & \\
\hline 4 Min & 0.000000 & PUC & OCM 4 & & \\
\hline 5 Min & 1.000000 & PAC & OCM5 & & \\
\hline 6 Min & 0.000000 & PLC & OCM6 & & \\
\hline 7 Min & 0.000000 & SAC & OCM7 & & \\
\hline 8 Min & 0.000000 & SLC & OCM8 & & \\
\hline 9 Min & 1.000000 & SA3 & OCM9 & & \\
\hline 10 Min & 9.000000 & CMA3 & OCM10 & & \(v\) \\
\hline
\end{tabular}
- Close the operands data editor spreadsheet. If it needs to be opened again press the Edit optimization operands icon.
- Click on the icon to open the optimization conditions spreadsheet.
- Note the entry for the optimization callback, Command for CCLISCP
 operands: opcb_abs
- On the bottom line, under Error function value, select © Weighted sum of squares.
Hence the formula for this error function becomes: Min error fn \(=1 *(P U+0.07973)^{2}+1 *(P A C)^{2}+1 *(S A 3)^{2}+9 *(C M A 3)^{2}\)
- Close the optimization conditions spreadsheet.

To list the starting value of the error function and its component operands:
- In the text window, click on Ope

\section*{*OPERANDS}
\begin{tabular}{llllrrl} 
& OP & MODE & WGT & \multicolumn{1}{c}{ NAME } & VALUE & \%CNTRB \\
0 & DEFINITION \\
0 & M & M & M .000000 & PU & \(4.4317 e-06\) & 0.00 \\
OCM2+0.07937
\end{tabular}
- To print the minimization error function alone, type the command:
```

ope erf

```

MIN ERROR FUNCTION: \(3.5988 \mathrm{e}-05\)

\section*{Description of the Aberration Operands error function}

The aberration operands error function consists of a set of predefined operands, including paraxial ray heights and angles, and Seidel and Buchdahl aberration coefficients. All the default weights are zero, so that at least one non-zero weight must be specified before it be used.
The menu header sequence which generates the error function calls the CCL command opabs_template in file /public/CCLoptim_erfs.ccl. This includes a command:
```

opt_oprdccl("opcb_abs");

```
which sets the CCL command opcb_abs (in file /public/CCL/optim_callbaks.ccl) as the optimization callback. This in turn contains CCL code which is called every time the error function is evaluated. This callback command, opcb_abs, outputs the values of Gaussian and Seidel quantities to the text window spreadsheet, and then copies selected values into the Ocm[] matrix. The key lines of the code from the command opcb_abs are listed here:
```

paraxial_trace();
0cm[2] = ssb(1, 2); // pu
chromatic_abers()
Ocm[5] = ssb(2, 1); // pac
seidel_abers();
Ocm[9] = ssb(3, 1); // sa3
0cm[10] = ssb(3, 2); // cma3

```

The relevant lines of CCL in the opabs_template command, which sets up the operands, are:
```

operands(new);

```
    opnbr = 0;
    opnbr++;o(opnbr, ins, "OCM1 ", 0.0, "PY"); /* Axial ray height */
    opnbr++;o(opnbr, ins, "OCM2 ", 0.0, "PU"); /* Axial ray slope */
    opnbr++;o(opnbr, ins, "OCM3 ", 0.0, "PYC"); /* Chief ray height */
    opnbr++;o(opnbr, ins, "OCM4 ", 0.0, "PUC"); /* Chief ray slope */
    opnbr++;o(opnbr, ins, "OCM5 ", 0.0, "PAC"); /* Primary axial color */
    opnbr++;o(opnbr, ins, "OCM6 ", 0.0, "PLC"); /* Primary lateral color */
    opnbr++;o(opnbr, ins, "OCM7 ", 0.0, "SAC"); /* Secondary axial color */
    opnbr++;o(opnbr, ins, "OCM8 ", 0.0, "SLC"); /* Secondary lateral color */
    opnbr++;o(opnbr, ins, "OCM9 ", 0.0, "SA3"); /* 3rd-order spherical */
    opnbr++;o(opnbr, ins, "OCM10", 0.0, "CMA3"); /* 3rd-order coma*/
    end();

Users of OSLO Standard and OSLO Premium do have the facility to define the error function as here described. However they do have a more direct way to define the error function, using predefined operands with self-explanatory names. This obviates the need for a CCL callback. The procedure for this is:
- Delete any pre-existing operands using the command sequence:
ope new;end
- Open the operand spreadsheet.
- Add three blank lines and then fill in the entries as shown in the diagram:

- Close the operands data editor spreadsheet and click on Ope to list the operands.

\section*{Creating a model glass}

Before a glass type can be made variable, it needs to be converted to a "model" glass.
Open the lens data spreadsheet. Change the glass at surface 1 from BK7 to \(\mathbf{N}\)-BAK4
- Under GLASS for the second surface, click on the gray button next to SF5 and select Model... (M).
- Press Enter three times to accept the default name (GLASS2), refractive index, and Abbe V-value.
- Click on Rin to list the refractive indices. Although the model glass is specified only by its refractive index at the d wavelength and Abbe number, the refractive index data for F and \(C\) wavelengths remain almost unchanged.

\section*{Defining the optimization variables}
- In the surface data spreadsheet, define the variables: Under GLASS for the second surface GLASS2, click on the gray button, and select Variable RN/DN. (The Special Variable RN/DN option is exactly equivalent). Note that although the Abbe number is used to define the dispersion for the model glass it is the OSLO "DN" which is used as a variable. This is a normalized parameter, best visualized in the index-dispersion plot. DN takes a value of 0.0 along the line joining N-FK5 and N-SK16, and a value of 1.0 along the line joining N-FK5 and SF11. Nearly all catalog glasses sit between these two lines, but most of the "normal" glasses tend to cluster about \(\mathrm{DN}=1.0\).
- Click on the variables button at the top of the spreadsheet, and put an upper limit of 1.0 for the value of DN, the dispersion parameter for surface 2. Leave the lower limit as 0 .
- Also set the minimum value of RN surface 2 as 1.48, the index of FK51, and the maximum value \(\mathbf{1 . 8 5}\), the index of N -LaSF9, the highest
 index glass which can be regarded as having reasonable cost and acceptable environmental properties.
- Click on "Vary all curvatures".
- Close the variables spreadsheet and the surface data spreadsheet.
- Save the lens. The listing is given here:


\section*{Optimization}
- Using the header of the Text window, list the operands (Ope) and the variables (Var).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{*OPERANDS} \\
\hline OP & MODE & WGT & NAME & VALUE & \%CNTRB & DEFIN & ION & \\
\hline 01 & M & -- & PY & 1.7764e-15 & -- & OCM1 & & \\
\hline 02 & M & 1.000000 & PU & -0.015829 & 2.24 & OCM2+ & 07937 & \\
\hline 03 & M & -- & PYC & 2.182779 & -- & OCM3 & & \\
\hline 04 & M & -- & PUC & 0.017260 & -- & 0CM4 & & \\
\hline 05 & M & 1.000000 & PAC & -0.081694 & 59.77 & OCM5 & & \\
\hline 06 & M & -- & PLC & -0.000343 & -- & OCM6 & & \\
\hline 07 & M & -- & SAC & -0.053498 & -- & OCM7 & & \\
\hline 08 & M & -- & SLC & -0.000226 & -- & OCM8 & & \\
\hline 09 & M & 1.000000 & SA3 & -0.063974 & 36.65 & OCM9 & & \\
\hline 010 & M & 9.000000 & CMA3 & 0.004069 & 1.33 & OCM10 & & \\
\hline \multicolumn{2}{|l|}{MIN ERROR} & FUNCTION: & \multicolumn{2}{|l|}{0.011166} & & & & \\
\hline \multicolumn{9}{|l|}{*VARIABLES} \\
\hline VB & SN & CF TYP & MIN & MAX & DAM & MPING & INCR & VALUE \\
\hline V 1 & 2 & - CV & - - & - - & 1.00 & 00000 & 0.000100 & 0.010945 \\
\hline V 2 & 3 & - CV & -- & -- & 1.00 & 00000 & 0.000100 & -0.015103 \\
\hline V 3 & 4 & - CV & -- & -- & 1.00 & 00000 & 0.000100 & -0.005058 \\
\hline V 4 & 3 & - RN & 1.480000 & 1.850000 & 1.00 & 00000 & 0.001000 & 1.672698 \\
\hline V 5 & 3 & - DN & - - & 1.000000 & 1.00 & 00000 & 0.001000 & 0.929017 \\
\hline
\end{tabular}
- Optimize for 10 cycles (Ite).
\begin{tabular}{rrrcc} 
*ITERATE FULL 10 & & & \\
NBR & DAMPING & MIN ERROR & CON ERROR & PERCENT CHG. \\
0 & \(1.0000 \mathrm{e}-08\) & 0.011166 & - & \\
1 & 3.792096 & 0.002771 & - & 75.179931 \\
2 & 0.002633 & \(6.6051 \mathrm{e}-06\) & - & 99.761674 \\
3 & 0.000615 & \(2.4247 \mathrm{e}-07\) & - & 96.329101 \\
4 & \(7.8298 \mathrm{e}-06\) & \(1.0315 \mathrm{e}-12\) & - & 99.999575 \\
5 & \(1.2696 \mathrm{e}-09\) & \(2.4261 \mathrm{e}-19\) & - & 99.999976 \\
6 & \(1.2696 \mathrm{e}-09\) & \(1.0128 \mathrm{e}-25\) & - & 99.999958 \\
7 & \(1.2696 \mathrm{e}-09\) & \(1.0075 \mathrm{e}-31\) & - & 99.999901 \\
8 & 1.269595 & \(8.3919 \mathrm{e}-32\) & - & 16.703389
\end{tabular}

\section*{Choosing a real glass type}
- Find the DN value of the new glass:
var 5
*Variables
\begin{tabular}{rrrllcrrr}
\multicolumn{2}{c}{ VARIABLES } & & & & & & \\
VN & CF & TYP & MIN & MAX & DAMPING & INCR & VALUE \\
V & 2 & - & DN & -- & 1.000000 & 1.000000 & 0.001000 & 0.998766
\end{tabular}
- List its refractive indices and Abbe V-value
rin 22
*REFRACTIVE INDICES
\begin{tabular}{llccccc} 
SRF & GLASS/CATALOG & RN1 & RN2 & RN3 & VNBR & TCE \\
2 & GLASS2 & 1.694707 & 1.711261 & 1.687937 & 29.785506 & 82.000000
\end{tabular}
- Open the surface data spreadsheet.
- Click on the gray button for surface 2 glass.
- Select FIX and choose the latest Schott catalog (either Schott, or Schott 2004, depending on the edition of OSLO). In any event the glass chosen should be SF-15.
- Enter rin 2 2:
\begin{tabular}{clccccc} 
*REFRACTIVE INDICES & & & & & \\
SRF & GLASS/CATALOG & RN1 & RN2 & RN3 & VNBR & TCE \\
2 & SF15 & 1.698952 & 1.715461 & 1.692215 & 30.067619 & 79.000000
\end{tabular}
- Open the glass catalog database.
- From the menu header select File >Open database > PUBLIC > glass_schott.cdb (it may be glass_schott2004.cdb in some versions of OSLO)
- In the GLASSNAME column, click on SF15.

Note that the glass is highlighted in yellow on the \(n-V\) diagram. The atmospheric and chemical properties are found in the column labeled ChemCode (10112). These are not bad, but a better glass, the lead- and cadmium-free equivalent is N SF15 with a ChemCode of 10111.

- Change the glass for surface 2 to N-SF15: under the gray button for GLASS, select Catalog > Schott and click on N-SF15 - it is not possible to just type in the name to replace a model glass.

\section*{Final optimization steps}

Reoptimize with the remaining parameters (the three surface curvatures).
- Click on Ite:
\begin{tabular}{rrrcc} 
*ITERATE FULL & 10 & & \\
NBR & DAMPING & MIN ERROR & CON ERROR & PERCENT CHG. \\
0 & \(1.0000 \mathrm{e}-08\) & \(2.7751 \mathrm{e}-05\) & -- & \\
1 & \(1.0000 \mathrm{e}-12\) & \(2.7540 \mathrm{e}-05\) & - & 0.759895 \\
2 & \(1.0000 \mathrm{e}-12\) & \(2.7520 \mathrm{e}-05\) & - & 0.073851 \\
3 & \(1.0000 \mathrm{e}-12\) & \(2.7519 \mathrm{e}-05\) & - & 0.003876 \\
4 & 10.000000 & \(2.7519 \mathrm{e}-05\) & - & \(1.0937 \mathrm{e}-06\)
\end{tabular}

\section*{Autofocus}

Refocus to minimize the root mean square axial wave aberration, averaged over the three wavelengths:
- Open the surface data spreadsheet.
- Under the gray THICKNESS button for surface 4 select Autofocus - minimum RMS OPD > On axis (polychromatic).
- Right click on the text window, and choose Clear window and SS buffer.
- Click on Len
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{*LENS DATA} \\
\hline Doubl & et f/6.3 150 & mm & & & & & \\
\hline SRF & RADIUS & & THICKNESS & APERTURE RADIUS & GLASS & SPE & NOTE \\
\hline OBJ & -- & & \(1.0000 \mathrm{e}+20\) & \(1.7455 \mathrm{e}+18\) & AIR & & \\
\hline AST & 94.166056 & V & 5.700000 & 12.500000 A & N-BAK4 & c & \\
\hline 2 & -67.121889 & v & 2. 200000 & 12.500000 & N-SF15 & c & \\
\hline 3 & -273.328281 & V & 146.658952 S & 12.500000 & AIR & & \\
\hline IMS & -- & & 0.080939 & 2.639626 S & & & \\
\hline
\end{tabular}
- It is worth combining the distances for surfaces 3 and 4 to avoid confusion: Click on the defocus value.
b5 \(=0.0809387292198\)
- In the surface data spreadsheet, set the defocus value (thickness surface 4) to 0 .
- Also click on the thickness for surface 3, and in the command line add +b5.

\section*{\(146.6589521609103+b 5\)}
- Finally, list the lens again:


\section*{Optimization using finite rays}

The optimization exercise described in this section will be carried on into the tolerance calculations of the next chapter. Because the starting design is well optimized, the initial choice of error function and weights is not critical. The GENII error function, which is given in all versions of OSLO, will be used for the initial design stages.

\section*{50 mm f/5.6 objective: specification}

Design a triplet objective with a focal length of 50 mm , and a \(15^{\circ}\) semi-field of view, with aperture \(f / 5.6\). Vignetting is not permitted - that is to say, the full diameter beam must pass at all field angles. The final detector will be a photographic film with resolution out to 30 cycles \(/ \mathrm{mm}\), and an MTF of at least 0.1 is required at this spatial frequency. Distortion is not critical. Only current Schott glass types can be used, and manufacture is to be at Rodenstock, by traditional methods, with dimensions marked on the final drawing in mm.

\section*{Finding a starting design}

The most obvious starting point is the standard triplet supplied with the program. The first task is to set it up with the correct field, aperture and wavelength weights and to allow the aperture stop (drawn with a red pen) to move separately,
 rather than being assigned to an air-glass surface:
- Click on the icon for Open an existing lens.
- At the bottom of the window which opens, after Library Directories: click on Public.
- Select demo >edu and then click on demotrip.len.
- Click on Open.
- Open the surface data spreadsheet.
- Change the lens identifier to 50 mm f/5.6 +/-15deg
- Click on Wavelength. Define the wavelength weights as 1.0 (.58756) 0.4 (.48613), 0.6 (.65627) and close the wavelength editor.
- Click on Notes, delete all 5 lines of notes and replace with your own annotations.
- Change the entrance beam radius to \(\mathbf{4 . 5} \mathbf{~ m m}\). That is, \(50 / 5.6 / 2\), rounded up.
- Change the field angle to \(15^{\circ}\)
- Click on the gray button for Aperture radius for surface 1, select Not checked. Repeat for surface 6 .
- Click on surface 5.
- Right click and select Insert before
- Change thickness for surface 4 from 6 to 0.0, and thickness for surface 5 frm 0 to 6.0.
- Click on the button for Aperture radius for surface 5, and select Aperture stop.
- Click on the gray button under Special for surface 5 (AST).
- Select Surface Control (F) > General
- On the second line, against Surface appearance in lens drawings: select Drawn. Set the Pen number for surface in lens drawings as 4 (red).
- Set all the lens aperture radii to Solve. The aperture pickup on surface 2 vanishes.

\section*{Checking for vignetting in the starting design}

In the triplet provided, the ray drawing conditions have been changed to allow for the vignetting. The first need is to restore the off-axis beams drawn to their full diameter.
- Click on the Edit Lens Drawing Conditions icon.
- In the section which governs rays drawn at the foot of the spreadsheet, change the number of rays for fan No. 2 from 0 to 3.
 Set the Min Pupil to -1.0 and

Effective focal length: 50.000541
Numerical aperture: 0.089999
Working F-number: 5.555616
Lagrange invariant: -1.205771
the Max Pupil to \(\mathbf{+ 1 . 0}\) for fan No. 3 .
- Close the Lens Drawing Conditions spreadsheet.
- Draw the lens.
- Click on Len Wav and Pxc to list the lens.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{*LENS DATA} \\
\hline 50 mm f & f/5.6 +/-15deg & & \\
\hline SRF & RADIUS & THICKNESS & APERTUR \\
\hline OBJ & -- & 1.0000e+20 & 2.6795 \\
\hline 1 & 21.250000 & 2. 000000 & 7.30 \\
\hline 2 & -158.650000 & 6. 000000 & 6.710 \\
\hline 3 & -20.250000 & 1. 000000 & 3.665 \\
\hline 4 & 19.300000 & -- & 3.420 \\
\hline AST & -- & 6.000000 & 3.420 \\
\hline 6 & 141.250000 & 2. 000000 & 5.931 \\
\hline 7 & -17.285000 & 42.950000 & 6.415 \\
\hline IMS & -- & -- & 13.376 \\
\hline \multicolumn{4}{|l|}{*WAVELENGTHS} \\
\hline CURRENT & T WV1/WW1 & WV2/WW2 & WV3/WW3 \\
\hline 1 & 0.587560 & 0.486130 & 0.656270 \\
\hline & 1. 000000 & 0.400000 & 0.600000 \\
\hline
\end{tabular}


\section*{Assessing the starting design}

The diagram above indicates the edge thicknesses of the positive components are far too small for economic manufacture. The center thickness of the negative lens needs increasing as well. And the stop needs to move away from the second surface of the negative lens to allow a plane diaphragm plate to be used.
- In the Standard Tools graphics menu, click on the Through-Frequency MTF icon.
- Right click in the graphics window, and select Recalculate with new parameters...
- Enter Maximum frequency 30 cycles \(/ \mathrm{mm}\).

The resolution, especially in the off-axis points, needs improvement, but otherwise the performance is good.
- Click on the icon for ray intercept curves.
- Right click in the graphics window, and select Recalculate with new parameters...
- Enter a value of \(\mathbf{0 . 0 3 3 3 3} \mathrm{mm}\) (the reciprocal of the customer-defined spatial frequency) for the User aberration scale.
The transverse aberrations at all wavelengths in the meridional (Y) section off axis particularly need to be
 reduced.

\section*{Defining and validating the error function}
- From the Optimize menu header, select Generate error function > GENII Ray Aberration...
- Fill in the entries for a Design frequency of \(\mathbf{3 0}\) cycles \(/ \mathrm{mm}\).
- Fill in the pupil coordinates on the basis of no vignetting: F1 (on axis) fymax = 1. 0 F2 (0.7 field) fymin \(=-1.0\) fymax \(=1.0 \quad \mathrm{fx}=1.0\) F3 (edge of field) fymin = -1.0 fymax \(=1.0 \mathrm{fx}=1.0\).
- The tolerance on distortion at both F2 and F3 is distol \(=\mathbf{1 0 \%}\) (in other words, distortion will not be tightly controlled).
- Finally click on OK to close the Geniierf spreadsheet.

- Type in the command line ope all to list the operands that have been defined by this command. (Operands which begin with an underscore are not listed by clicking on the Ope icon in the text window.)

Only the first 13 are listed below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{*OPERANDS} \\
\hline OP & MODE & WGT & NAME & VALUE & \%CNTRB & DEFINITION \\
\hline 01 & M & -- & Dy tol & 0.005556 & -- & 0.0055555555556 \\
\hline 02 & M & -- & 2.1 Dy & 0.011667 & -- & 0.0116666666667 \\
\hline 03 & M & -- & 2.8 Dy & 0.015556 & -- & 0.0155555555556 \\
\hline 04 & M & -- & 3 Dy & 0.016667 & -- & 0.0166666666667 \\
\hline 05 & M & -- & 4 Dy & 0.022222 & -- & 0.022222222222 \\
\hline 06 & M & -- & up Dy/3 & 0.283656 & -- & 0.283655904077 \\
\hline 07 & M & -- & 3.2 up Dy & 2.723097 & -- & 2.72309667914 \\
\hline 08 & M & & uprime & -3.5749e-14 & & PU+0.0899990260196 \\
\hline 09 & M & 1. 000000 & Fnb diff & -3.5749e-10 & 0.00 & 08/0.0001 \\
\hline 010 & M & 1.000000 & Focus diff & 0.704983 & 0.26 & DYY \((1,1) / 04\) \\
\hline 011 & M & 1.000000 & Axial DY & 0.035247 & 0.00 & DY (1, 2)/01 \\
\hline 012 & M & 1.000000 & Axial OPD & -1.189682 & 0.75 & OPD (1, 2)/06 \\
\hline 013 & M & 1.000000 & Axial DMD & 1.828939 & 1.78 & DMD (1, 2 )/06 \\
\hline
\end{tabular}

The first weighted operand controls the focal length rather tightly. In the initial stages of design it is preferable that this be relaxed. So:
- Click on the icon for Edit optimization operands.
- Change the weight for operand 9 from 1.0 to \(\mathbf{0 . 1}\).

- List the operands, noting in particular any that have contributions above \(10 \%\). They are:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 21 & M & 1.000000 & 0.7 OPD & -5.224602 & 15.30 & M6 \\
\hline 22 & M & 1.000000 & 0.7 DMD & 4.600139 & 11.86 & OCM22/0CM6 \\
\hline 24 & M & 1.000000 & 0.7 OPD L & 4.782094 & 12.82 & ocm24/0CM6 \\
\hline 36 & M & 1.000000 & 1.0 OPD U & -5.267896 & 15.55 & ocM36/0CM6 \\
\hline 37 & & 1.000000 & 0 DMD & 6.020660 & 20.31 & ocm \\
\hline
\end{tabular}

These are respectively, for the 0.7 field point, wave aberration and color for the upper Ysection ray, and wave aberration for the lower ray; also for the full field, wave aberration and color for the upper Y-section ray. These are the same aberrations as the plot above indicates will be causing the greatest reduction in MTF, so the error function has been validated.
Note that the initial value for the error function is given on the last line of the operand listing as the root mean square of the weighted contributions:
MIN RMS ERROR: 2.434848

\section*{Description of the GENII error function}

The GENII error function provided with all versions of the program is remarkably sparse yet effective. It makes maximum use of the results of ray-tracing from a single marginal ray on axis, and a chief ray and three rays in the pupil for each of two other field angles. The aberrations of these rays constitute the error function.
The error function has two weighted operands controlling the Gaussian properties, three to control the axial image formation (transverse ray aberration DY, wave aberration OPD and Conrady chromatic variation in wave aberration DMD for color control), and 13 to control the four rays at each of the off-axis points at \(\mathrm{FBY}=0.7\) and 1.0. This makes a total of 31 , leaving the remaining 19 for necessary data storage.
Because the dimensions of transverse ray aberrations, wavefront aberrations, longitudinal errors and color are so different, the error function uses scaling factors on each to enable the default value of unity weighting as the starting value for each operand. For example, the basic scaling factor on transverse errors is \((6 \mathrm{~N})^{-1}\) where N is the design spatial frequency.
Defining the error function invokes a call to geniierf() (or, for users of OSLO EDU, geniierf_It) which is in public/ccl/optim_erfs.ccl. The OSLO EDU version specifies geniiops as a callback, which will be found in public/ccl/optim_callbaks.ccl. More information is available in OSLO Help.

\section*{Defining the optimization variables}
- Open the surface data spreadsheet.
- Click on the gray button for thickness 2 , and select Variable.
- Repeat for thicknesses 4, 5, 7 .
- Click on the Variables button to open the variables spreadsheet.
- Click on the Vary all curvatures button.
- For variable 2 (thickness 4) set a MIN value of \(\mathbf{0 . 5} \mathbf{~ m m}\), leaving all other limits as default.
- Close the variables spreadsheet.
- Close the surface data spreadsheet
- List the optimization variables by clicking on Var:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{*VARIABLES} \\
\hline VB & SN & CF & TYP & MIN & MAX & DAMPING & INCR & VALUE \\
\hline V 1 & 2 & - & TH & 0.100000 & 1.0000e+04 & 1.000000 & 0.000450 & 6.000000 \\
\hline V 2 & 4 & - & TH & 0.500000 & 1. \(0000 \mathrm{e}+04\) & 1.000000 & 0.000450 & -- * \\
\hline V 3 & 5 & - & TH & 0.100000 & 1.0000e+04 & 1.000000 & 0.000450 & 6.000000 \\
\hline V 4 & 7 & - & TH & 0.100000 & 1. \(0000 \mathrm{e}+04\) & 1.000000 & 0.000450 & 42.950000 \\
\hline V 5 & 1 & - & CV & - - & - - & 1.000000 & 2.2222e-05 & 0.047059 \\
\hline V 6 & 2 & - & CV & -- & -- & 1.000000 & 2.2222e-05 & -0.006303 \\
\hline V 7 & 3 & - & CV & -- & -- & 1.000000 & 2.2222e-05 & -0.049383 \\
\hline V 8 & 4 & - & CV & -- & -- & 1.000000 & 2.2222e-05 & 0.051813 \\
\hline V 9 & 6 & - & CV & -- & -- & 1.000000 & 2.2222e-05 & 0.007080 \\
\hline V 10 & 7 & - & CV & -- & -- & 1.000000 & 2.2222e-05 & -0.057854 \\
\hline
\end{tabular}

There is an asterisk against thickness 4 indicating that the current value of the variable ( \(=0\) ) violates the permitted range. As a result, the error function has increased.
- Click on the Ope in the text window.

MIN RMS ERROR: \(\quad 3.772815\)

\section*{Optimization}
- Two clicks on the Ite button gives the output shown below for this error function.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{*LENS DATA} \\
\hline \multicolumn{10}{|l|}{\(50 \mathrm{~mm} \mathrm{f/5.6} \mathrm{+/-15} \mathrm{deg}\)} \\
\hline SRF & RADIUS & & THICKNESS & & APERTURE RAD & DIUS & GLASS & SPE & NOTE \\
\hline OBJ & -- & & 1.0000e+20 & & \(2.6795 \mathrm{e}+19\) & & AIR & & \\
\hline 1 & 25.838240 & V & 2. 000000 & & 7.591942 & S & SK16 & C & \\
\hline 2 & -103.139037 & V & 6.389728 & V & 7.036229 & S & AIR & & \\
\hline 3 & -14.888983 & V & 1.000000 & & 3.888863 & S & F4 & C & \\
\hline 4 & 22.497814 & V & 0.499055 & V & 3.683790 & S & AIR & & \\
\hline AST & -- & & 3.457640 & V & 3.568729 & & AIR & * & \\
\hline 6 & 161.514578 & & 2.000000 & & 5.108018 & S & SK16 & C & \\
\hline 7 & -13.810731 & V & 44.869598 & V & 5.633273 & S & AIR & & \\
\hline IMS & -- & & -- & & 13.373470 & & & & \\
\hline
\end{tabular}

The focal length is 50.05 mm , an error of less than \(0.1 \%\) so there is no need to increase the weight on operand 9.

\section*{Engineering aspects: edge thicknesses}

As this lens is to be made by traditional means, a blank needs to be procured with sufficient extra diameter to allow each component to be centered by edging. The thicknesses of all the lenses need to be increased to improve manufacturing yield. Making an allowance of 3 mm on diameter beyond the largest clear aperture diameter for the mounting (with an extra 1 mm on the front lens to allow for weather-proofing), and a further 2 mm for the blank, the edge thickness of each blank should be about 1.5 mm minimum.

To calculate the edge thicknesses of the blanks for the two positive lenses:
- From the Lens menu header select Show Auxiliary Data > Edge Thickness.
- For component 1, enter surface \(\mathbf{A}=\mathbf{1}\), surface \(\mathbf{B}=\mathbf{2}\). Enter the clear semi-diameter 7.6 mm plus \(3 \mathrm{~mm}=\mathbf{1 0 . 6} \mathbf{~ m m}\) for the \(y\)-height at both surfaces:
\begin{tabular}{ccccccc} 
*DISTANCE FROM SRFA 1 & TO SRFB 2 & & & \\
AT YHTA & YHTB & XHTA & XHTB & ZSAGA & ZSAGB \\
10.600000 & 10.600000 & -- & -- & 2.274242 & -0.546529 \\
IS XDIS & YDIS & ZDIS & GLOBAL DISTANCE & & \\
& -- & - & -0.820771 & 0.820771 & &
\end{tabular}

The edge thickness given (ZDIS) is -0.82 mm , so the centre thickness for surface 1 needs to be increased by about 2.8 mm to reach the target of 1.5 mm .
- Repeating for surface \(\mathbf{A}=\mathbf{6}, \mathbf{B}=\mathbf{7}\), enter \(5.6+2.5=\mathbf{8} \mathbf{. 1} \mathrm{mm}\) for the \(\mathbf{y}\)-height at both surfaces. otherwise type the command:
eth 678.18 .100
For this lens, the edge thickness of the blank (ZDIS) is -0.83 mm , so the centre thickness for surface 6 also needs to be increased by about 2.8 mm .

The centre thickness of the negative lens (surface 3 ) is too thin, and should also be increased to 1.5 mm .

Rather than making these directly in the spreadsheet, they will be used to illustrate the process whereby adjustments can be made with simultaneous optimisation.

\section*{Slider-wheels with concurrent optimization on MTF}

\section*{Adjusting lens thicknesses}

The facility provided by OSLO to carry out slider-wheel optimization on one or more parameters, with a simultaneous callback to optimization on other variables, is a powerful design tool. In this context, note that no parameter adjusted with the slider-wheel bars should be an optimization variable. In the example given here, the slider-wheels will be used to adjust the lens thicknesses 1 for surfaces 1,3 and 6 , while the optimization on the lens curvatures, air spaces and image distance will continue to correct performance during each adjustment.
- Close the surface data spreadsheet.
- Open the slider-wheel spreadsheet.
- Select © Ray-intercept curves at © All points in the field.
- Define three sliders for Thickness (TH) 1 Thickness (TH) 3 and Thickness (TH) 6.
- Select © Enable sw_callback CCL function with Level = 9 (This must be in the range from 1 to 9 to trigger the Iter function in the callback command.).
- Close the slider-wheel setup spreadsheet.


The text window, the slider-wheel bar and the two temporary slider-wheel windows, GW31 and GW32, should all be visible. The starting value of the error function is 1.292.
- Increase thickness 1 in steps of 0.1 until it reaches 4.0 giving an error function of 1.309.
- Increase thickness 3 in steps of 0.1 until it reaches 1.5 . The error function will be 1.372
- Increase thickness 6 until it reaches 3.0; the error function becomes 1.408.
- Increase thickness 1 to 4.7 and thickness 6 to 4.7 , the optimized error function will be 1.480.
- Close the slider wheels and list the lens.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{*LENS DATA} \\
\hline \multicolumn{9}{|l|}{\(50 \mathrm{~mm} \mathrm{f/5.6} \mathrm{+/-15} \mathrm{deg}\)} \\
\hline SRF & RADIUS & & THICKNESS & & APERTURE RADIUS & GLASS & SPE & NOTE \\
\hline OBJ & -- & & 1.0000e+20 & & 2.6795e+19 & AIR & & \\
\hline 1 & 29.485222 & V & 4.700000 & & 8.263805 S & SK16 & C & \\
\hline 2 & -86.537346 & V & 6.170610 & V & 6.982274 S & AIR & & \\
\hline 3 & -15.359048 & V & 1.500000 & & 3.947019 S & F4 & C & \\
\hline 4 & 21.674799 & V & 0.498922 & V & 3.637632 S & AIR & & \\
\hline AST & -- & & 2.252805 & V & 3.522903 AS & AIR & * & \\
\hline 6 & 77.234402 & V & 4.700000 & & 4.546980 S & SK16 & C & \\
\hline 7 & -14.489037 & V & 44.432412 & V & 5.759546 S & AIR & & \\
\hline IMS & -- & & -- & & 13.376786 S & & & \\
\hline
\end{tabular}
- Now to check the edge thicknesses, calculate the edge thickness of the front lens blank at a radius of \(8.3+3.0=11.3 \mathrm{~mm}\) :
eth 1211.311 .300
giving a value of 1.7 mm .
- Also find the edge thickness of the third lens blank at a radius of \(5.8+2.5=8.3 \mathrm{~mm}\) :
eth 678.38 .300
which gives 1.6 mm .


These are both above the 1.5 mm which is required. For the diagram which shows the blank sizes, the barrel semi-diameters have been rounded upwards to \(10 \mathrm{~mm}, 5.5 \mathrm{~mm}\) and 7.5 mm respectively.

\section*{Engineering aspects: ambiguity avoidance}

It is extremely hard to tell which of the two surfaces of a nearly equi-concave lens is the steepest. To avoid assembly errors, we will investigate the effect of making the second lens truly equi-concave.
- Make the second element equi-concave. Click on the surface 4 gray RADIUS button and select Minus curvature pickup (P)... with Pickup source surface = 3 Pickup constant \(=0\), Pickup multiplir \(=1.0\).
- Reoptimise. The error function is 1.640. This increase is acceptable.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{*LENS DATA} \\
\hline \multicolumn{10}{|l|}{\(50 \mathrm{~mm} \mathrm{f/5.6} \mathrm{+/-15} \mathrm{deg}\)} \\
\hline SRF & RADIUS & & THICKNESS & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{APERTURE RADIUS
\[
2.6795 e+19
\]}} & GLASS & \multirow[t]{2}{*}{SPE} & \multirow[t]{2}{*}{NOTE} \\
\hline OBJ & -- & & 1.0000e+20 & & & & AIR & & \\
\hline 1 & 26.647695 & V & 4.700000 & & 8.681421 & S & SK16 & C & \\
\hline 2 & -361.254520 & V & 7.067320 & V & 7.317984 & S & AIR & & \\
\hline 3 & -18.435016 & V & 1.500000 & & 3.907032 & S & F4 & C & \\
\hline 4 & 18.435016 & P & 0.499751 & V & 3.580456 & S & AIR & & \\
\hline AST & -- & & 2.398524 & V & 3.464412 & AS & AIR & * & \\
\hline 6 & 42.567801 & & 4.700000 & & 4.577052 & S & SK16 & C & \\
\hline 7 & -16.089048 & & 43.427580 & V & 5.729062 & S & AIR & & \\
\hline IMS & -- & & -- & & 13.383518 & S & & & \\
\hline
\end{tabular}

\section*{Engineering aspects: testplate fitting}
- Select the Rodenstock test glass file: Under the File menu header, select Preferences > Set preference > Test_glass_file and in the command line enter rodenstock.tgl.


This refers to an ASCII file rodenstock.tgl in the directory OSLO/Prm64/bin/Imol which contains 1446 test glass values. Test glass files for other manufacturers are also available, and the user may create others in the same format if desired.
- Open the surface data spreadsheet.
- For surface 7 (the shortest radius at 16.09 mm ) remove the variable curvature (change to Direct specification).
- Hold down the shift key and left-click the mouse twice on the radius. A value 16.0766 will appear as the nearest test glass, with a black box around it.
- Click on the green tick to accept this (or shift-left-click to restore the nominal radius). The letter \(\mathbf{T}\) appears next to the fitted radius.
- Press Ite to optimize the remaining variables.
- Repeat this sequence for surface 3 - remove the variable, fit the closest test glass, and optimise remaining variables.
- Repeat this sequence for surface 6 and then again for surface 2 .
- Click on Len to list the design. Note the T which appears against each radius which has bees fitted to a test glass.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Chapter 9-Optimization} & \multirow[t]{2}{*}{107} \\
\hline \multicolumn{10}{|l|}{\multirow[t]{2}{*}{\(50 \mathrm{~mm} \mathrm{f/5.6} \mathrm{+/-15} \mathrm{deg}\)}} \\
\hline & & & & & & & & & \\
\hline SRF & RADIUS & & THICKNESS & & APERTURE RADIUS & GLASS & SPE & NOTE & \\
\hline OBJ & -- & & 1.0000e+20 & & \(2.6795 \mathrm{e}+19\) & AIR & & & \\
\hline 1 & 26.699200 & T & 4.700000 & & 8.692011 S & SK16 & C & & \\
\hline 2 & -375.820000 & T & 7.098400 & V & 7.328991 S & AIR & & & \\
\hline 3 & -18.438800 & T & 1.500000 & & 3.907388 S & F4 & C & & \\
\hline 4 & 18.438800 & P & 0.499794 & V & 3.581367 S & AIR & & & \\
\hline AST & -- & & 2.384983 & v & 3.465615 AS & AIR & * & & \\
\hline 6 & 42.322100 & T & 4.700000 & & 4.572836 S & SK16 & C & & \\
\hline 7 & -16.076600 & T & 43.429946 & v & 5.724953 S & AIR & & & \\
\hline IMS & -- & & -- & & 13.380875 S & & & & \\
\hline \multicolumn{10}{|l|}{- Click on Ope in the text window. MIN RMS ERROR: 1.641164} \\
\hline
\end{tabular}

The error function has risen slightly.

\section*{Rounding air spaces}

Round the air spaces to avoid giving the impression that they are subject to tight tolerances:
- Change thickness 2 to 7.1 , delete the variable and re-optimize.
- Change thickness 4 to 0.5 , delete the variable and re-optimize.
- Change thickness 5 to 2.4, delete the variable and re-optimize on the one remaining variable, the focus.
- Enter the command: ope erf

The error function has risen slightly:
```

MIN RMS ERROR:
1.645251

```

\section*{Adjusting clear apertures}
- Close the variables spreadsheet and the lens data spreadsheet.
- Under the Optimize menu header, select Support routines > Vignetting > Set apertures and in the dialog box change the number of digits to 2 .
- Click on OK
\begin{tabular}{crrr} 
*APERTURES & & \\
SRF & TYPE & APERTURE RADIUS \\
0 & SPC & \(2.6795 e+19\) & \\
1 & SPC & 8.500000 & CHK \\
2 & SPC & 8.500000 & \\
3 & SPC & 4.000000 & \\
4 & SPC & 3.600000 & \\
5 & SPC & 3.500000 & CHK \\
6 & SPC & 5.500000 & \\
7 & SPC & 5.500000 & CHK \\
8 & CMP & 13.380786 &
\end{tabular}

- Remove the Checked aperture (K) indications from surfaces 1, 5 and 7.
- Change the clear aperture surface 4 to 4.0 mm (as this lens is reversible).
- Remove the Pickup (P) from the radius on surface 4, change all the other radii to Direct specification, but leave the variable on the back focal distance (thickness 7).
- List the lens:



This completes the design of this lens. The next chapter will start from this point as the basis of the tolerance calculation exercise.

\section*{Chapter 10-Tolerances and drawings}

\section*{50 mm f/5.6 objective: specification}

For the lens which is the final design of the triplet describes in the previous section, the task is to define the surface and component tolerances which, based on root-sum-of-squares statistics, give an MTF which does not fall below 0.1 at 30 cycles \(/ \mathrm{mm}\) at any of the three field points. The assumption will be made that in production there will be a uniform distribution of errors within the tolerance band, and that a focus adjustment will be carried out on assembly.
This will be accomplished using a CCL command which assesses the MTF at 30 cycles \(/ \mathrm{mm}\) in both azimuths at 5 field points across the field - with values of FBY of \(0.0, \pm 0.7\) and \(\pm\) 1.0.

\section*{Defining the tolerance error function:"opcb_dmtf"}

The CCL routine below will calculate the MTF in 2 azimuths at 5 field points, 10 values in all. It will then identify the worst (i.e. lowest) of these, and subtract it from the diffraction limited MTF at the same frequency. The error function consists of a single operand, having this value.
Subtracting the lowest MTF from the ideal ensures that, as in all optimization operands, the system with the lowest value of the error function is the best one.
The routine here is a "callback" - that is to say, it is evaluated whenever the error function is calculated. It places a single value into the real array \(\mathbf{0 c m}\) [1]. This value is then called using the string OCM1 as the definition of the operand.
```

- Open the text editor and create a new file:
//
// Written by [your name] [Date]
//
cmd opcb_dmtf(void)
// hlp: <P>Callback for DMTF (degradation in MTF) optimization.
// hlp: OCM1 is max reduction in MTF below ideal MTF at 5 field
// hlp: points for one spatial frequency. Both X \& Y are included
// hlp: on axis, as well as field height FBY both +ve and -ve.</P>
{
static double mtfs[10],diff_lim,mtf_min;
static double sf=30.0;//spatial frequency
stp outp off;
k=sbrow;
sbr k 1;//scrolls spread sheet buffer to preserve contents

```
```

sop(0,0,0);

```
sop(0,0,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
sop(0.7,0,0);
sop(0.7,0,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
sop(-0.7,0,0);
sop(-0.7,0,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
```

mtf(tfr,chr,x,sf,sf,0);

```
mtf(tfr,chr,y,sf,sf,0);
mtf(tfr,chr, x,sf,sf,0);
sop(-1, 0, 0) ;
mtf(tfr, chr, y,sf,sf,0);
mtf(tfr,chr,x,sf,sf,0);
diff_lim=d5;
if(diff_lim==0) cclabort("Diff limited MTF zero", "opcb_dmtf");
mtfs[0]=b5;// Ax T
mtfs[1]=b8;// AX S
mtfs[2]=b14;// +7 T
mtfs[3]=b17;// +7 S
mtfs[4]=b23;// -7 T
mtfs[5]=b26;// -7 S
mtfs[6]=b32;// +1 T
mtfs[7]=b35;// +1 s
mtfs[8]=b41;// -1 T
mtfs[9]=b44;// -1 s
\(m t f \_m i n=1.0\);
for(i=0;i<10;i++)if(mtfs[i]<mtf_min)mtf_min=mtfs[i];
ocm[1]=diff_lim-mtf_min;// DMTF: MAX FALL BELOW DIFFRACTION LIMIT
```

sbr -k 0;
stp outp on;

```
\}
- Save the command in /private/ccl/ with the name optim_dmtf.ccl, and check correct compilation.
*CCL COMPILATION MESSAGES:
No errors detected
- Open the optimization conditions spreadsheet.
- Change the entry for the optimization callback, Command for CCLISCP operands: opcb_dmtf
- On the bottom line, under Error function value, select \(\bigcirc\) Root-mean-square (RMS).
- Close the optimization conditions spreadsheet.
- Enter the command line ope new; end to delete the existing operand list.
- Open the operands data editor spreadsheet.
- Fill in the name and definition as in the following table:
\begin{tabular}{ccccc|}
\hline OP & MODE & WGT & NAME & DEFINITION \\
\hline \(\mathbf{1}\) & MIN & 1.000000 & DMTF at 30 & OCM1
\end{tabular}
- Close the operands spreadsheet and list the operands with Ope

\section*{*OPERANDS}
\begin{tabular}{lccccc} 
OP & MODE & WGT & NAME & VALUE & \%CNTRB DEFINITION \\
0 & M & 1.000000 & DMTF at & 30 & 0.408358 \\
MIN & RMS ERROR: & 0.408358 & & &
\end{tabular}

Since there is only one operand in the error function, the value of the RMS minimization error is the actual value of DMTF, the degradation in MTF.

\section*{Defining the compensator}

To enable the widest possible tolerances to be assigned to the lens, one or more "compensators" can be defined. These represent the adjustments made during assembly which can partly compensate the errors in the individual components. The most common compensator is, of course, the focus, and that is the only compensator used in this example.
To define a compensator, the parameter concerned must be defined as an optimization variable.
- In the text window click on Var.
- Confirm that thickness 7 is variable, and is the only variable.

Before commencing the calculation of tolerances, the compensator must be set to the optimum position for the nominal design.

\section*{Optimizing on the compensator}
- To find the best focus, just optimize with Ite and click on Var


To confirm the choice of focal plane, plot the through-focus MTF at 30 cycles \(/ \mathrm{mm}\) :
- Click on the icon and accepting all defaults.
- Right click in the graphics window, and select Recalculate with new
 parameters...
- Enter Frequency \(\mathbf{3 0}\) cycles \(/ \mathrm{mm}\).

The curves show that the ideal focal plane has been chosen.
The diagram also illustrates the significance of the quantity DMTF. It is the largest drop below the diffraction limit at any of the five field points, with assessment in both sagittal and tangential directions (including on axis). This error function has been chosen so that asymmetric
 tolerances can be included in the calculation.
- Under the Evaluate menu header, select Transfer function > Print/Plot OTF and in the dialog box select: Monochromatic, Print function, with Maximum frequency \(=\mathbf{3 0}\) line pairs per mm .

In this case the diffraction limit MTF at 30 cycles \(/ \mathrm{mm}\) is 0.86 . At the best focus, the nominal value of the worst MTF at 30 cycles \(/ \mathrm{mm}\) is 0.49 , giving a value of DMTF for the nominal system of 0.36 . If the MTF must remain everywhere above 0.1 , the value of DMTF must not increase to more than 0.76 .

\section*{Calculating decenter tolerances}

As an example we will calculate the effect of decentering the second lens by the minimum amount one can expect from traditional mounting methods:
- Open the surface data spread sheet.
- Under Special for surface 3, select Coordinates (C).
- Enter . 075 mm for DCY, and under Use base coordinates for returns to this surface: select Yes.
- Under Special for surface 4, select Coordinates (C).
- Under Coordinate return: select Yes and under Return to surface: enter \(\mathbf{3}\)
- Click on Ope and find the new DMTF value:

MIN RMS ERROR: 0.612975
So DMTF has increased from 0.36 to 0.61 , an increase of 0.25 . This has used more than half the entire tolerance budget of 0.40 on one error, so clearly a specialized mounting method (such as laser centering in the mount) will need to be used to meet the performance target. That being the case, we will assume that all the component decenter tolerances can be regarded as zero, and calculate the budget for the remaining errors.

\section*{Checking tolerance entries}

The default tolerance values assigned to each parameter are the ISO10110 values. Because there are two successive air spaces (4 and 5), the tolerance on the first one can be removed.
- Click on the Edit Surface Tolerances icon, or select from the menu header Tolerance > Update tolerance data > Surface.
- Click on Display all surfaces tolerances: © Yes.
- For surface 4, set TH TOL (thickness tolerance) to \(\mathbf{0 . 0}\)
- Close the surface tolerances data editor.

\section*{Symmetrical tolerances surface calculation}
- From the menu header select Tolerance > User-defined Tolerancing and select Sensitivity and Symmetric perturbations.

- A warning message comes up. The error function does not assume rotational symmetry, so click on OK.

The sensitivity analysis (which may take one or two minutes) lists 6 power errors, 3 element thicknesses, 2 air spaces, 3 indices and 3 V-values, 17 symmetrical contributions in all. The summary is:
\begin{tabular}{lcc} 
& UNCOMPENSATED & COMPENSATED \\
WORST CASE CHANGE & 6.019989 & 3.022531 \\
STANDARD DEVIATION & & \\
RSS & 1.659396 & 1.056369 \\
UNIFORM & 0.958053 & 0.609895 \\
GAUSSIAN & 0.729824 & 0.464604
\end{tabular}
\begin{tabular}{l} 
OSLO Premium Edition \\
Warning: The current error function \\
may assume rotational symmetry. \\
Press OK to continue or Cancel to stop. \\
\hline OK Cancel \\
\hline
\end{tabular}

The change in the error function, with focus compensation, for a uniform distribution of errors within the tolerance band is 0.61 is an indication that the standard tolerances are not acceptable.
If we allocate 0.33 of the budget of 0.40 to the symmetrical tolerances, then each tolerance will be allowed \(0.33 / \sqrt{ } 17=0.08\) MTF degradation.
- From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Symmetric perturbations, enter \(\mathbf{0 . 0 8}\) for Change in error function.
\begin{tabular}{l} 
*INVERSE SENSITIVITY ANALYSIS \\
ERROR FUNCTION FOR NOMINAL SYSTEM: \\
ALLOWED CHANGE IN ERROR FUNCTION: \\
POWER ERROR TOLERANCE \\
\multicolumn{3}{c}{ ALLOWED TOLERANCE } \\
SRF \\
1 UNCOMPENSATED \\
2
\end{tabular}

These tolerances must be tightened from the ISO10110 values of \(10,10,5,5,10\) and 10
fringes to 5 fringes throughout.
```

ELEMENT THICKNESS TOLERANCE
ALLOWED TOLERANCE
SRF UNCOMPENSATED COMPENSATED
1 0.074299 0.096090
3 0.079866 0.246151

```

The first one needs to be changed to from the ISO10110 value of 0.2 to 0.1 mm .
\begin{tabular}{ccc} 
AIR & SPACE & TOLERANCE \\
ALLOWED & TOLERANCE \\
SRF & UNCOMPENSATED & COMPENSATED \\
2 & 0.079453 & 0.053990 \\
\(\mathbf{5}\) & 0.035223 & 0.036388
\end{tabular}

These must be tightened to 0.05 mm .
\begin{tabular}{ccc}
\multicolumn{2}{c}{ INDEX } & OF \\
\multicolumn{3}{c}{ REFRACTION TOLERANCE } \\
ALLOWED & TOLERANCE \\
SRF & UNCOMPENSATED & COMPENSATED \\
1 & 0.000460 & 0.006810 \\
3 & 0.000381 & 0.00346 \\
6 & 0.000376 & 0.000342
\end{tabular}

These must all be tightened from .001 to 0.0006 (note that the glass type for lens 1 and for lens 3 are the same, so only one standard of glass need be procured).
\begin{tabular}{ccc} 
SRF & UNCOMPENSATED & COMPENSATED \\
1 & 5.230509 & 20.247082 \\
3 & 3.291042 & 12.443420 \\
6 & 4.223386 & 14.964191
\end{tabular}

These can stay at \(0.8 \%\).

\section*{Updating symmetrical surface tolerances}
- Click on the Edit Surface Tolerances icon, or select from the menu header Tolerance > Update tolerance data > Surface.
- Change the tolerances on symmetric form error (PWR FR) at all surfaces to 5
- Change the tolerances on thickness (TH TOL) at surfaces 2 and 5 to 0.05 .
- Change the tolerance on thickness (TH TOL) at surfaces 1 to 0.1
- Change the tolerances on index (RN TOL) at surfaces 13 and 6 to \(\mathbf{0 . 0 0 0 6 .}\)
- Close the surface tolerances data editor.
- Repeat the sensitivity calculation for symmetrical tolerances:
\begin{tabular}{lccc} 
STATISTICAL SUMMARY & & & \\
WORST CASE CHANGE & UNCOMPENSATED & COMPENSATED & \\
STANDARD DEVIATION & 4.548071 & 0.744409 & \\
RSS & 1.271472 & 0.472209 & \\
UNIFORM & 0.734085 & 0.272630 & \\
GAUSSIAN & 0.559210 & 0.207684 & \\
COMPENSATOR STATISTICS & & & RSS \\
COMP & MEAN & STD DEV & MAX \\
TH \(7 \quad-0.011420\) & 0.099581 & 0.356100 & 0.483578
\end{tabular}
- The degradation of 0.27 (less than the 0.33 allowed for) leaves a balance of 0.13 for the asymmetric tolerances.

\section*{Asymmetric tolerances surface calculation}

Since the full asymmetrical sensitivity analysis cannot be undertaken with OSLO EDU, the relevant elements of the sensitivity analysis will be calculated separately.

There are only two surface errors to be considered. These consist of 6 surface irregularity errors, and 6 surface tilt errors (TLA only), 12 in all. If we allocate the remaining 0.13 of MTF degradation (that is, the budget of 0.4 minus the 0.27 taken up by symmetrical tolerances) to these 12 tolerances, then each contribution is \(0.13 / \sqrt{ } 12=0.038\).
- Remove the variable from thickness 7 - focus cannot compensate for asymmetrical errors.
- Remove the variable from thickness 7, since focus cannot compensate for asymmetrical errors.
- From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Irregularity fringes, enter 0.038 for Change in error function.

ERROR FUNCTION FOR NOMINAL SYSTEM: 0.360640
ALLOWED CHANGE
0.038000

IRREGULARITY ERROR TOLERANCE ALLOWED TOLERANCE UNCOMPENSATED
2.097225
2.261429
0.816355
0.818204
1.263006
1.188189

The tolerance on both surfaces of the last lens needs to be changed to from the ISO10110 value of 2 fringes to 1 fringe.
- From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Surface tilt tolerance (TLA), and again enter 0.038 for the Change in error function.
*INVERSE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM: 0.360640
ALLOWED CHANGE IN ERROR FUNCTION: 0.038000
SURFACE TILT TOLERANCE (TLA)
ALLOWED TOLERANCE
SRF UNCOMPENSATED
1 0.139481
0.108784
0.145052
0.161710
0.153277
0.110764

All these tilt tolerances must be changed to 0.08 degrees ( 5 minutes).

\section*{Updating asymmetric surface tolerances}
- Click on the Edit Surface Tolerances icon, or select from the menu header Tolerance > Update tolerance data > Surface.
- Change the tolerances on irregularity - i.e. asymmetric form error IRR FR - at surfaces 6 and 7 to 1.0
- Change the tolerances on tilt (TA TOL) for all refracting surfaces to 0.1
- Close the surface tolerances data editor.

\section*{Updating asymmetric component tolerances}

The decision has already been made to center the components precisely.
- Select from the menu header Tolerance > Update tolerance data > Component.
- Change the tolerances on centration (DCY) and tilt (ALPHA) to 0.0

\section*{Asymmetric tolerances calculation}
- From the menu header select Tolerance > User-defined Tolerancing and select Sensitivity and Asymmetric perturbations, or type the command: tsn asy. Only the summary data is given here.

WORST CASE CHANGE STANDARD DEVIATION RSS 0.946050 0.308895 UNIFORM 0.178341 GAUSSIAN
0.135856
- The degradation of 0.18 is a little larger than the 0.13 budget for the asymmetric tolerances, but note that all tolerance calculations subject to the approximations of statistics.

\section*{Tolerance data listing}
- From the Lens menu header select Show tolerance data > Surface.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{*SURFACE TOLERANCES} \\
\hline \multicolumn{11}{|l|}{50 mm f/5.6 +/-15 deg} \\
\hline \multicolumn{3}{|r|}{RADIUS RD TOL} & \multicolumn{4}{|l|}{FRINGES THICKNESS TH TOL} & \multicolumn{2}{|r|}{RN TOL} & DECEN & TILT \\
\hline \multirow[t]{2}{*}{SRF
1} & CON CNST & CC TOL & PWR & IRR & TLC TOL & DZ TOL & GLASS & v TOL & Y/X & A/B \\
\hline & 26.6992 & -- & 5.00 & 2.00 & 4.7000 & 0.1000 & SK16 & 0.0006 & -- & 0.0800 \\
\hline & - - & -- & & & - - & -- & & 0.8000 & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{2} & -375.8200 & -- & 5.00 & 2.00 & 7.1000 & 0.0500 & AIR & -- & -- & 0.0800 \\
\hline & -- & -- & & & -- & -- & & -- & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{3} & -18.4388 & -- & 5.00 & 1.00 & 1.5000 & 0.1000 & F4 & 0.0006 & -- & 0.0800 \\
\hline & -- & -- & & & -- & -- & & 0.8000 & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{4} & 18.4388 & -- & 5.00 & 1.00 & 0.5000 & -- & AIR & -- & -- & 0.0800 \\
\hline & -- & -- & & & -- & -- & & -- & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{5} & -- & -- & -- & -- & 2.4000 & 0.0500 & AIR & -- & -- & -- \\
\hline & -- & -- & & & -- & -- & & & -- & \\
\hline \multirow[t]{2}{*}{6} & 42.3221 & -- & 5.00 & 1.00 & 4.7000 & 0.2000 & SK16 & 0.0006 & -- & 0.0800 \\
\hline & -- & -- & & & -- & - - & & 0.8000 & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{7} & -16.0766 & -- & 5.00 & 1.00 & 43.3859 & -- & AIR & -- & -- & 0.0800 \\
\hline & -- & -- & & & -- & -- & & & -- & 0.0800 \\
\hline \multirow[t]{2}{*}{8} & -- & -- & -- & -- & -- & -- & & & -- & -- \\
\hline & & & & & -- & & & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
FRINGE WAVELENGTH: 0.546070 \\
Fringes measured over clear aperture of surface unless indicated. Tilt tolerances are specified in degrees.
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}
- From the Lens menu header select Show tolerance data > Component.
- All values in this table should be zero.

\section*{ISO 10110 component drawing}

The middle element of the triplet objective will be used to demonstrate this facility.

\section*{Setting element drawing defaults}
- From the menu header select Lens > Lens Drawing > Element drawing conditions or type the command: edd
- Set RMS surface roughness for ground edges \(\mathbf{R}_{\mathbf{q}}=\mathbf{2}\) (microns) medium.
- Set RMS surface roughness \(\mathbf{R}_{\mathbf{q}}=\mathbf{2 n m}\) (medium)
- Set Surface polishing grade to P3.
- Set Coating blemishes to 1 Grade 0.4. (MIL 80-50 equivalent)
- Set Long scratches to \(\mathbf{1}\) Width \(\mathbf{0 . 0 0 8} \mathbf{~ m m ~ ( M I L ~ 8 0 - 5 0 ~ e q u i v a l e n t ) ~}\)
- Set Edge chips: Maximum extent from edge to 1 mm .
- Define Coating specification as Single layer MgF2 550 nm.

- Close the spreadsheet.

\section*{Setting element material properties}
- From the menu header select Lens > Lens Drawing > Element
- For Left surface of element select 3
- Fill in:
- Part Lens 2 [date]
- Drawing title 50 mm f/5.6
- Diameter \(11 \mathrm{~mm}+0.2 /-0.2\)
- Stress birefringence (0/): 20
- Bubbles and inclusions (1/) Number 1 Grade 0.4
- Striae Class 4.


\section*{Setting element surface properties}
- Click on Edit left surface.
- Leave most entries unchanged but fill in:
- Surface imperfections Number 1 Grade 0.4
- Click on the green tick to close the spreadsheet.
- Click on Edit right surface.
- Again fill in:
- Surface imperfections Number 1 Grade 0.4

Click on the green tick twice and the drawing appears.
\begin{tabular}{|c|c|}
\hline 値 Element Surface Data < Element Drawing Data & \\
\hline 4 & \\
\hline \(\times 0.4\) - & \\
\hline 8 & E \\
\hline Surface 4 Element dimensions are in mm. & \\
\hline Radius \(18.438800 \mathrm{CC}+/-0.000000\) Centring Tol. (minutes) (4/) 4.800000 & \\
\hline Optically Eff. Diameter 8.000000 Prot. Chamfer 0.100000 & \\
\hline \begin{tabular}{llll} 
Surface Polishing Grade & P3 & & Rms Surface Roughness \(-\mathrm{Rq}(\mathrm{nm})\) \\
Sampling Length for Rq (microns): & & Low Limit 0 & 0 \\
\hline
\end{tabular} & \\
\hline Surface Form Deviations - 3/A(B/C) : & \\
\hline \(A=\) sagitta error, \(B=\) Irregularity, \(C=\) Rotationally symmetric irregularity & \\
\hline A (fringes) 5.000000 B (fringes) 1.000000 C (fringes) 0.000000 & \\
\hline RMS Residual Surface Deviations (3/) : & \\
\hline RMSt \(=\) Total rms deviation, RMSi \(=\) Rms irregularity, RMSa \(=\) Rms asymmetry
RMSt \(<0.000000\) & \\
\hline Surface Imperfection Tolerances (5/): & \\
\hline Surface Imperfections Number 1 Grade 0.40000 & \\
\hline Coating Blemishes Number 1 Grade 0.40000 & \\
\hline Long scratches Number 1 Max width (mm) 0.00800 & \\
\hline Edge Chips Maximum Extent From Edge (mm) 1.00000 & \\
\hline Surface Treatment/coating specification Single layer MgF2 550nm & \\
\hline Laser Irradiation Damage Threshold (6/) & \\
\hline
\end{tabular}

Element drawing
The message appears in the message area:
Element drawing is best viewed in a "portrait window" format.


\section*{Appendix 1 - Index of lens data commands}

This table gives an alphabetic listing of the principal commands used in lens data input that can be found in the OSLO Program Reference manual. The letter in the second column is the label shown on the gray button in the surface data spreadsheet when the relevant parameter is set. Note that not all of these commands are available in OSLO EDU.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Command & & Explanation & ec & S & edge slv \\
\hline ach & F & array chan & eik & E & eikonal srf \\
\hline ad & A & aspheric & end & & end data \\
\hline ae & A & aspheric & epxy & & ray aiming \\
\hline af & A & aspheric & esd & E & eikonal del \\
\hline afo & & afocal mode & fno & & F number \\
\hline ag & A & aspheric & frn & F & Fresnel \\
\hline air & & medium & gC & C & global coord \\
\hline al & S & aplanatic slv & gcs & C & glob ref srf \\
\hline alc & S & aplanatic slv & gdt & G & gradient index \\
\hline amo & & abn mode & gih & & image height \\
\hline ang & & field angle & gla & & medium \\
\hline ap & & aperture & gor & D & grating order \\
\hline apck & & ap checking & grd & G & gradium \\
\hline apn & X & special ap & grp & & group \\
\hline ary & F & lens array & gsp & D & grating spc \\
\hline as0, as1, etc. & A & aspheric & hor & D & hologram order \\
\hline asi & F & alt srf intersec & idd & Z & zernike \\
\hline ast & A & aperture stop & ims & & image srf \\
\hline asp & A & aspheric & ins & & srf insert \\
\hline ben & C & tilt \& bend & itf & 1 & interferogram \\
\hline bry & & birefringent & inv & & srf invert \\
\hline cak & B & crystal axis & jsd & Z & polarisation \\
\hline cal & B & crystal axis & kco & D & kinoform order \\
\hline cam & B & crystal axis & kdp & D & kinoform depth \\
\hline cc & A & conic const & Idp & F & srf dwg pen \\
\hline cfg & & oonfiguration & len & & begin data \\
\hline cns & A & cone & lid & & lens identifier \\
\hline csd & & slv delete & Ime & & module end \\
\hline csiv & & slv in alt cfgs & Imo & & module begin \\
\hline ctf & T & test glass cv & Ise & & spreadsheet \\
\hline CV & & curvature & mco & M & coating \\
\hline CVX & A & toric & mer & & insert lens \\
\hline dcx & C & decentre & & & insert catalog \\
\hline dcy & C & decentre & merge_catalog & & lens \\
\hline dcz & C & decentre & & Q & non-sequential obj space NA \\
\hline del & & srf delete & nao & &  \\
\hline des & & desgr name & nap & N & im space NA \\
\hline dlid,dlfd,dlha,dlva, dlfs,dlls,dlap,dlrs, dlnr etc & & lens and ray drawing control & not nxt & N & next srf object height \\
\hline doe & D & diffractive & opdw & & OPD in waves \\
\hline drw & & srf drawing & pfl & L & perfect lens \\
\hline ebr & & ent beam rad & pfm & L & perfect lens \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline pi & S & marg ray solve & ww1... & & spectral wts \\
\hline pic & S & chief ray solve & zoe & A & Zernike \\
\hline pk & P & pickup & zrr & A & Zernike \\
\hline pre & & sys pressure & zrx & A & Zernike \\
\hline pu & S & cv solve & zrxr & A & Zernike axis \\
\hline puc & S & cv solve & & & \\
\hline puk & S & ax ray ang & & & \\
\hline py & S & th solve & & & \\
\hline pyc & S & th solve polarization ray & & & \\
\hline pzrt & & trace & & & \\
\hline raim & & ray aiming & & & \\
\hline rco & C & coord return & & & \\
\hline rd & & radius & & & \\
\hline rdt & T & test glass rd & & & \\
\hline rev & & srf reverse & & & \\
\hline rfh & & refl \& hatch & & & \\
\hline rfl & & reflection & & & \\
\hline rfs & R & ref srf & & & \\
\hline rod & F & extrude & & & \\
\hline rtf & T & testglass fit & & & \\
\hline sasd & & astig distance & & & \\
\hline scf & & setup cfg & & & \\
\hline scl & & scale srfs & & & \\
\hline sdad & & ap divisions & & & \\
\hline sdaz & & apodisation & & & \\
\hline & & diffraction & & & \\
\hline sdde & & efficiency & & & \\
\hline sdis & & im space spd & & & \\
\hline skp & F & skip & & & \\
\hline sle & & scale lens & & & \\
\hline sno1, sno2, etc... & & system notes & & & \\
\hline spl & S & spline & & & \\
\hline & F & thermal expans & & & \\
\hline tce & & coefficient & & & \\
\hline tem & & sys temp & & & \\
\hline th & & thickness & & & \\
\hline tir & F & tir srf & & & \\
\hline tla & C & tilt angle & & & \\
\hline tlb & C & tilt angle & & & \\
\hline tlc & C & tilt angle & & & \\
\hline tox & C & tilt offset & & & \\
\hline toy & C & tilt offset & & & \\
\hline toz & C & tilt offset & & & \\
\hline ucp & P & user pickup & & & \\
\hline ung & & ungroup & & & \\
\hline uni & & units & & & \\
\hline usd & U & user sag & & & \\
\hline usr & U & user trace & & & \\
\hline utp & P & user pickup & & & \\
\hline wod & G & Wood lens & & & \\
\hline wrsp & & ref sph posn & & & \\
\hline wv1... & & wavelengths & & & \\
\hline
\end{tabular}

In this table, S refers to solves, C refers to tilt/decenter coordinates, and A refers to aspheric surfaces. Other letters are the flags used in the spreadsheet. A complete listing of the lens data commands is in the OSLO Program Reference. These commands may be used:
1. In the command window, explicitly, as part of an update process:
len upd
gto 2
nxt
th 1.0
end
Note the use of \(\mathbf{g t 0}\), \(\mathbf{n x t}\), end. A semicolon has the same effect as nxt.
2. As part of a CCL command:
\{
len upd;
gto(3);
th(1.0);
end;
\}
Note the semicolons at the end of each line.
3. In the command window, as a self-contained command:
th 31.0
This is called "global editing"
4. As part of a lens file:

NXT //SRF 3
TH 1.0
5. Implicitly, when the spreadsheet is updated, as shown here.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Lens: DEMO TRIPLET} & zoom & of 1 Efl & 50.000541 \\
\hline Ent beam radius & 6.250000 Field & le 20.000000 & Primary wav1n & 0.587560 \\
\hline SRF RADIUS & THICKNESS & APERTURE RADIUS & GLASS & SPECIAL \\
\hline OBJ 0.000000 & \(1.0000 \mathrm{e}+20\) & \(3.6397 \mathrm{e}+19\) & AIR & \\
\hline 21.250000 & 2.000000 & 6.500000 & SK16 & \\
\hline 2 -158.650000 & 6.000000 & 6.500000 & AIR & \\
\hline 3 -20.250000 & 1.000000 & 5.000000 & F4 & \\
\hline AST 19.300000 & 6.000000 & 5.000000 & AIR & \\
\hline 5141.250000 & 2.000000 & 6.500000 & SK16 C & \\
\hline
\end{tabular}

\section*{Appendix 2 －Graphics reference}

\section*{Alphabetical index}

\section*{KEY TO COMMAND REFERENCE（in order of preference）}

Standard tools
Advanced Analysis
Tools＞Special
grindex

Accessed via graphics window toolbar using the icon shown Accessed via main window toolbar using the icon shown Accessed via main window menu headers

CCL command accessed via the command line
\begin{tabular}{|c|c|c|c|c|}
\hline Function & Command Reference & Icon & \[
\begin{aligned}
& \text { OSLO } \\
& \text { version }
\end{aligned}
\] & Grid \\
\hline 2D－waveguide coupling & Tools \(>\) Special \(>2 D\) & － & \(\mathrm{Prm}_{\text {rm }}\) & e10 \\
\hline Astigmatism－S \＆T over field & Evaluate＞Ray Fans & － & All & d11 \\
\hline Axial chromatic focal shift & Ray Analysis & 120 & All & h2 \\
\hline CCL example－ 4 graphs & Tools＞Plotting & － & All & h9 \\
\hline CCL example－contour & Tools＞Plotting & － & All & b10 \\
\hline CCL example－map & Tools＞Plotting & － & All & c10 \\
\hline CCL example－pen colours & Tools＞Plotting & － & All & d10 \\
\hline CCL example－XY graph & Tools＞Plotting & － & All & d10 \\
\hline Distortion grid plot & Ray Analysis & 回 & All & b3 \\
\hline Distortion at all wavelengths & Evaluate＞Ray Fans & － & All & e11 \\
\hline Doublet－slider－wheel design & Tools＞Demos & － & All & h1－ \\
\hline Draw system 2D & Lens Drawing & 顛 & All & a1 \\
\hline Draw system 2D & Standard tools & 栕 & All & a1 \\
\hline Draw system 3D shaded solid & Lens Drawing & 3 & All & d1 \\
\hline Draw system 3D solid & Lens Drawing & 需 & All & c1 \\
\hline Draw system 3D variable view & Lens Drawing & 65 & All & e1 \\
\hline Draw system 3D wire－frame & Lens Drawing & 今 & All & b1 \\
\hline Draw system 3D wire－frame & Standard tools & 3 & All & b1 \\
\hline Draw system－conditions & Lens Drawing & 三o & All & －－ \\
\hline Draw system－zoom lens & Lens Drawing & 需 & \(\mathrm{P}_{\mathrm{rm}}\) & h1 \\
\hline Element drawing & Lens Drawing & 67 & All & a2 \\
\hline Encircled energy－diffraction & Energy & 0 & All & b7 \\
\hline Encircled energy－geometrical & Energy & （） & All & e7 \\
\hline Ensquared energy－diffraction & Energy & \(\square\) & All & c7 \\
\hline Ensquared energy－geometrical & Energy & \(\square\) & All & f7 \\
\hline Extended source image & Extended Source & 0 & All & e9 \\
\hline Footprint－one field point & Spot Diagram & 8 & All & e4 \\
\hline Footprint profile－all field points & Spot Diagram & \(0^{3}\) & All & f4 \\
\hline Gaussian beam movie & Tools＞Demos & － & All & g10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Ghost image movie & Spot Diagram & \(\cdots\) & \(\mathrm{P}_{\mathrm{rm}}\) & g4 \\
\hline Glass catalogue n－V map & Lens＞Glass Catalog & － & All & a9 \\
\hline GRIN lens－slider－wheel design & Tools＞Demos & － & \(\mathrm{P}_{\mathrm{rm}}\) & b11 \\
\hline GRIN axial index & grindex & － & All & － \\
\hline Internal transmittance of glass & internal＿trans & － & All & － \\
\hline Incidence angle statistics & iangstat & － & All & h11 \\
\hline Lateral chromatic aberration & Ray analysis & 10 & All & a3 \\
\hline Lateral colour（pri \＆sec） & Evaluate＞Ray Fans & － & All & － \\
\hline Longitudinal aberration & Evaluate＞Ray Fans & － & All & c11 \\
\hline LSF／KED－diffraction calc & Energy & I & All & d7 \\
\hline LSF／KED－geometrical calc & Energy & 1 & All & g7 \\
\hline MTF over field－ 3 frequencies & MTF & \(\pm\) & All & d6 \\
\hline MTF－one field point & MTF & \(\triangle\) & All & a6 \\
\hline MTF square wave－ 1 field point & MTF & \(\square\) & All & e6 \\
\hline MTF－thru frequency report & MTF & IIII & All & h5 \\
\hline MTF－thru frequency report & Standard tools & IIII & All & h5 \\
\hline MTF and spot size thru focus & MTF & & All & f6 \\
\hline MTF FFT one field point & MTF & \({ }^{\text {＂m }}\) & \(\mathrm{Prm}_{\text {m }}\) & b6 \\
\hline MTF thru focus－one field point & MTF & \(\square\) & All & h6 \\
\hline MTF thru focus across field & MTF & \(\square\) & All & a7 \\
\hline MTF thru focus report & MTF & ＋＊ & All & g6 \\
\hline MTF thru focus report & Standard tools & ＋＊ & All & g6 \\
\hline OPD－2D field points & Ray Analysis & \(\stackrel{4}{4}\) & \(\mathrm{P}_{\mathrm{rm}}\) & g2 \\
\hline OPD－one field point & Ray Analysis & －1－ & All & f2 \\
\hline OPD contour－one field point & Wavefront & \(\cdots\) & All & f3 \\
\hline OPD interferogram & Wavefront & \({ }^{61}\) & All & g3 \\
\hline OPD map－2D field points & Wavefront & 三20］ & \(\mathrm{Prm}_{\text {r }}\) & d3 \\
\hline OPD map－one field point & Wavefront & & All & e3 \\
\hline OPD map／contour report & Wavefront & EE & All & c3 \\
\hline OPD map／contour report & Standard tools & E\＃ & All & c3 \\
\hline OPD report & Ray Analysis & ＋ & All & e2 \\
\hline Optimization ray set & Spot Diagram & （ & \(\mathrm{Prm}_{\text {m }}\) & h4 \\
\hline Partial coherence－bar image & Advanced Analysis & 7 & All & g9 \\
\hline Photometric plot & ridemo & － & All & f11 \\
\hline Pixellated image & Extended Sources & & All & f9 \\
\hline Polarisation map & Polarization & \％8 & \(\mathrm{P}_{\mathrm{rm}}\) & b8 \\
\hline PSF－2D contour lines & Evaluate＞Spread fn & － & \(\mathrm{Prm}_{\text {r }}\) & b9 \\
\hline PSF－2D field points & PSF & \(\stackrel{\text { cle }}{ }\) & \(\mathrm{Prm}_{\text {r }}\) & b5 \\
\hline PSF－contour & PSF & 离官 & All & c5 \\
\hline PSF－FFT－contour & PSF & 产 & All & e5 \\
\hline PSF－FFT－one field point & PSF & －\({ }^{\text {¢ }}\) & All & f5 \\
\hline PSF－one field point & PSF & － & All & d5 \\
\hline
\end{tabular}

Appendix 2
\begin{tabular}{|c|c|c|c|c|}
\hline PSF－section & PSF & 回 & All & g5 \\
\hline PSF report & PSF & 0 & All & a5 \\
\hline PSF report & Standard tools & 0 & All & a5 \\
\hline PTF－thru frequency & MTF & 会 & All & c6 \\
\hline Public lens database & File＞Lens Database & － & All & h8 \\
\hline Ray analysis－2D field points & Ray Analysis & \({ }_{-20}\) & \(\mathrm{Prm}_{\text {r }}\) & d2 \\
\hline Ray analysis－one field point & Ray Analysis & 71. & All & c2 \\
\hline Ray analysis report & Ray Analysis & ） & All & b2 \\
\hline Ray analysis report & Standard tools & － & All & b2 \\
\hline Ray analysis SIGMA format & repsig & － & All & g11 \\
\hline Ray bundles 2D & Lens Drawing & 詺 & All & f1 \\
\hline Ray bundles 3D & Lens Drawing & 8 & All & g1 \\
\hline Ray bundles movie & fieldscan & － & \(\mathrm{Prm}^{\text {r }}\) & h1 \\
\hline RMS spot size \＆RMS OPD & Spot Diagram & L & All & d4 \\
\hline Seidel aberration demo & Tools＞Demos＞Seidel & － & All & f10 \\
\hline Slider－wheel design & Standard Tools & \(\stackrel{\oplus}{ \pm}\) & All & c9 \\
\hline Spot diagram－2D field points & Spot Diagram & 30 & \(\mathrm{Prm}_{\text {m }}\) & a4 \\
\hline Spot diagram－one field point & Spot Diagram & & All & b4 \\
\hline Spot diagram－recipolar & Spot Diagram & ， & All & c4 \\
\hline Spot diagram report & Spot Diagram & \％ & All & h3 \\
\hline Spot diagram report & Standard tools & \％ & All & h3 \\
\hline Surface reflected phase & Polarization & 핚 & \(\mathrm{Prm}_{\text {rm }}\) & f8 \\
\hline Surface reflectivity & Polarization & 란 & \(\mathrm{Prm}_{\text {m }}\) & d8 \\
\hline Surface transmission & Polarization & \(\Rightarrow\) & \(\mathrm{Prm}_{\text {r }}\) & e8 \\
\hline Surface transmitted phase & Polarization & \(\rightarrow 1\) & \(\mathrm{Prm}_{\text {m }}\) & g8 \\
\hline Thin film uniformity & Polarization & － & \(\mathrm{P}_{\mathrm{rm}}\) & c8 \\
\hline Tolerances－Monte Carlo & Tolerances & 51 & \(\mathrm{Prm}_{\text {rm }}\) & －－ \\
\hline Triplet－slider－wheel design & Tools＞Demos＞Triplet & － & All & a11 \\
\hline y －ybar diagram & Optimize＞Support & － & All & d9 \\
\hline Zoom lens drawing & Lens Drawing & \(\frac{17}{61}\) & \(\mathrm{Prm}_{\text {rm }}\) & h1 \\
\hline Zoom lens drawing & Zoom & \(\frac{\text { \％1 }}{67}\) & \(\mathrm{Prm}_{\text {rm }}\) & h1 \\
\hline Zoom lens report & Zoom & 敦 & \(\mathrm{Prm}_{\text {r }}\) & a8 \\
\hline
\end{tabular}

Tabular graphics command reference
See below．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
drl;ddr \\
Standard Tools \\
Lens Drawing Lens>Lens Drawing
\end{tabular} & drl wir;ddr Standard Tools Lens Drawing Lens>Lens Drawing & drl sol;ddr Standard Tools Lens Drawing Lens>Lens Drawing & drl shs;ddr Standard Tools Lens Drawing Lens>Lens Drawing & \begin{tabular}{l}
drlrot sol \\
Lens Drawing
\end{tabular} & \[
\begin{gathered}
\text { lensdraw } 32 \\
\text { plan } 1.0 \\
\text { Lens Drawing } \\
\text { Tools>Demos>Rays }
\end{gathered}
\] & lensdraw 32 oblique 1.0 Lens Drawing Tools>Demos>Rays & fieldscan & 1 \\
\hline dre
Lens Drawing
Lens Drawing & rpt_ric ray Standard Tools Ray Analysis Evaluate>Other Ray & \begin{tabular}{l}
plr \\
Ray Analysis Evaluate>Ray Fans
\end{tabular} & \begin{tabular}{l}
ric2d_ray \\
Ray Analysis Evaluate>Ray Fans
\end{tabular} & \begin{tabular}{l}
rpt_ric opd \\
Ray Analysis \\
Evaluate>Other Ray
\end{tabular} & \begin{tabular}{l}
plo \\
Ray Analysis Evaluate>Ray Fans
\end{tabular} & \begin{tabular}{l}
ric2d opd \\
Ray Analysis Evaluate \(>\) Ray Fans
\end{tabular} & chrshft
\begin{tabular}{c} 
Ray Analysis \\
Evaluate>Other Ray
\end{tabular} & 2 \\
\hline \begin{tabular}{l}
latshft \\
Ray Analysis \\
Evaluate>Other Ray
\end{tabular} & distplt
\begin{tabular}{c} 
Ray Analysis \\
Evaluate>Other Ray
\end{tabular} & \begin{tabular}{l}
rpt_wvf \\
Standard Tools Wavefront Evaluate>Wavefront
\end{tabular} & pWf2D
\begin{tabular}{c} 
Wavefront \\
Evaluate>Wavefront
\end{tabular} & pwf map
\begin{tabular}{c} 
Wavefront \\
Evaluate>Wavefront
\end{tabular} & pwf con
\begin{tabular}{c} 
Wavefront \\
Evaluate>Wavefront
\end{tabular} & pwf int
\begin{tabular}{c} 
Wavefront \\
Evaluate>Wavefront
\end{tabular} & rpt_spd Standard Tools Spot Diagram Evaluate>Spot Diag & 3 \\
\hline \begin{tabular}{l}
spd2d \\
Spot Diagram Evaluate>Spot Diag
\end{tabular} & \begin{tabular}{l}
pls \\
Spot Diagram Evaluate>Spot Diag
\end{tabular} & \begin{tabular}{l}
recipolar \\
Spot Diagram \\
Evaluate>Spot Diag
\end{tabular} & \begin{tabular}{l}
spsopd \\
Spot Diagram \\
Evaluate>Spot Diag
\end{tabular} & \begin{tabular}{l}
footprt \\
Spot Diagram Optimize>Support
\end{tabular} & \begin{tabular}{l}
footpro \\
Spot Diagram Optimize>Support
\end{tabular} & \begin{tabular}{l}
ghosts mov \\
Spot Diagram Optimize>Support
\end{tabular} & \begin{tabular}{l}
grst \\
Spot Diagram Lens>Show Optim
\end{tabular} & 4 \\
\hline \begin{tabular}{l}
rpt_psf \\
Standard Tools PSF \\
Evaluate>Spread Fn
\end{tabular} &  & sprd con
0.1 dir
PSF
Evaluate>Spread Fn & sprd map
0.1 dir
PSF
Evaluate>Spread Fn & \begin{tabular}{l}
sprd con 0.1 fft PSF \\
Evaluate>Spread Fn
\end{tabular} & sprd map
0.1 fft
PSE
Evaluate>Spread Fn & \begin{tabular}{l}
pss chr
\(\square\) \\
Evaluate>Spread Fn
\end{tabular} & \begin{tabular}{l}
rpt_tfr \\
Standard Tools MTF \\
Evaluate>TransferFn
\end{tabular} & 5 \\
\hline \begin{tabular}{l}
plm tfr \\
MTE \\
Evaluate>TransferFn
\end{tabular} & \begin{tabular}{l}
fftmtf MTE \\
Evaluate>TransferFn
\end{tabular} & \begin{tabular}{l}
mtfandptf \\
MTF \\
Evaluate>TransferFn
\end{tabular} & \begin{tabular}{l}
mtf_fld \\
Evaluate>TransferFn
\end{tabular} & \begin{tabular}{l}
squaremtf \\
MTE \\
Evaluate>TransferFn
\end{tabular} & \begin{tabular}{l}
sl_otfspd \\
MTE
\end{tabular} & rpt_tfo
Standard Tools
MTE
Evaluate>TransferFn & \begin{tabular}{l}
plm tfo \\
MTE \\
Evaluate>TransferFn
\end{tabular} & 6 \\
\hline fcurv
MTTE
Evaluate>TransferFn & \begin{tabular}{l}
prq chr \\
Energy Analysis Evaluate>Energy Dis
\end{tabular} & \begin{tabular}{l}
psq chr \\
Energy Analysis \\
Evaluate>Energy Dis
\end{tabular} & \begin{tabular}{l}
pdl bth \\
Energy Analysis Evaluate>Energy Dis
\end{tabular} & \begin{tabular}{l}
ple geo \\
Energy Analysis \\
Evaluate>Energy Dis
\end{tabular} & ped
Energy Analysis
Evaluate>Energy Dis & pgl bth
\begin{tabular}{c} 
Energy Analysis \\
Evaluate>Energy Dis
\end{tabular} & \begin{tabular}{l}
zdrl \\
Zoom \\
Lens>Lens Drawing
\end{tabular} & 7 \\
\hline \begin{tabular}{l}
zrpt \\
Zoom
\end{tabular} & \begin{tabular}{l}
polstate \\
Polarization \\
Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
thunf \\
Polarization Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
surfprop rfl \\
Polarization \\
Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
surfprop tns \\
Polarization \\
Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
surfprop phr \\
Polarization \\
Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
surfprop pht \\
Polarization \\
Evaluate>Pol
\end{tabular} & \begin{tabular}{l}
dblib_open \\
File>Lens Database
\end{tabular} & 8 \\
\hline \[
\begin{gathered}
\text { open cdb pub } \\
\text { "." } \\
\text { "glass_..cdb"; } \\
\text { Lens>Glass Catalogs }
\end{gathered}
\] & \begin{tabular}{l}
pgq chr 64; sfg xy chr \\
Evaluate>Spread Fn
\end{tabular} & \begin{tabular}{l}
sliderwheel _design \\
Optimize>SliderW
\end{tabular} & \begin{tabular}{l}
yybar \\
Optimize>Support
\end{tabular} & \begin{tabular}{l}
source \\
ExtendedSources Source>View extnd
\end{tabular} & xsource "3barh.ima" ExtendedSources Source>Pixellated & \begin{tabular}{l}
ppi mon \\
AdvancedAnalysis Source>Partial Coh.
\end{tabular} & \begin{tabular}{l}
gplot_kit _sample \\
Tools>Plotting TKit
\end{tabular} & 9 \\
\hline gplot_sample Tools> Plotting Toolkit & gplot2d
-sample
Tools>Plotting TKit & \begin{tabular}{l}
fill_contour \\
sample \\
Tools>Plotting TKit
\end{tabular} & \[
\begin{gathered}
\text { Colors } \\
\text { Tools> } \\
\text { Plotting Toolkit }
\end{gathered}
\] & wVra Tools>Special>2D waveguide & Sl_3rd
Tools>Demos>Seidel & \begin{tabular}{l}
show_movie gbmovie fab \\
Tools>Demos>Gauss
\end{tabular} & sl_doublet
Tools>Demos>Doub & 10 \\
\hline \[
\begin{gathered}
\hline \text { sl_trp } \\
\text { Tools>Demos>Triplet } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
gradium demo \\
Tools>Demos>Grad
\end{tabular} & \begin{tabular}{l}
pla chr \\
Evaluate>Ray Fans
\end{tabular} & \begin{tabular}{l}
plf chr \\
Evaluate>Ray Fans
\end{tabular} & \begin{tabular}{l}
pld chr \\
Evaluate>Ray Fans
\end{tabular} & ridemo & repsig & iangstat & 11 \\
\hline a & b & C & d & e & f & g & h & \\
\hline
\end{tabular}

\section*{Tabular graphics index}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { Draw system 2D } \\
\text { YZ } \\
\hline
\end{gathered}
\] & Draw system 3D wire-frame & Draw system 3D solid & Draw system 3D shaded solid & Draw system variable view & Ray fans 2D for vignetting & Ray fans 3D for vignetting & Ray fans movi \\
\hline Element drawing
\[
\text { ISO } 10110
\] & Ray analysis report & Ray analysis - one field point* & Ray analysis 2D field points & OPD report & \begin{tabular}{l}
OPD - \\
1 field point*
\end{tabular} & \begin{tabular}{l}
OPD \\
2D field points
\end{tabular} & Axial chromati focal shift \\
\hline Lateral chromatic aberration & Distortion grid plot & OPD map/contour rpt & \[
\begin{aligned}
& \hline \text { OPD map - 2D } \\
& \text { field points } \\
& \hline
\end{aligned}
\] & OPD map-1 field point* & \[
\begin{aligned}
& \text { OPD contour - } 1 \\
& \text { field point* } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
OPD \\
interferogram
\end{tabular} & Spot diagram report \\
\hline Spot diagram 2D field points & Spot diagram 1 field point* & Spot diagram recipolar & RMS spot size \& OPD over field & Footprint of beam 1 field point & Footprint profiles all field points & Ghost image movie & Optimisation r patterns \\
\hline Point spread function report & \begin{tabular}{l}
PSF - \\
2D field points
\end{tabular} & PSF - contour & PSF map - one field point & PSF contour (FFT calc)r & PSF map (FFT calc) & \[
\begin{gathered}
\hline \text { PSF } \\
\text { section }
\end{gathered}
\] & \begin{tabular}{l}
MTF \\
thru frequenc
\end{tabular} \\
\hline MTF - 1 field point* & MTF 1 field point (FFT calc)* & Phase - thru frequency* & MTF over field - 3 frequencies & MTF - square wave 1 field pt* & MTF \& spot size through focus & MTF through focus report & MTF through fo 1 field pt* \\
\hline MTF thru focus across field & \begin{tabular}{l}
Encircled energy \\
(diffraction calc)
\end{tabular} & Ensquared en. (diffraction calc) & \begin{tabular}{l}
LSF \& KED \\
(diffraction calc)
\end{tabular} & Encircled energy (geometrical calc) & Ensquared en. (geometrical calc) & LSF \& KED (geometrical calc) & Zoom lens drawi \\
\hline Zoom lens report & Polarisation map & Thin film uniformity & Surface reflectivity & Surface
transmission & Surface reflected phase & Surface
transmitted phase & Public lens database \\
\hline Glass catalogue -n-V map & PSF
2D contour lines & Slider wheel design & y-ybar diagram & Extended source image & Pixellated image & Partial coherence bar image & CCL example 4 graphs \\
\hline CCL example XY graph & CCL example contour & CCL example map & CCL example pen colours & 2D-waveguide coupling & Seidel aberration demo & Gaussian beam movie & Doublet slide wheel design \\
\hline Triplet slider wheel design & GRIN lens slider wheel design & Longitudinal aberration & Astigmatism - S \& T over field & Distortion at 3 wavelengths & Photometric plot & Ray analysis SIGMA format & Incidence angl statistics \\
\hline a & b & C & d & e & f & g & h \\
\hline
\end{tabular}

The 88 examples of OSLO graphics shown in the table below represent almost the full range of graphics output available to users of OSLO Premium version. Brief descriptions of each graphic example are given above. The routes for accessing these graphics are listed in the tabular command reference with the following format:

OSLO commands facility.

\section*{Star}

ExtendedSource
Evaluate>Spread Fn

These are given in short form only. They can be typed as shown, and they are also useful as an index to the HELP
These refer to the groups of icons called up from the top left corner of any graphics window These refer to the groups of icons called up from the top left corner of the main window. These show how most of the graphs can be created from menu headers.
* Graphs indicated are for one field point only, and they can give results only on axis if accessed via the icons. To plot individual graphs for other field points, either issue the set object point command and then use the command line (for example sop \(100 ;\) plr), or work through the menu headers.

Graphics reference examples
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  & 1 \\
\hline  &  &  &  &  &  &  &  & 2 \\
\hline  &  &  &  &  &  &  &  & 3 \\
\hline  &  &  &  &  &  &  &  & 4 \\
\hline  &  &  &  &  &  &  &  & 5 \\
\hline  &  &  &  &  &  &  & s & 6 \\
\hline  &  &  &  &  &  &  &  & 7 \\
\hline  &  & \(\square\) &  &  &  & \(\square\) &  & 8 \\
\hline
\end{tabular}
```

