

Accurate LED Source Modeling using TracePro

Presented by :

Lambda Research Corporation – USA and Qioptiq - Germany

Presenter:

Dave Jacobsen Senior Application Engineer Lambda Research Corporation

Trace Pro

Outline

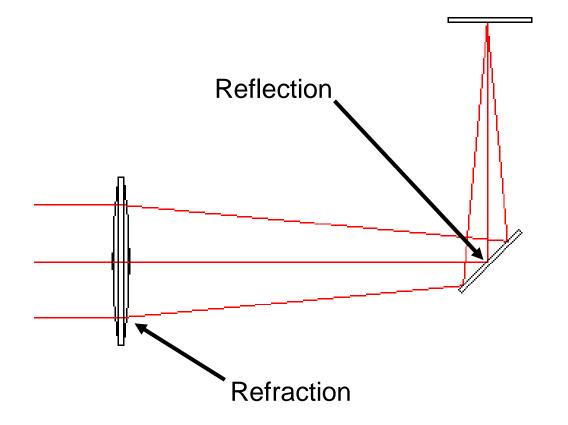
- Introduction to Raytracing
- •Requirements for Accurate Models
- •Types of Source Models
- Choosing the Right Source Model
- Measured vs. Modeled Results
- •Questions and Answers

Introduction to Raytracing

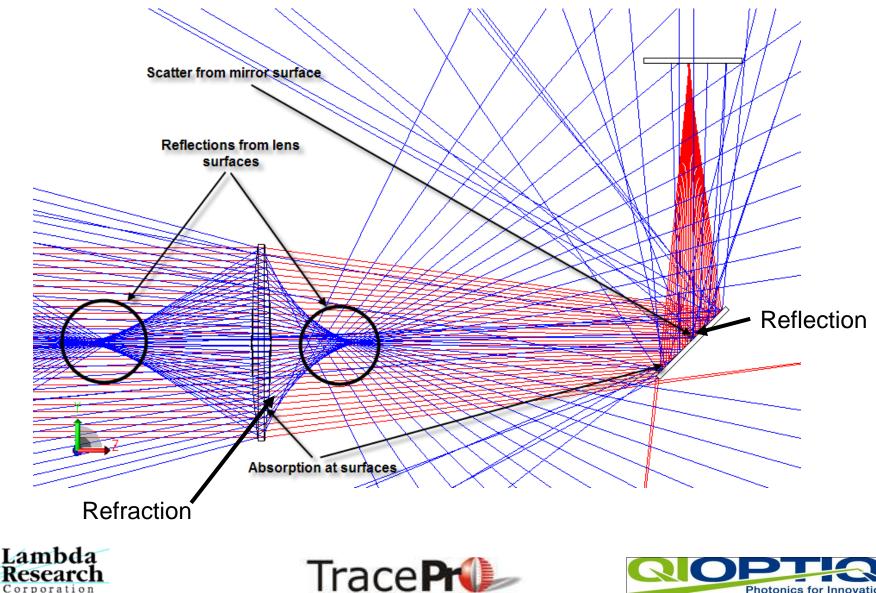
Raytracing

•Raytracing is calculating the path a light ray will take through an optical system. This can take into account absorption, reflection, transmission, scattering, fluorescence, diffraction, etc...

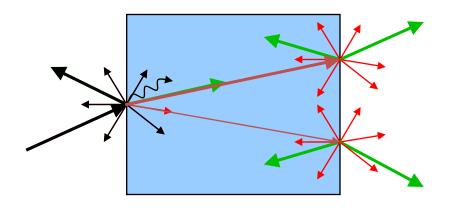
•In most cases a large number of rays, millions or more, will need to be traced to get the most accurate answer.


•Computer programs such as TracePro can simplify this task.

A Simple Raytrace Example



A More Complete Raytrace Example



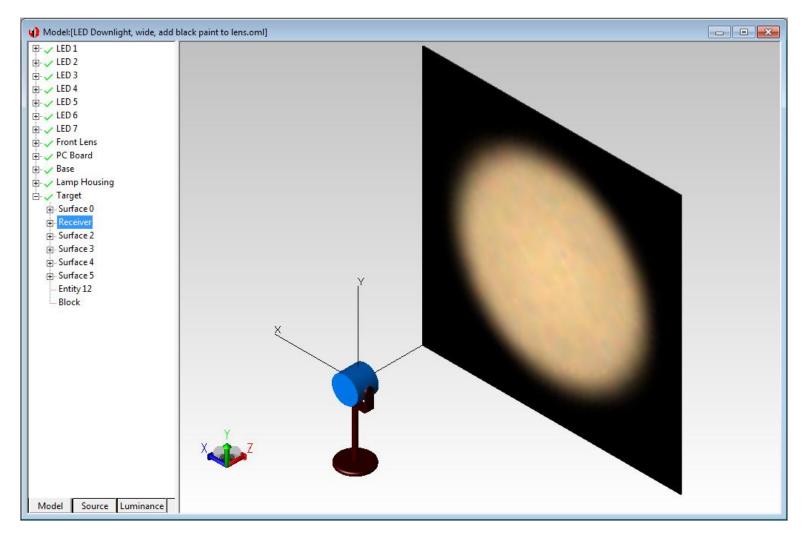
Photonics for Innovation

Optical Analysis

5 things can happen to light when it hits a surface...

- Refract
- Reflect
- Absorb
- Forward Scatter
- Backward Scatter

And it happens at each surface... (not to mention volume effects)


All of these items can vary as a function of temperature, wavelength, and incident angle

Optical Analysis

Requirements for Accurate Models

Accurate Models Require:

Accurate Geometry

•Create in TracePro

•Import from CAD programs such as SolidWorks, Pro/ENGINEER, CATIA, Inventor, etc...

Accurate Properties

Surface – absorption, reflection, transmission, scattering
Material – index of refraction, absorption/extinction coefficients

•Bulk Scatter – anisotropy, scatter coefficient

•Fluorescence – excitation, absorption, and emission spectra,

concentration

Accurate Source Models

- •Spectrum
- •Beam pattern azimuth and polar
- Emission

Accurate LED Source Models

Point Sources

•Single point of light

Grid Sources

•Flat, 2-dimesional grid of points, annular or rectangular

Ray Files

•Source measured in goniophotomer. File contains X,Y,Z starting positions for rays, X,Y,Z direction vectors, and flux.

•Examples: opsira luca'rayset, LED manufacturer supplied data

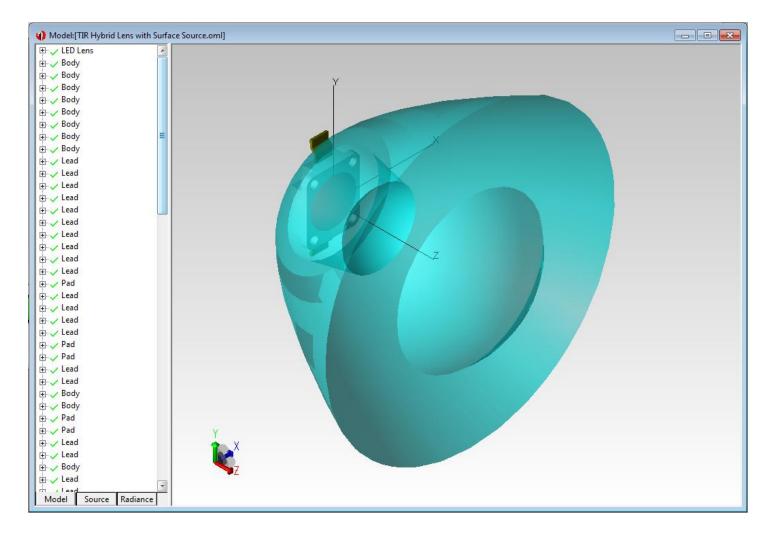
Accurate LED Source Models

Surface Source Properties

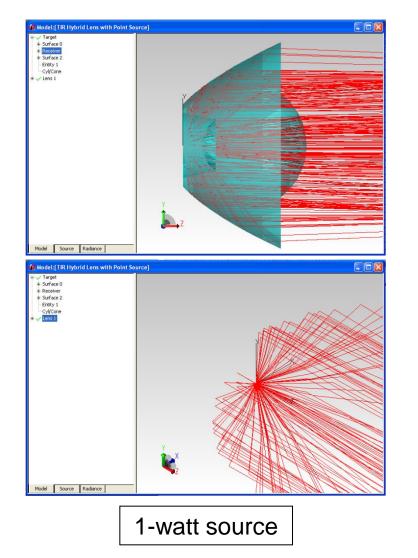
•Can be any surface in the model, 2 or 3 dimensional. Contains spectral and beam pattern data.

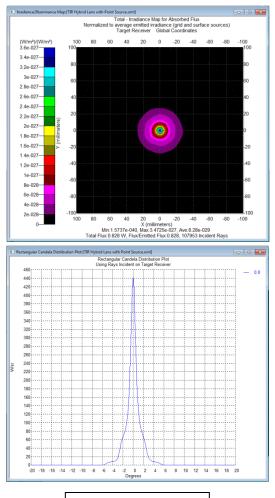
•3D Solid Models

•The 3D CAD model and the model properties determine the output of the LED.

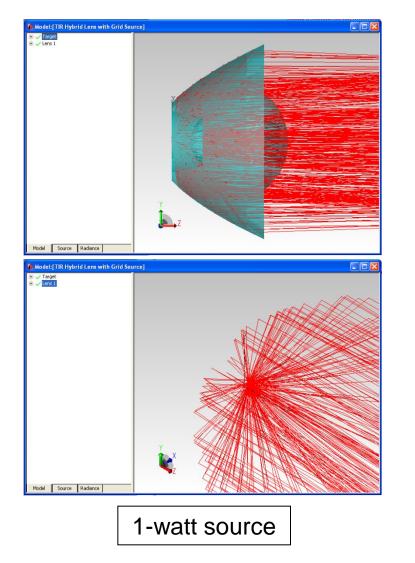

Types of Source Models

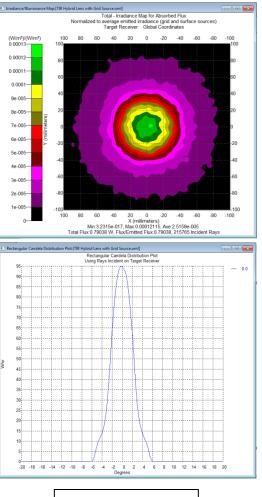
TIR Hybrid Lens



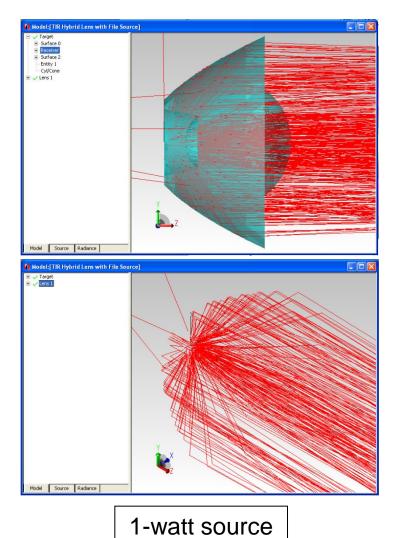


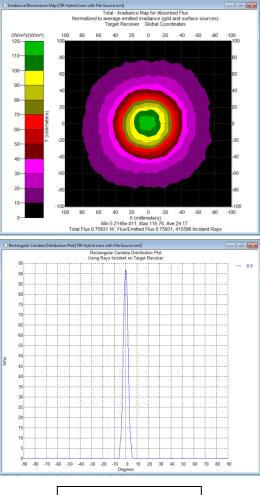
TIR Hybrid Lens with Point Source


440 W/sr



TIR Hybrid Lens with 1mm x1mm Grid Source


95 W/sr



TIR Hybrid Lens with Ray File Source

93 W/sr

Example of Ray File Data

!! Source file:	
TracePro Release: 6 0 2	
Data for Block 1 Surface 1	
Linear Units in mm	
Data generated at 15:51:06 January 20, 2010	
X Pos. Z Pos. X Vec. Y Vec. Z Vec.	Inc Flux
10.00000000000000000000000000000000000	9.164210624726462e-001
3.241904746004420e-002 0.000000000000000000000000000000000	9.164242320047675e-001
1.62095373002205e-002 2.8075738666896362e-002 4.9000000000000000000000000000000000000	9.164242320047675e-001
1.620952373002205E-002 2.807571866689163E-002 4.9000000000000000000000000000000000000	9.164242320047675e-001
-3,241904746004420e-002 1.158548475946197e-016 4.900000000000e+001 1.943468304810075e-002 0.000000000000000000000000000000000	9.164242320047675e-001
-1.62095373002/2015e-002 -2.807571866689174e-002 4.900000000000e+001 1.9717341524050387e-003 1.683092923415403e-002 9.998111287112282e-001	9.164242320047675e-001
1.620952373002205e-002 -2.807571866689163e-002 4.900000000000000e+001 -9.717341524050380e-003 1.683092923415404e-002 9.998111287112282e-001	9.164242320047675e-001
5.712924240950290e-002 0.000000000000000000000000000000000	9.164314560568593e-001
4.947537522558876e-002 2.856462120475134e-002 4.90000000000000e+001 -3.091041034426859e-002 -1.784613373302526e-002 9.993628280275048e-001	9.164314560568593e-001
2.856462120475156e-002 4.947537522558876e-002 4.9000000000000000000000000000000000000	9.164314560568593e-001
1.062959457824578e-016 5.712924240950290e-002 4.9000000000000000000000000000000000000	9.164314560568593e-001
-2.856462120475145e-002 4.947537522558876e-002 4.900000000000000e+001 1.784613373302525e-002 -3.091041034426859e-002 9.993628280275048e-001	9.164314560568593e-001
-4.947537522558876e-002 2.856462120475134e-002 4.90000000000000e+001 3.091041034426859e-002 -1.784613373302526e-002 9.993628280275048e-001	9.164314560568593e-001
-5.712924240950290e-002 2.125918915649157e-016 4.9000000000000e+001 3.569226746605052e-002 0.000000000000e+000 9.993628280275048e-001	9.164314560568593e-001
-4.947537522558876e-002 -2.856462120475134e-002 4.900000000000e+001 3.091041034426859e-002 1.784613373302525e-002 9.993628280275048e-001	9.164314560568593e-001
-2.856462120475134e-002 -4.947537522558876e-002 4.9000000000000e+001 1.784613373302528e-002 3.091041034426858e-002 9.993628280275048e-001	9.164314560568593e-001
-3.188878373473735e-016 -5.712924240950290e-002 4.900000000000e+001 0.00000000000e+000 3.569226746605052e-002 9.993628280275048e-001	9.164314560568593e-001
2.856462120475156e-002 -4.947537522558876e-002 4.900000000000e+001 -1.784613373302526e-002 3.091041034426859e-002 9.993628280275048e-001	9.164314560568593e-001
4.947537522558876e-002 -2.856462120475134e-002 4.900000000000e+001 -3.091041034426858e-002 1.784613373302528e-002 9.993628280275048e-001	9.164314560568593e-001
7.840016396490235e-002 0.0000000000000000e+000 4.90000000000e+001 -5.271353434212828e-002 0.0000000000000e+000 9.986096751469817e-001	9.164426412964354e-001
7.367205554622380e-002 2.681443531603167e-002 4.900000000000e+001 -4.953451923684252e-002 -1.802909057089728e-002 9.986096751469817e-001	9.164426412964354e-001
6.005800994492994e-002 5.039465399403187e-002 4.900000000000e+001 -4.038091005994879e-002 -3.388360673790594e-002 9.986096751469817e-001	9.164426412964354e-001
3.920008198245095e-002 6.789653365447013e-002 4.90000000000e+001 -2.635676717106415e-002 -4.565125986354653e-002 9.986096751469817e-001	9.164426412964354e-001
1.361404560129381e-002 7.720908931006365e-002 4.90000000000e+001 -9.153609176893731e-003 -5.191269730880322e-002 9.986096751469817e-001	9.164426412964354e-001
-1.361404560129376e-002 7.720908931006365e-002 4.90000000000e+001 9.153609176893725e-003 -5.191269730880322e-002 9.986096751469817e-001	9.164426412964354e-001
-3.920008198245095e-002 6.789653365447013e-002 4.9000000000000e+001 2.635676717106413e-002 -4.565125986354653e-002 9.986096751469817e-001	9.164426412964354e-001

•Can be 1 million+ lines long

•Text or Binary file format

Typically monochromatic only

TIR Hybrid Lens with Surface Source Property

W/m²

130-

120-

110-

100-

90-

80-

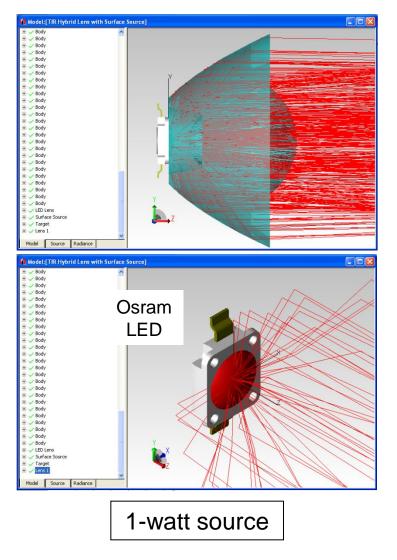
70—

60—

50-

40-

30-


20-

10

100

100 80

-90 -80 -70 -60 -50 -40 -30 -20

Total - Irradiance Map for Absorbed Flux Target Receiver Global Coordinates

0 40 20 0 -20 -40 X (millimeters) Min:3.7296e-011, Max:126.2, Ave:24.457

Total Flux:0.76835 W. Flux/Emitted Flux:0.76835, 209936 Incident Rays

0 -20 -40 -60 -80 -100

40 50 60 70 80 90

60 40

IR Hybrid Lens with Surface Source.oml Rectangular Candela Distribution Plot Using Rays Incident on Target Receive

-10 Degree

0 10 30

99 W/sr

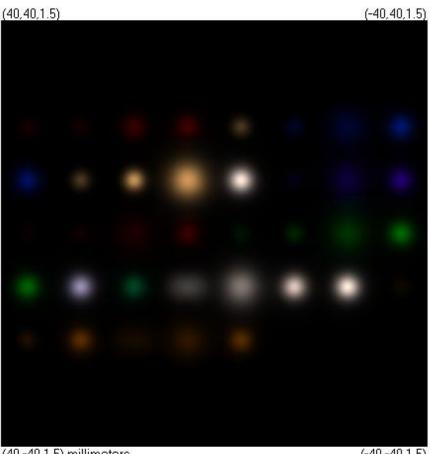
80 60 40 20 0 -20 -40 -60 -80 -100

Example of Surface Source Property Data

	TracePro Surfac File Name TracePro Releas	C:\Documents a a: 6 0 2			
	Database Versic Data generated		nuary 22, 2010		
Emission can vary as a function of: •Temperature •Wavelength •Polar Angle	Name PKI FX- Catalog Flashla Description User_Data Spectral Type Units 0 Quantity Emission Wavelength1 Wavelength1 Wavelength2 Angle1 90 Angle2 10				
 Azimuth Angle 	Temperature 300 300 300 300 300 300	Wavelength 0.204 0.204 0.204 0.204 0.204 0.204	PolarAngle 0 0 0 0	AzimuthAngle 0 20 40 60 80	Emissivity 0.1621716 0.1621716 0.1621716 0.1621716 0.1621716 0.1621716
Can be used to fully model the	300 300	0.204 0.204	0	100 120	0.1621716 0.1621716
spectrum of a source	300 300 300 300 300 300 300 300 300 300	0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	140 160 200 220 240 260 280 300 320 340 0 20 40 60	0.1621716 0.1621726

300

0.204



0.162176

80

2.045

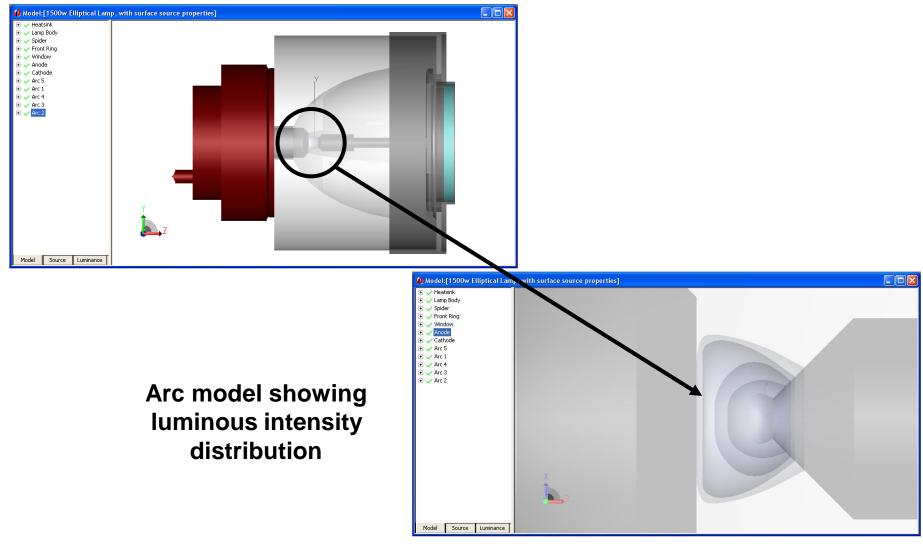
Example of Surface Source Property Results

Total - True Color Map for Absorbed Flux Target Receiver

(40,-40,1.5) millimeters

(-40, -40, 1.5)

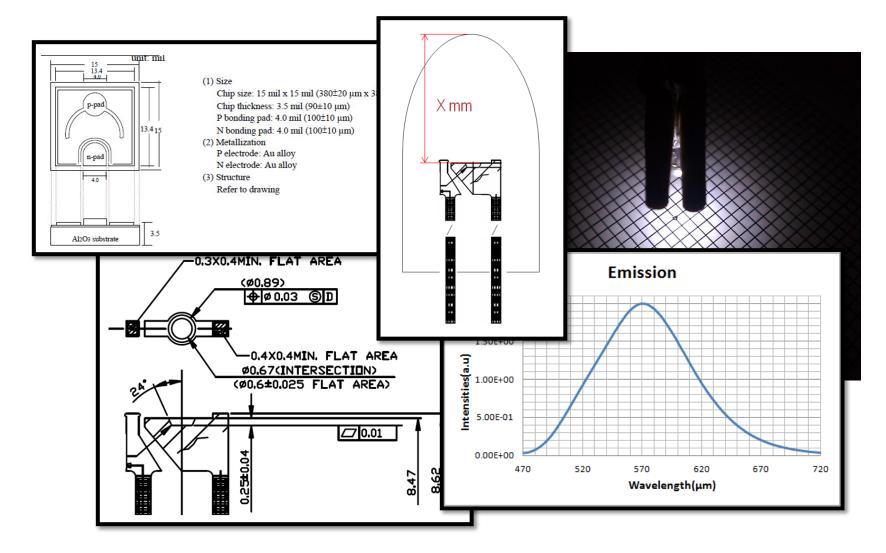
True Color Total Flux:0.66324 W 917561 Incident Rays

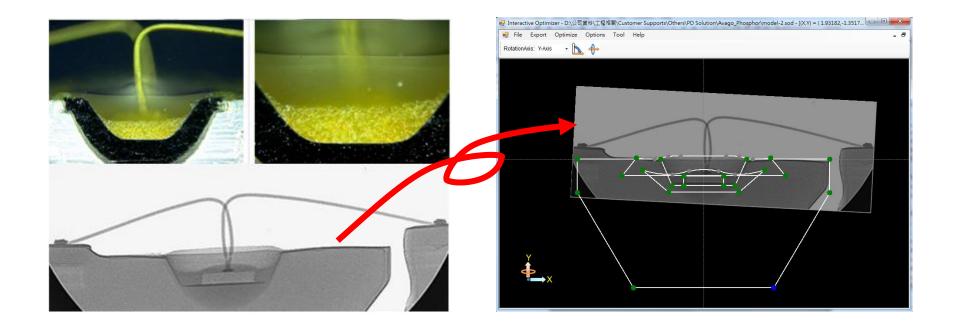


Osram Golden Dragon LEDs and the **TrueColor Irradiance Map in TracePro**

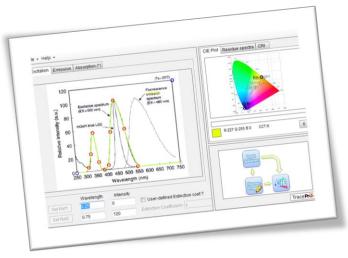
Another Surface Source Property Application

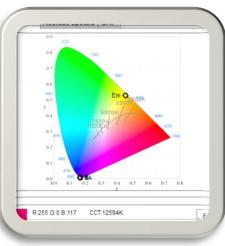
3D Solid Model of LED – Getting Started


- Physical information about LED model including the die and mount
- Optical properties such as surface properties, material properties, and flux
- Geometric shape of the optical components, such as the epoxy or secondary optics
- Specifications of phosphor material including excitation, absorption, and emission spectra
- Experimental/measured data for calibrations


3D Solid Model of LED – Getting Started

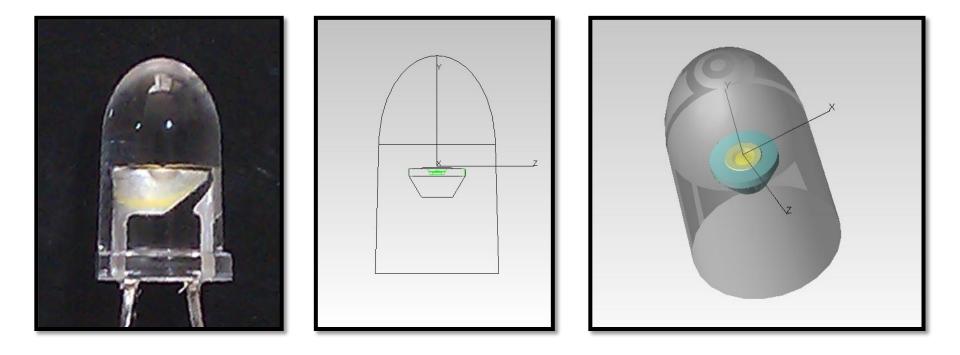
For a layered phosphor (sedimentation), we can use the side-view image to create the solid model in the TracePro Interactive Optimizer





TracePro Fluorescence Property Generator Utility

- Color analysis (CIE, CCT, CRI)
- Prediction of mixed color
- Estimation of the thickness and concentration of the phosphor layer


Residue flux: Concentration:	59 % 0.081147089 (mole)			
Thickness:	0.05	(cm)	Solve	
1 057			src	
0.900			residue	
0.800				
0.700				
0.600				
0.500				
0.400	٨			
0.300	11			
0.200	11	\wedge		
0 100	\mathcal{H}		_	
03500375	0.450	0.525 0.600 0.875 Wavelength (um)	0.750 0	
Residue: xy=(0.21,0.321) CC			

Light source Reference Color Temperature:	0	K
Evaluated CRI:	0	
Mixed color		
Reference Color Temperature:	5910	K
Evaluated CRI:	76.8	
	Calcu	late

Choosing the Right Source Model

Point Sources and Grid Sources

Best for:

•Planar sources that have a well defined boundary

- •Sources that emit in a Lambertian, Gaussian, or uniform manner
- Monochromatic and polychromatic sources

Considerations:

Not the best option for a 3-dimensional source
May not be able to model more complex angular distributions

Examples:

- •Fiber optics
- •Laser diodes

Ray File Sources

Best for:

Planar and 3-dimensional sources
Sources that emit in complex angular distribution patterns

Sources that can be modeled monochromatically

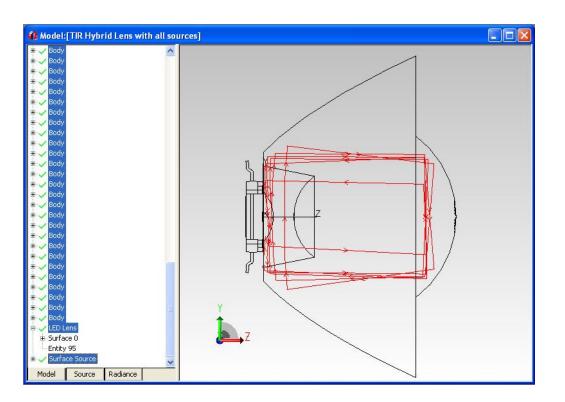
Sources that have lenses and structural elements

Considerations:

Defined monochromatically

•Not a good choice if emitted light will interact with source

Examples:


- •LEDs
- Luminaires

Ray File Sources

Small percentage of rays shown

•Some of the light emitted by the LED is totally internally reflected by the lens

•Ray sorting feature in TracePro[®] is used to show rays that are hitting the LED's lens dome

•Approximately 0.1% of initial flux is impinging back on the source

Surface Source Properties

Best for:

Detailed source models

 Sources that emit in complex angular and spectral distribution patterns

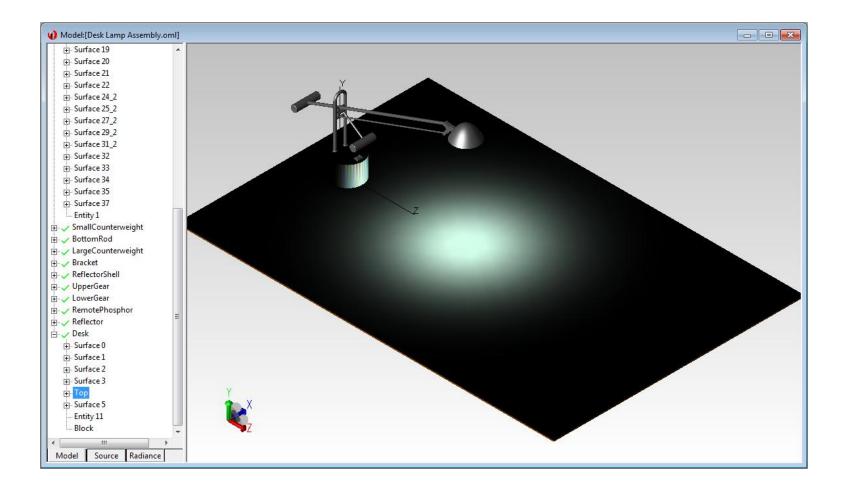
•Where modeling the interaction of light with the source structure is important

Considerations:

•Models can be more complex to make

Need accurate material and surface properties

Examples:


- •LEDs
- Lamps such as arc and filament
- Complete optical systems

Surface Source Property Application

3D Solid Model

Best for:

Detailed source models

•Sources that emit in complex angular and spectral distribution patterns

•Where modeling the interaction of light with the source structure is important

Considerations:

•Models can be more complex to make

Need accurate material and surface properties

Examples:

- •LEDs
- Lamps such as arc and filament
- Complete optical systems

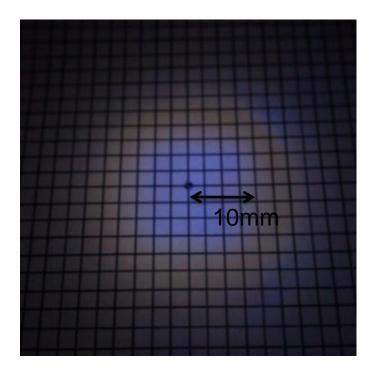
3D Solid Model Application

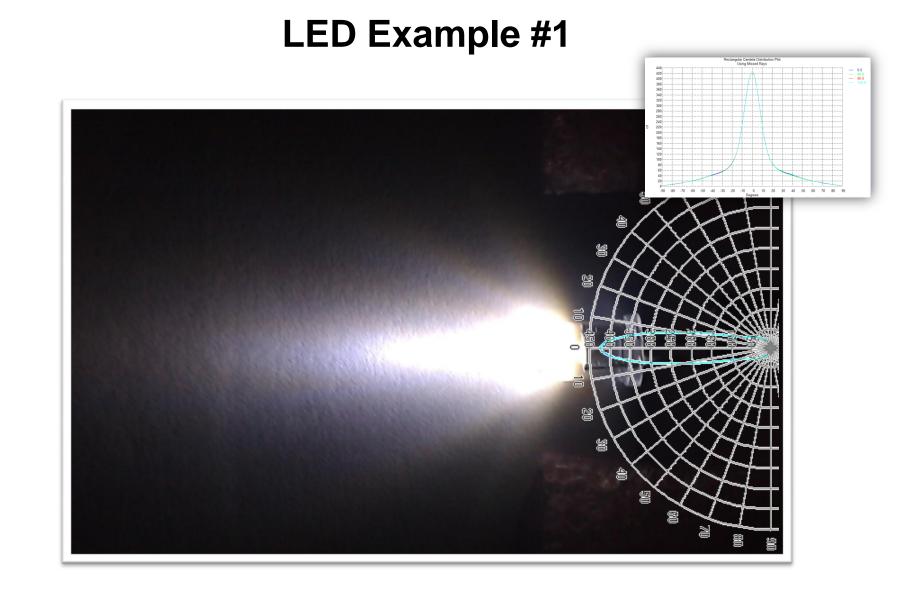
•Arc is defined polychromatically

•Luminous intensity distribution of the arc is modeled

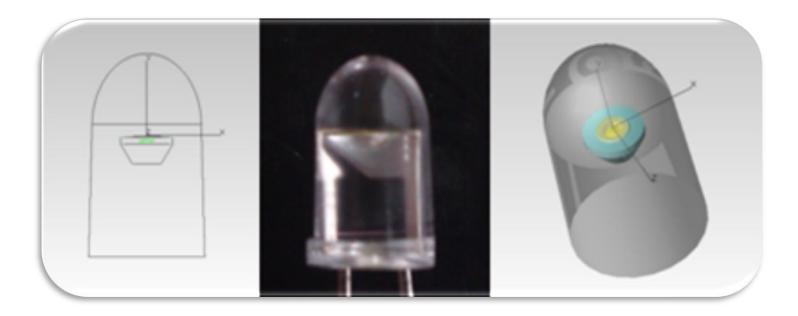
•Spectral properties can be tracked through the model, for example the dichroic filter shown here

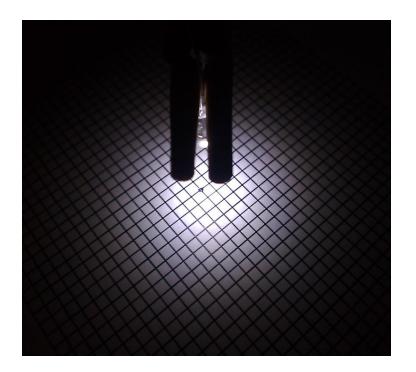
Measured vs. Modeled Results

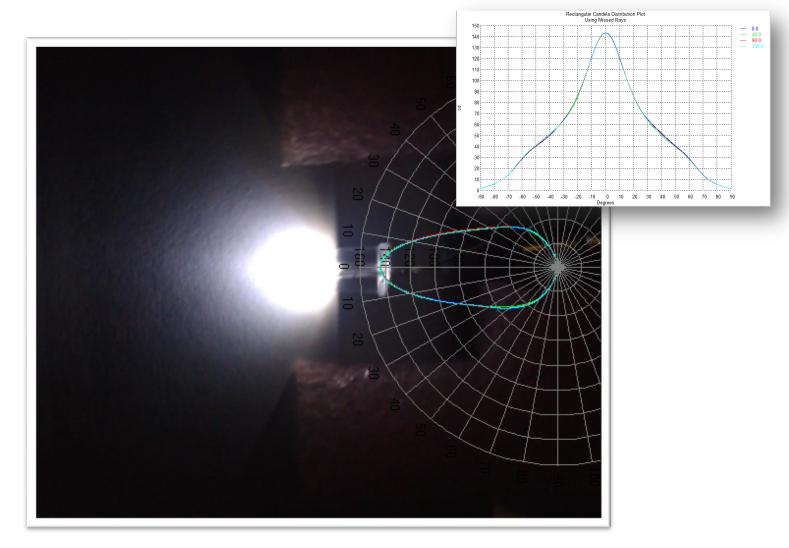




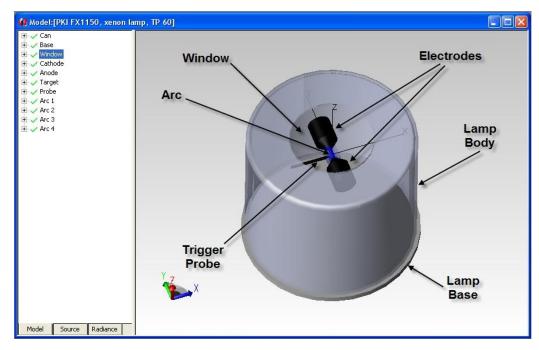
Mobile phone picture of actual LED illuminance at a 10cm distance TracePro TrueColor Irradiance Map raytrace at a 10cm distance

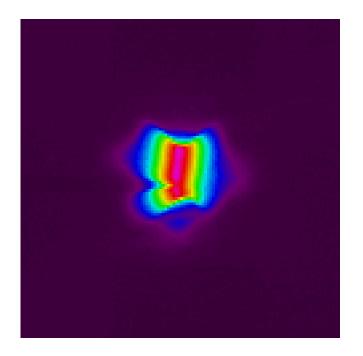




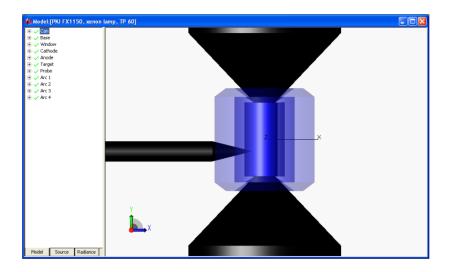


Mobile phone picture of actual LED illuminance at a 2.2cm distance TracePro TrueColor Irradiance Map raytrace at a 2.2cm distance

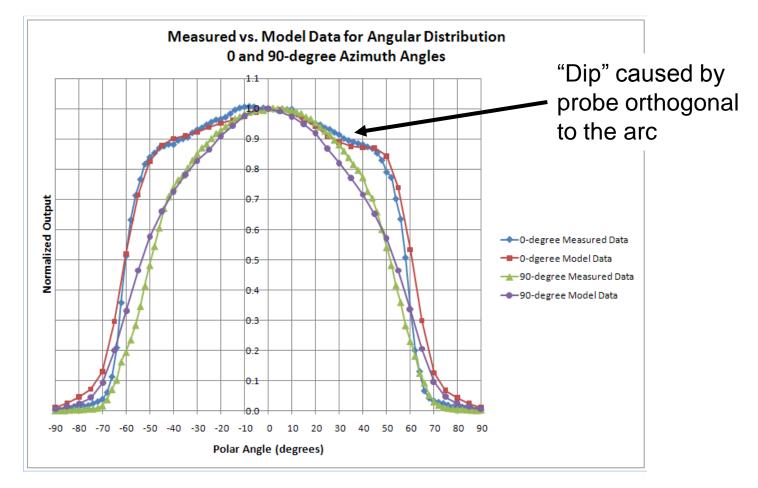




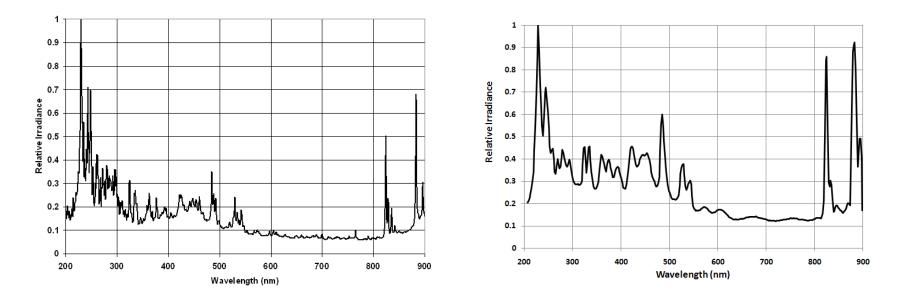
TracePro model of PerkinElmer, now Excelitas, FX-1150 flashlamp



Actual image of FX-1150 arc



TracePro model of FX-1150 arc


Angular Distribution: Measured vs. Modeled

Spectral Distribution

Measured (0.7nm sampling interval)

Modeled (2nm sampling interval)

Summary

•Several ways to model light source

•Examples of options for modeling light sources were shown

•Best option will depend on the application

•Surface source properties and 3D models offer the most versatility

•Accurate source models depend on accurate property definitions

•Excellent correlation was shown between measured and modeled data for LEDs and a xenon short-arc flashlamp

Additional Resources

Past TracePro Webinars
 http://www.lambdares.com/webinars/

TracePro Tutorial Videos

 <u>http://www.lambdares.com/videos/</u>

TracePro Tutorials

•http://www.lambdares.com/technical_support/tracepro/tutorials/

TracePro Training Classes
 http://www.lambdares.com/technical_support/training/

Thank You

Please visit us at the Qioptiq exhibit Hall 3 Stand 20

