Insights into the ABg BSDF model

Copyright © 2012 Lambda Research Corporation. All rights reserved.
By E. R. Freniere

The Total Scatter for the ABg BSDF model can be computed in closed form for certain conditions as a function of A and B. This can give insight into the behavior of scattering versus these parameters in the $A B g$ model.

When the direction of incidence is normal to the scattering surface (i.e. $\beta_{0}=0$), $B>0$, and g has certain integer values, the Total Scatter integral can be computed in closed form. The Total Scatter integral for normal incidence is
$T S=\int_{0}^{2 \pi} \int_{0}^{1} \frac{A}{B+\beta^{g}} \beta d \beta d \varphi$,
where β is the radial component of the $\boldsymbol{\beta}$ vector. The φ integral is trivial, and we are left with
$T S=2 \pi A \int_{0}^{1} \frac{1}{B+\beta^{g}} \beta d \beta$.
This integral can be solved analytically for $\mathrm{g}=0,1,2$, and 3 (and possibly higher integer values of g). The results are shown in the table below.

\mathbf{g}	ABg Total Scatter
0	$\frac{\pi A}{B+1}$
1	$2 \pi A\left(1-B \ln \left(\frac{B+1}{B}\right)\right)$
2	$\pi A \ln \left(\frac{B+1}{B}\right)$
3	$2 \pi A\left[-\frac{1}{3 \alpha}\left\{\frac{1}{2} \ln \left(\frac{(1-\alpha)^{2}}{1-\alpha-\alpha^{2}}\right)-\sqrt{3}\left[\tan ^{-1}\left(\frac{2-\alpha}{\alpha \sqrt{3}}\right)-\tan ^{-1}\left(\frac{-\alpha}{\alpha \sqrt{3}}\right)\right]\right\}\right]$, where $\alpha=\sqrt[3]{B}$

