How to Model Light Sources in TracePro

Presented by: Lambda Research Corporation 25 Porter Rd. Littleton, MA 01460 <u>www.lambdares.com</u>

July 28, 2010

How to Model Light Sources in TracePro

Moderator: Andy Knight Technical Sales Manager, Lambda Research Corporation

Presenter: Dave Jacobsen Sr. Application Engineer, Lambda Research Corporation

Format

•20-30 minute presentation followed by a 10-15 minute question and answer session

•Please submit questions using the Question box in the GoToWebinar control panel

In this webinar you will:

•Learn about the light source modeling tools in TracePro, including Grid, File, Surface, and Bitmap Source

•Gain insight on how to choose the best method for modeling a given light source

•Learn how combinations of sources can be used to model complex light sources such as arc lamps or diffuse sky models

•See a comparison of modeled versus measured data for a light source

In this webinar you will:

•Discover the helpful TracePro utilities for source modeling including the Surface Source Property Generator Utility, the IES Import Utility, and the Bitmap Source Utility

•Have your source modeling questions answered in the Questions and Answer session

How to Model Light Sources in TracePro

Question:

What types of light sources can you model in TracePro?

Answer:

Pretty much anything.

Examples

- •LEDs
- •OLEDs
- •Arc lamps
- •Filament lamps
- •Lasers
- •Fluorescent lamps
- •HID lamps
- •Sun
- •Sky
- •Fire
- •Fluorescence

Types of Light Sources in TracePro

•Grid Sources

•File Sources

•Surface Sources

•Bitmap Sources

Grid Sources

Best for:

Planar sources that have a well defined boundary
Sources that emit in a Lambertian or uniform manner
Monochromatic and polychromatic sources

Considerations:

Not the best option for a 3-dimensional source
May not be able to model more complex angular distributions

Examples: •Fiber optics

•Laser diodes

Grid Source - Laser Diode Example

Grid Source							
Grid Setup Beam Setup Polarization Wavelengths							
Name: Grid Source 1							
Grid Boundary							
Y half-height: 0.0001 X half-width: 0.05							
Grid Pattem							
Rectangular Y points: 1000							
X points: 1000							
Units: Radiometric Rays/wave: 1000000							
Flux per ray 👤 1 Watts							
Grid Position and Orientation							
Grid orientation method: Direction Vectors							
-Origin							
Y: 0 Y: 1							
Color:							
Insert Modify Set Defaults							

Grid Source
Grid Setup Beam Setup Polarization Wavelengths
Spatial profile: Gaussian
Spatial weighting: uniform flux/weighted position
Beam waist X: 0.05 Beam waist Y: 0.0001
(Beam waist is the 1/e^2 point)
Angular profile: Gaussian (degrees) 💌
Angular weighting: uniform flux/weighted angle
Half angle X: 17.5 Half angle Y: 7.50000000
Beam Orientation
Beam orientation method: Perpendicular to grid
7. 1
InsertNodifySet Defaults

Grid Source - Laser Diode Example

File Sources

Best for:

Planar and 3-dimensional sources
Sources that emit in complex angular distribution patterns
Sources that can be modeled monochromatically
Sources that have lenses and structural elements

Considerations:

Defined monochromaticallyNot a good choice if emitted light will interact with source

Examples:

•LEDs •Luminaires

Example of File Source or Ray File Data

!! Source file:

TracePro Release: 6 0 2					
Data for Block 1 Surface 1					
Linear Units in mm					
Data generated at 15:51:06 January 20, 2010					-
X Pos. Y Pos.	Z POS.	× vec.	Y Vec.	Z Vec.	Inc Flux
0.00000000000000e+000 0.0000000000000e+000	4.90000000000000000e+001	0.0000000000000000e+000	0.0000000000000000e+000	1.0000000000000000e+000	9.164210624726462e-001
3.241904746004420e-002 0.00000000000000e+000	4.90000000000000000e+001	-1.943468304810075e-002	0.0000000000000000e+000	9.998111287112282e-001	9.164242320047675e-001
1.620952373002205e-002 2.807571866689163e-002	4.90000000000000000e+001	-9.717341524050380e-003	-1.683092923415404e-002	9.998111287112282e-001	9.164242320047675e-001
-1.620952373002205e-002 2.807571866689163e-002	4.90000000000000000e+001	9.717341524050373e-003	-1.683092923415404e-002	9.998111287112282e-001	9.164242320047675e-001
-3.241904746004420e-002 1.158548475946197e-016	4.90000000000000000e+001	1.943468304810075e-002	0.0000000000000000e+000	9.998111287112282e-001	9.164242320047675e-001
-1.620952373002205e-002 -2.807571866689174e-002	4.90000000000000000e+001	9.717341524050387e-003	1.683092923415403e-002	9.998111287112282e-001	9.164242320047675e-001
1.620952373002205e-002 -2.807571866689163e-002	4.90000000000000000e+001	-9.717341524050380e-003	1.683092923415404e-002	9.998111287112282e-001	9.164242320047675e-001
5.712924240950290e-002 0.00000000000000e+000	4.90000000000000000e+001	-3.569226746605052e-002	0.0000000000000000e+000	9.993628280275048e-001	9.164314560568593e-001
4.947537522558876e-002 2.856462120475134e-002	4.90000000000000000e+001	-3.091041034426859e-002	-1.784613373302526e-002	9.993628280275048e-001	9.164314560568593e-001
2.856462120475156e-002 4.947537522558876e-002	4.90000000000000000e+001	-1.784613373302526e-002	-3.091041034426859e-002	9.993628280275048e-001	9.164314560568593e-001
1.062959457824578e-016 5.712924240950290e-002	4.90000000000000000e+001	0.000000000000000000e+000	-3.569226746605052e-002	9.993628280275048e-001	9.164314560568593e-001
-2.856462120475145e-002 4.947537522558876e-002	4.90000000000000000e+001	1.784613373302525e-002	-3.091041034426859e-002	9.993628280275048e-001	9.164314560568593e-001
-4.947537522558876e-002 2.856462120475134e-002	4.90000000000000000e+001	3.091041034426859e-002	-1.784613373302526e-002	9.993628280275048e-001	9.164314560568593e-001
-5.712924240950290e-002 2.125918915649157e-016	4.90000000000000000e+001	3.569226746605052e-002	0.0000000000000000e+000	9.993628280275048e-001	9.164314560568593e-001
-4.947537522558876e-002 -2.856462120475134e-002	4.90000000000000000e+001	3.091041034426859e-002	1.784613373302525e-002	9.993628280275048e-001	9.164314560568593e-001
-2.856462120475134e-002 -4.947537522558876e-002	4.90000000000000000e+001	1.784613373302528e-002	3.091041034426858e-002	9.993628280275048e-001	9.164314560568593e-001
-3.188878373473735e-016 -5.712924240950290e-002	4.90000000000000000e+001	0.000000000000000000e+000	3.569226746605052e-002	9.993628280275048e-001	9.164314560568593e-001
2.856462120475156e-002 -4.947537522558876e-002	4.90000000000000000e+001	-1.784613373302526e-002	3.091041034426859e-002	9.993628280275048e-001	9.164314560568593e-001
4.947537522558876e-002 -2.856462120475134e-002	4.90000000000000000e+001	-3.091041034426858e-002	1.784613373302528e-002	9.993628280275048e-001	9.164314560568593e-001
7.840016396490235e-002 0.00000000000000e+000	4.90000000000000000e+001	-5.271353434212828e-002	0.0000000000000000e+000	9.986096751469817e-001	9.164426412964354e-001
7.367205554622380e-002 2.681443531603167e-002	4.900000000000000000e+001	-4.953451923684252e-002	-1.802909057089728e-002	9.986096751469817e-001	9.164426412964354e-001
6.005800994492994e-002 5.039465399403187e-002	4.90000000000000000e+001	-4.038091005994879e-002	-3.388360673790594e-002	9.986096751469817e-001	9.164426412964354e-001
3.920008198245095e-002 6.789653365447013e-002	4.90000000000000000e+001	-2.635676717106415e-002	-4.565125986354653e-002	9.986096751469817e-001	9.164426412964354e-001
1.361404560129381e-002 7.720908931006365e-002	4.90000000000000000e+001	-9.153609176893731e-003	-5.191269730880322e-002	9.986096751469817e-001	9.164426412964354e-001
-1.361404560129376e-002 7.720908931006365e-002	4.90000000000000000e+001	9.153609176893725e-003	-5.191269730880322e-002	9.986096751469817e-001	9.164426412964354e-001
-3.920008198245095e-002 6.789653365447013e-002	4.9000000000000000e+001	2.635676717106413e-002	-4.565125986354653e-002	9.986096751469817e-001	9.164426412964354e-001

Can be 1 million + lines longMonochromatic only

Example of Emitted Light Interacting with Source

Small percentage of rays shown

•Some of the light emitted by the LED is totally internally reflected by the lens

•Ray sorting feature in TracePro[®] is used to show rays that are hitting the LED's lens dome

•Approximately 0.1% of initial flux is impinging back on the source

Surface Sources

Best for:

Detailed source models
Sources that emit in complex angular and spectral distribution patterns
Where modeling the interaction of light with the source structure is important

Considerations:

Models can be more complex to makeNeed accurate material and surface properties

Examples:

LEDsLamps such as arc and filamentComplete optical systems

Example of Surface Source Property Data

Emission can vary as a function of: •Temperature •Wavelength •Polar Angle •Azimuth Angle

Note:

Units should be consistent. If spectrum is defined in radiometric units then emission should be as well.

C:\Document's and Settings\ File Name TracePro Release: 6 0 2 Database Version: 4 1 0 Data generated at 17:08:48 January 22, 2010 Name PKI FX-1150 Catalog Flashlamps Description User_Data Spectral Type 3 Angular Type 4 Units Quantity Emission 1 Wavelength1 0 Wavelength2 0 Angle1 -90 Anqle2 10 Temperature Wavelength PolarAngle AzimuthAngle Emissivity 300 0.204 0 0 0.1621716 300 0.204 0 20 0.1621716 300 300 0.204 0 40 0.1621716 0 60 0.204 0.1621716 300 0 0.204 80 0.1621716 300 0.204 0 100 0.1621716 300 0.204 0 120 0.1621716 300 0.204 0 140 0.1621716 300 0.204 0 160 0.1621716 300 0.204 0 180 0.1621716 300 0.204 0 200 0.1621716 300 300 0 220 240 0.204 0.1621716 0.204 0 0.1621716 300 0.204 0 260 0.1621716 300 0.204 0 280 0.1621716 300 0.204 0 300 0.1621716 300 0.204 0 320 0.1621716 300 340 0.204 0 0.1621716 300 0.204 2.045 0 0.161919 300 0.204 2.045 20 0.1619135 300 0.204 2.045 40 0.161946 300 0.204 2.045 60 0.1620167 300 0.204 2.045 80 0.162176

TracePro Surface Source Property Data

Surface Source – LED Example

Bitmap Sources

Best for:

•Making TracePro File Sources from image file formats such as BMP, GIF, JPG, PNG, and MOV

Considerations:

•Resulting File Sources can be very large

Examples:

•Tracing images through systems in TracePro

Bitmap image and Bitmap Source Utility is used to create a File Source for TracePro

4 Sources, 1 Model

TIR Hybrid Lens with Point Source

TIR Hybrid Lens with 1mm x 1mm Grid Source

- 0.0

TIR Hybrid Lens with Ray File Source

TIR Hybrid Lens with Surface Source Property

Increasing the Complexity

1500-watt Xenon Lamp with Surface Source Properties

1500-watt Xenon Lamp with Surface Source Properties

Arc model showing luminous intensity distribution

A Spatially Varying Source

Surface Source Pr	operty Editor					•
2 2 -		*				
Catalog Add Catalog Delete Catalog Add Property Delete Property Copy Property	Catalog: Cu: Description: Spectral Type Table	stomerE xamples	Name: Dye Angular Type Table	cast Sky		
-Data Points						
Sort by	Emission: 65	R	adiometric Irradiance	[Watt/m2] 🚽		
<u>A</u> dd	Temperature (K)	Wavelength (um)	Polar angle (deg)	Azimuth Angle (deg)	Emissivity	
Delete	○ 300	0.5	0	0	1	
	300	0.5	5	0	0.997463132	
	300	0.5	10	0	0.989871835	
	300	0.5	15	0	0.977283884	
	300	0.5	20	0	0.959795081	
	300	0.5	25	0	0.937538525	
	300	0.5	30	0	0.910683603	
	300	0.5	35	0	0.879434696	
	300	0.5	40	0	0.844029629	
	300	0.5	45	0	0.804737854	
	300	0.5	50	0	0.761858406	
	300	0.5	55	0	0.715717624	
	300	0.5	60	0	0.666666667	
	300	0.5	65	0	0.615078841	
	300	0.5	70	0	0.561346762	
	300	0.5	75	0	0.505879363	
	300	0.5	80	0	0.449098785	
	300	0.5	85	0	0.391437162	
	300	0.5	90	0	0.333333333	
۲	300 300 300 Table	0.5 0.5	80 85 90	0	0.391437162 0.3333333333	

Use:

 $\frac{L_{oc}(\theta)}{L_{zoc}} = \frac{1 + 2 * sin(\theta)}{3}$

to make a Surface Source Property in TracePro

Note that the zenith in TracePro is O-degrees

•Use a hemisphere to represent the sky

•Apply the Surface Source Property to the surface of object at the center of the hemisphere

•Trace rays to the inside surface of the hemisphere

Alexander	Miles and an article	Courses.	Charle David	Barthad	T	Materia	- Ch	V Bar	Viller	7.0	Witten.	N Mar	71/10	-
Number	Wavelength 0.546	Source Cource/Emitter	Start Kay	2	Type	Emitted	0.065	1378.58	9901.07	2 905	A Vec. 0.182267	v vec.	2 Vec.	-
	0.546	Source/Emitter	2	2		Emitted	0.065	7219.94	2219.05	6553.49	0.726059	0.218544	0.651946	
	0.546	Source/Emitter	3	2		Emitted	0.065	-2265.19	2955.11	-9280.96	-0.262141	0.293661	-0.919263	
	0.546	Source/Emitter	rce/Emitter 4 2 Emitted 0.065 -3016.61 7531.79 -5845.7 -0.323123								0.75375	-0.572285		
	0.546	Source/Emitter	5	2		Emitted	0.065	1106.94	9492.45	-2944.16	0.1318	0.935469	-0.325048	
	0.546	Source/Emitter	6	2		Emitted	0.065	4034.87	9146.63	242.761	0.425999	0.904182	0.031299	
	0.546	Source/Emitter	fmitter 7 2 Emitted 0.065 -192.961 9677.79 -2510.61 -0.0301107 0.974595									-0.221941		
	0.546	Source/Emitter	0	2		Emitted	0.065	-0239.87	3931.70	-0/53-17	0.305503	0.39363	0.203403	
	0.546	Source/Emitter	10	2		Emitted	0.065	9832.53	585,218	1725.96	0.979987	0.0561936	0.190965	
	0.546	Source/Emitter	11	2		Emitted	0.065	-1679.06	4931.74	-8535.73	-0.155902	0.51114	-0.84524	
	0.546	Source/Emitter	12	2		Emitted	0.065	-6734.16	5641.18	4777.89	-0.630238	0.570261	0.526879	
	0.546	Source/Emitter	13	2		Emitted	0.065	-6588.41	7185.9	2226.14	-0.663519	0.714732	0.221135	
	0.546	Source/Emitter	14	2		Emitted	0.065	-9209.36	3805.21	841.424	-0.916816	0.3902	0.0848055	
) Sa	ive Incid	dent Ray	/ Data							6			_ x	ζ
	Sav	e in: 🚺	Dav	eJ Exam	oles				•	← 🔁	r 🖽	•		
	e.	N	lame			^				Date mo	dified		Туре	*
Rec	ent Plac		1500	0W Cera	mic La	mp				2/3/2010) 2:17 PI	N	File fol	
			corner_cube 2/3/2010 2:17 PM File fol								File fol			
	-		MVS Test 2/3/2010 2:17 PM File fol								File fol			
[Desktop		Uptimizer Examples 4/16/2010 2:32 PM File fol								File fol			
			Textured Optimizer 6/10/2010 8:21 AM File fol							File fol				
1	Libraries		ITIR Hybrid Lenses 2/3/2010 2:17 PM File fol							File fol				
			University of Arizona, March 2009, examples 2/3/2010 2:17 PM File fo							File fol				
c	Computer		0_25 degree beam 11/6/2009 10:35 AM Text D											
-			7% Reflection 6/17/2009 12:28 PM Text D											
		ľ	1/10/2009 1:56 PM Text Di 60 Text 11/6/2009 3:15 PM Text Di											
1	Vetwork	Ē	60deaLSD. 10dea incident 10/8/2008 10:52 AM Text Di						Ŧ					
			_	_	_	1	1	_	_				•	
		File	e name	c	*.txt						•		Save	
		Sa	ive as t	ype:	Text	File (*.txt)				•		Cancel	
		•	Tabo	delimit dai	ta		G	Export	to So	urce File fo	ormat	1		
		_						Z Davies						
			Increa	ase nume	eric pred	cision	- V.P	 never 	se pou	ince ray un	ection			

- •Get the Incident Ray Table for the inside surface of the hemisphere
- •Use Save Incident Ray Data with "Export to Source File format" and "Reverse Source ray direction" options to create a new File Source from the Incident Ray Table data

•Insert the new File Source in your model and run the raytrace

Measured Data vs. Simulation Data: An Example

Photograph courtesy of PerkinElmer Optoelectronics, Salem, MA

TracePro model of FX-1150

Image of FX-1150 arc

TracePro model of FX-1150 arc

Angular Distribution: Measured vs. Modeled

Spectral Distribution

0.9

0.8 Relative Irradiance 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 200 300 400 500 600 700 800 900 Wavelength (nm)

Measured (0.7nm sampling interval)

Modeled (2nm sampling interval)

TracePro Utilities for Light Source Modeling

Surface Source Property Generator Utility

IES Import Utility

💐 IES Import Utility for TracePro		
Font About		
Import	Plot Type:	3D Polar Distribution
IES file name: C:\Documents and Settings\djacobsen\M		C COLO
Export Source type: Surface Source Property Wavelength (um): 0.5461 Source Information Catalog Name: SrcGenerator		
Property Name: Property_01 Description:	ХТү 7	Trace P
Emission: 10 Radiometric Flux [Watt]	IESNA:LM-63-1995 [TEST] *** PRORATED FRO [DATE] [MANUFAC] ZUMTOBEL S' [LUMCAT] EF 2285 10 DX	M LTL TEST NUMBER 07136 ***
Export	[LUMINAIRE] EF; ETHOS; FF ALUMINUM ENDS, PERFOR [MORE] SECTIONS IN HI ACRYLIC INSERTS, [MORE] FORMED SPECI LAMPS, FORMED [MORE] SPECULAR ALL	ORMED STEEL HOUSING WITH CAST RATED DUSING WITH TRANSLUCENT WHITE JLAR ALUMINUM REFLECTOR BELOW JMINUM REFLECTORS BESIDE LAMPS,
IES File Loaded		.:

Bitmap Source Utility

💼 imagNipeg 4, small - BitmapSource
File Edit View Conversion Help
Scene Information
Scene to Bitmap Scaling
Horizontal Size 152 mm
Vertical Size 203 mm
Curre Diriz Namel To Base Ib Direžin Maded
Scene Origin Vormal To Plane Up Direction (vector)
< Back Next > Cancel Help
For Help, press F1

Thank You!

Questions and Answers

For Additional Information Please Contact:

Lambda Research Corporation Littleton, MA 978-486-0766 www.lambdares.com

